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Abstract

The identification of gene fusions promises to play an important role in personalized cancer treatment decisions. Many rare
gene fusion events have been identified in fresh frozen solid tumors from common cancers employing next-generation
sequencing technology. However the ability to detect transcripts from gene fusions in RNA isolated from formalin-fixed
paraffin-embedded (FFPE) tumor tissues, which exist in very large sample repositories for which disease outcome is known,
is still limited due to the low complexity of FFPE libraries and the lack of appropriate bioinformatics methods. We sought to
develop a bioinformatics method, named gFuse, to detect fusion transcripts in FFPE tumor tissues. An integrated, cohort
based strategy has been used in gFuse to examine single-end 50 base pair (bp) reads generated from FFPE RNA-Sequencing
(RNA-Seq) datasets employing two breast cancer cohorts of 136 and 76 patients. In total, 118 fusion events were detected
transcriptome-wide at base-pair resolution across the 212 samples. We selected 77 candidate fusions based on their
biological relevance to cancer and supported 61% of these using TaqMan assays. Direct sequencing of 19 of the fusion
sequences identified by TaqMan confirmed them. Three unique fused gene pairs were recurrent across the 212 patients
with 6, 3, 2 individuals harboring these fusions respectively. We show here that a high frequency of fusion transcripts
detected at the whole transcriptome level correlates with poor outcome (P,0.0005) in human breast cancer patients. This
study demonstrates the ability to detect fusion transcripts as biomarkers from archival FFPE tissues, and the potential
prognostic value of the fusion transcripts detected.
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Introduction

Oncogenesis is understood to be driven by ten distinctive and

interactive capabilities that enable tumor growth and metastasis

[1]. One of the underlying hallmarks of cancer cells is genome

instability, which fosters random mutations and chromosomal

rearrangements. These genomic aberrations, which include

translocations, deletions and inversions, can produce oncogenic

gene fusions that can be exploited pharmacologically. A classic

example of oncogenic fusions is BCR-ABL1 in chronic myelog-

enous leukemia, which is generated by a translocation between

chromosomes 9 and 22 [2], and exhibits constitutive ABL1

tyrosine kinase activity. This discovery led to the development of

the targeted tyrosine kinase inhibitor Imatinib approved in 2001

[3]. With advances of modern technology in medicine, the

turnover time from discovery of a molecular biomarker to drug

approval has been reduced to a period as brief as four years, as

demonstrated by the development of Crizotinib treatment for the

2–7% of non-small lung cancer patients possessing the EML4-

ALK fusion [4,5]. Recently, the advent of next-generation

sequencing technology has enabled detection of a number of rare

recurrent gene fusion events that have potential therapeutic

relevance to common solid tumors, including KIF5B-RET, which

occurs in about 1% lung adenocarcinomas [6–9].

The detection of functional gene fusion events generated by

chromosomal translocations has been facilitated by the application

of RNA-Seq technologies. Numerous bioinformatics methods are

available to detect fusion transcripts from RNA-Seq paired-end

read data (ChimeranScan [10], SnowShoes-FTD [11],

GSTRUCT-fusions [12] and GFP [9]) or single-end read

(TopHat-Fusion [13], FusionMap [14] and FusionFinder [15]).

All fusion transcript detection methods utilize split reads, in which

a single-end read or one read from the pair-end read is mapped to

each end of two fused genes exactly at the fusion junction site. In

addition to split reads, paired-end approaches take advantage of

bridging reads in which each read is mapped to each of the fused

genes independently, thus providing extra evidence for the

existence of a fusion junction than split reads alone. Most of these
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published methods evaluate RNA prepared from cell lines or fresh

frozen tumor tissue from biopsy or resection. RNA from these

sources is generally relatively intact and produces longer insert size

libraries for sequencing, which greatly facilitates the detection of

fusion transcripts.

The standard clinical practice of creating FFPE tissue specimens

from biopsies and surgical resections has generated very large

numbers of FFPE tissue blocks in pathology archives that have

associated, metadata-rich, long term clinical records. Therefore,

the detection of fusion transcripts in FFPE tissues may reveal

fusion transcripts of clinical relevance. Any attempts to detect

fusion transcripts from FFPE tissues must address the extensive

RNA fragmentation that occurs during storage of FFPE blocks

and continues as block archival age increases [16], and also the

substantial amounts of precursor RNAs detected in this tissue

source [17]. As a result, FFPE RNA-Seq libraries have short insert

sizes, low complexity (i.e., many short sequence segments with

identical nucleotide composition) and a large amount of intronic

sequence [17]. Difficulties accurately trimming the sequencing

adaptor at the 39-end of reads from FFPE samples as well as the

chemical modifications of RNA during formalin treatment can

also decrease mapping quality such that the mapping rates from

FFPE RNA-Seq libraries are lower than those from fresh frozen

tissues. As a result of RNA fragmentation in FFPE tissue, whereby

a median RNA fragment size of 100 bp is found, we reasoned that

50 bp single-end reads would provide a robust cost-effective

sampling methodology for our study. We describe here the

development and application of a bioinformatics method, gFuse,

for the detection of fusion transcripts in RNA-Seq data from

archival FFPE samples. This method addresses the challenges

outlined and employs short sequence single-end reads (50 bp)

enabling a cost effective method of analyzing large numbers of

FFPE samples.

In addition to sequence information, expression profiles have

been used to provide supporting evidence for fusion transcripts.

The utilization of expression data for fusion transcript detection is

a feature of the COPA (Cancer Outlier Profiling Analysis) method

that was devised for analysis of microarray databases [18]. Cancer-

related genes identified as expression outliers in microarray

experiments led to the discovery of TMPRSS2 fused to ETS

transcription factors, the first known recurrent gene fusions in

common solid carcinomas. Fusion RNAs are expected to exhibit a

marked expression discontinuity between the preserved side and

discarded side of a given fusion junction, compared to expression

of these genes in samples without the fusion transcript. Recently

published fusions detected using RNA-Seq data have displayed

this discrete expression pattern at acceptor fusion junction sites

[8,9]. Multiple bioinformatics approaches including FusionSeq

[19], deFuse [20] and TopHat-Fusion [13] have used expression

data in their pipelines and all these methods rely on the analysis of

an individual subject. The cohort-based approach described here

compares expression levels across a cohort of subjects, combined

with exon/intron level expression interruption, to identify putative

fusion transcripts. Due to the large proportion of sequences (65%

of uniquely mapped reads) that map to introns in FFPE RNA-Seq

data [17], we included reads mapped to the introns to

comprehensively measure expression of each gene.

In this study, we detected fusion transcripts in two breast cancer

cohorts, the Providence cohort of 136 patients and the Rush

cohort of 76 patients with average FFPE block archive ages of 8.5

years and 13.4 years respectively [17,21]. These two cohorts have

been previously used in the development of a 21-gene qRT-PCR

breast cancer recurrence risk assay [21,22]. Recently, the whole

transcriptome RNA-Seq analysis of the Providence cohort has

demonstrated that the technology used is sensitive and specific

[17]. Here, we apply these single-end 50 bp RNA-Seq data to

identify fusion transcripts and relate them to breast cancer

prognosis.

Materials and Methods

Breast cancer patients and RNA-Seq dataset
One hundred thirty-six primary breast cancer FFPE tumor

specimens with clinical outcomes were provided by Providence St.

Joseph Medical Center (Burbank, CA), with institutional review

board approval [22]. The clinical characteristics, RNA-Seq

sample preparation and sequencing of the Providence cohort of

136 primary breast cancer FFPE tumor specimens were described

earlier [17]. Briefly, total RNA was isolated from three 10-mm

FFPE tissue sections per patient using Epicentre’s MasterPure

Purification Kit (Epicenter Biotechnologies, Madison, WI). Paraf-

fin was first removed by xylene extraction followed by ethanol

wash. A DNase I treatment step was included to remove DNA

from total nucleic acids. The same procedure was employed for

RNA isolation from a second breast cancer study cohort from

Rush University Medical Center. Seventy-eight primary breast

cancer FFPE tumor specimens with clinical outcomes were

provided by Rush University Medical Center (Chicago, IL), with

institutional review board approval [21]. The same method of

sample preparation [21] and sequencing [17] was applied to 76 of

78 Rush samples. Two remaining Rush samples did not yield

enough RNA for sequencing. Directional RNA-Seq libraries were

prepared using ScriptSeq RNA-Seq Library Preparation Kit

(Epicenter Biotechnologies, Madison, WI) as described previously

[17]. The quality of the RNA-Seq libraries was assessed using

Agilent DNA Kits on a 2100 Bioanalyzer instrument (Santa Clara,

CA). Sequence reads of 50 bp in length were processed by

CASAVA, the standard Illumina package, and data quality

assessment was described earlier [17]. The definition of clinical

recurrence in these patients was determined as in the original

study plans [21].

Fusion transcript detection pipeline gFuse
We define a fusion junction as a unique pair of donor and

acceptor genomic positions such as ‘‘+chr17:5250220-.+
chr17:11532734’’, and a fusion or fusion event as an occurrence

of a particular fusion junction within a patient sample. The

definition of symbols used to define each junction is: ‘‘-.’’

indicates the splicing direction from donor to acceptor, ‘‘+’’

indicates the transcription direction on the top of chromosome

strand, and ‘‘-’’ indicates the transcription direction on the bottom

of the chromosome strand. The donor genomic position is the last

base of the preserved side of the donor and the acceptor genomic

position is the first base of the preserved side of the acceptor.

The fusion transcript detection pipeline gFuse consists of two

strategies, a sample-based strategy and a cohort-based strategy

(Figure 1A). The sample-based strategy interrogates each RNA-

Seq sample individually and nominates candidate fusion junctions.

The cohort-based strategy has two features that take advantage of

the cohort-based information. The first feature is to combine the

candidate fusion junctions in the beginning step of the cohort

based analysis, which increases the chance of identifying recurrent

fusion transcripts across the two cohorts studied here. The second

feature is to confirm the presence of each fusion candidate in each

individual sample across the whole cohort by examining read

alignment and expression profiling evidence. The pipeline was

developed in Linux Shell, Perl and R languages, and the data

Detect Fusion Transcripts in FFPE for Tumor Progression
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processing was on a Linux cluster. The detailed steps of gFuse

(Figure 1A) are described below.

Step 1: Map by GSNAP. Raw FASTQ sequencing data from

the Providence and Rush cohorts were generated using CASAVA

software. The FASTQ files were mapped to the human genome

(version GHCh37/hg19) along with RefSeq splicing sites and

dbSNP database (version 135) using the RNA-Seq aligner GSNAP

[23]. An important feature of GSNAP is its ability to detect a

distant splice junction within a single read. Local splice junctions

derive from splicing events within a single gene in a consistent

transcription direction, whereas distant spliced junctions derive

from splicing events between different genes or chromosomes.

Distant splicing events can also include splicing events occurring

within the same gene, but in the opposite transcription direction

[24].

Two filters were installed to remove low quality and unwanted

reads. The quality filter retained reads with a minimum 15 bases at

any position with a base quality score of 20 or above. To filter out

the un-wanted reads, a number of abundant sequences including

biological sequences (e.g., ribosomal RNA and mitochondrial

sequences), and sequences introduced during library prep (e.g.,

PhiX) were removed from alignment (BAM) files. Only reads

Figure 1. The schema and workflow of our fusion detection pipeline gFuse, illustrated for two breast cancer cohorts. A. The sample
and cohort based strategies are integrated in RNA-Seq fusion transcript detection. Each step of the pipeline is numbered in shade, and explained in
Materials and Methods. The percentages show the fusion junctions retained after each step in all Providence samples. B. Dataflow and main results of
fusion events detected in Providence and Rush are shown side-by-side with each step corresponding to the numbered step in Figure 1A. The
numbers of fusion events selected for TaqMan assays and the TaqMan supported ones are in parentheses.
doi:10.1371/journal.pone.0094202.g001
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passing both filtering thresholds and uniquely mapped to human

genome were retained to calculate the gene feature counts that

provide expression values for exonic and intronic regions. The

gene feature count is the number of aligned bases from reads

mapped within the feature region. These gene feature counts are

referred to as ‘‘gene tables’’ in Figure 1A.
Step 2: Retest by GSNAP. In order to remove false positives,

potential distant spliced reads in Step 1 were re-tested using

GSNAP parameters that favor local alignment. Each alignment

from the GSNAP re-run was examined, any reads meeting all of

the following criteria were considered false positive distant splicing

reads in the original GSNAP output, and removed from further

analyses: the total matched length in the local alignment was at

least 44 bp with a gap alignment tolerance of 1 bp. Reads that

successfully passed through this step were considered to include a

distant spliced junction.
Step 3: Extract Fusions. The resulting distant splicing

junctions were then annotated and candidate fusion transcripts

were selected. Specifically, the alignments of reads that passed

Step 2 were examined, and reads with any mismatches within 5 bp

of the distant splicing junction site or mapped to the anti-sense

strand of annotated genes were removed. Anti-sense reads were

removed in this step since directional RNA-Seq libraries were

constructed in the two cohorts analyzed here. The remaining

reads were grouped according to the distant splicing junction sites,

and each junction site was annotated based on the University of

California, Santa Cruz RefSeq sequence annotation (ftp://

hgdownload.cse.ucsc.edu/goldenPath/hg19/database/refGene.

txt.gz). During this annotation step, any junctions mapped to

pseudo-genes, un-annotated gene regions, or multiply mapped

RefSeq genes were removed. Also, gene rearrangements within the

same gene or potential transcript read-throughs were also

eliminated. At this stage, candidate fusions met at least one of

the following criteria: (1) they mapped to different chromosomes,

(2) they mapped to different RefSeq genes, (3) they were in

opposite directions on same chromosome, or (4) they were at least

1 MB apart if on the same chromosome.
Step 4: Build Templates. At this stage, fusion junctions from

both the Providence and Rush cohorts were combined (Figure 1B).

In order to remove false positives introduced by homologous

sequences around candidate fusion junctions and to enable

accurate mapping of supporting reads, a five template set was

created for each candidate fusion. The features of the five template

set are depicted in Figure 2A. The set included the following

individual templates, each of which included 100 bp of sequence.

The set templates were 100 bp, with 50 bp on either side of the

candidate junction for fusion templates, because our read length is

50 bp.

N Fusion template: The 50 bp exonic sequence of the preserved

region of donor gene plus 50 bp exonic sequence of the

preserved region of acceptor gene,

N Donor template: The 50 bp exonic sequence of the preserved

region of donor gene plus 50 bp exonic sequence of the

discarded region of donor gene,

N Acceptor template: The 50 bp exonic sequence of the

discarded region of acceptor gene plus 50 bp exonic sequence

of the preserved region of acceptor gene,

N Donor pre-mRNA template: The 50 bp upstream genomic

sequence of donor splicing site plus 50 bp downstream

genomic sequence of donor splicing site,

N Acceptor pre-mRNA template: The 50 bp upstream genomic

sequence of acceptor splicing site plus 50 bp downstream

genomic sequence of acceptor splicing site.

Donor and acceptor mRNA or pre-mRNA containing template

sequences were used as controls. Since the DNA breakpoints were

unknown in RNA-Seq data, a fusion pre-mRNA template could

not be created. The genomic sequences were used to generate the

pre-mRNA template sequences, and RefSeq sequences were used

to generate mRNA template sequences. The sequence of each

template in the five template set was retrieved and annotated for

each candidate fusion transcript. Candidate fusion junctions were

removed if any of their 100 bp templates had the identical

sequence with any other template set. BLAST (http://blast.ncbi.

nlm.nih.gov/Blast.cgi, version 2.2.25) was used to investigate the

homology of the remaining candidate fusions. A separate

collection of 300 bp template set was built for each of the fusion

junction candidates with the same strategy as described above to

provide sequence input to probe designs for qRT-PCR experi-

ments. Homologies between the 300 bp donor template and the

300 bp acceptor template, as well as homologies between the

300 bp donor pre-mRNA template and the 300 bp acceptor pre-

mRNA template were evaluated. Any candidate fusion satisfying

the following criteria was removed from further analysis: (1)

sequence identity of more than 14 bp (empirically determined to

effectively remove homologous genes) of 300 bp of the donor

template and acceptor template; (2) sequence identity of more than

14 bp of 300 bp of the donor genomic template and acceptor

genomic template; and (3) less than 50 bp exonic sequence on

either side of fusion, donor, or acceptor template sequences.

The 100 bp five template sets for each of the remaining

candidate fusions were used to create a template index using a tool

from the GSNAP package.

Step 5: Retrieve Reads. In order to increase the sensitivity

and to determine the final supporting reads for each candidate

junctions, all reads mapped near any junction site based on the

genomic location of all candidate fusion template sets and reads

not mapped in the original GSNAP BAM file for each RNA-Seq

library were selected. The selected reads were re-mapped into the

five template set index with GSNAP with the splicing detection

parameter turned off. Only good quality reads uniquely mapped

to the fusion template were kept.

Step 6: Profile Expression. In order to assess the expression

of each fusion transcript with a cohort, both exons and introns

present in candidate fusions that had at least one read across the

fusion junction site were assessed for each donor and acceptor.

The gene table including exons and introns derived from Step 1

was normalized by library size factors as described by R package

DEseq [25]. The intron immediately before the splicing site on the

acceptor gene or the intron immediately after the splicing site on

the donor gene were excluded from expression analyses due to

uncertainty of the breaking point in the intron (Figure 2A). Exons

or introns having counts below 5 reads were padded to 5 reads.

The expression Interrupt Ratios (IR) of normalized counts

between preserved and discarded sides were calculated for donor

and acceptor genes for each sample according to the following

formula:

IR~

(
counts

length
)preserved

(
counts

length
)discarded

The normalized expression counts of exons and introns in each

fusion transcript across samples in a cohort were ordered

according to IR values, and a heatmap representing the gene

features of the predicted fusion transcript within the cohort was
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generated. Expression profiling results for an example candidate

fusions are shown in Figure 2D of the Results section.

Step 7: Review Evidence. Fusions were classified into these

three tiers based on evidence (Figure 1B). Data were manually

reviewed to classify candidate fusions. The following rules were

then applied to rank candidate fusions into three tiers:

N Fusions with a minimum of two non-redundant reads spanning

fusion junctions and were kept as Tier-1 fusions regardless of

the expression profiling (Figure 1B);

N For fusions with only one non-redundant read, expression

profiling evidence was reviewed to select candidates with

favorable expression evidence, and ranked as Tier-2;

N Fusions were classified as Tier-3 if they were predicted without

any read evidence, but sharing a similar expression profiling

with a TaqMan supported fusion after Step 8 described below;

N Multiple samples sharing the same fusion junctions, but

without good expression evidence were removed.

A total of 100 unique fusion junctions with 118 fusion events

were identified, the full list is available in Table S1.

Step 8: TaqMan assay. Quantitative RT-PCR analysis

using TaqMan RT-PCR was used to investigate the selected 60

fusion junctions. Reverse transcription was carried out using the

Omniscript RT Kit (Qiagen) by incubating amplified RNA with

random hexamers and gene-specific primers at 37uC for 1 hour.

Primer, probe, and amplicon sequences are shown in Table S2.

Fluorogenic probes were dual-labeled with 59-FAM as a reporter

and 39-BHQ-2 as a quencher. Primers and probes were designed

using the Primer3 program restricting amplicon sizes to 65-85 bps

(http://frodo.wi.mit.edu/). When Primer3 failed, primer and

probe sequences were optimized manually to ensure optimal

performance of the TaqMan assay design for the chimeric

transcripts. Reverse transcription reaction in the absence of

RNA template (i.e., water) was always used as a negative control

in all assays. The samples that were previously identified as

positive or negative for a particular fusion junction served as

controls when needed. Since the RT reaction was multiplexed by

using a pooled gene specific primer set, the cDNA derived from a

RNA sample was tested with all fusion gene qPCR assays within

an assayed gene set. All RNA samples were assayed in triplicate

qPCR reactions with 10 ml per well. Thermal cycling conditions

were standard for all assays (A heat activation step of 95uC for 10

minutes followed by 40 cycles of 95uC for 20 seconds and 60uC for

45 seconds). All TaqMan assay results including primer and probe

sequences are listed in Table S2.

Fusion confirmation by Personal Genome Machine (PGM,
Life Technologies)

Nineteen qPCR supported fusion transcripts were selected to be

sequenced on the semi-conductor based Ion Torrent Personal

Genome machine (PGM) to confirm the results from qPCR. The

selection priority was given to those either recurred in multiple

patients or appeared within a single patient as one of the multiple

fusion transcripts.

Eight replicate wells of PCR products were generated for each

of the fusion targets (19 in total) in 12 Providence/RUSH

amplified RNA samples in order to prepare enough PCR product

for PGM sequencing of the selected gene fusion candidates.

Quantitative RT-PCR analysis using TaqMan RT PCR was used

to confirm the presence of PCR product before proceeding to

PGM sequencing. Reverse transcription was carried out as

described in Step 8. The eight replicate wells of PCR product

were pooled for each fusion target. Each PCR product was then

purified using 1.86 volume of Agencourt AMPure XP beads

(Beckman Coulter), and quality checked and quantitated using the

Agilent High Sensitivity DNA Kit (Agilent Technologies). Fusion

PCR products from the same patient samples were then pooled

together. The Fusion PCR products were then prepared for

sequencing using the Ion Plus Fragment Library Kit (Life

Technologies) and barcoded using the Ion Xpress Barcode

Adapters 1–16 (Life Technologies). The library was amplified

with 7 cycles after adapter ligation and cleanup, as required by the

protocol. The libraries were individually quantitated using the

Agilent High Sensitivity DNA Kit (Agilent Technologies) and

diluted to a target concentration of 26 pM. The libraries were

pooled in equi-molar quantities prior to emulsion PCR on the Ion

OneTouch 2 System (Life Technologies) and subsequently

sequenced on a PGM 314 Chip Kit v2 (Life Technologies) using

260 flows.

Ion Torrent Suite software was used to generate FASTQ files in

which the barcode adaptors and 39 end low quality sequences were

removed as recommended. To recover read sequences longer than

the desired 100 bp in a case of an expected amplicon of 126 bp,

the 39 end quality trimming was turned off for this design. All

reads were mapped to the 5 template set sequence database

containing the fusion templates. For each of expected fusion

amplicons in a given sample, the most abundant reads mapped to

the fusion template was selected as the PCR amplicon. The

sequence of this read was compared to the sequence of the

expected amplicon. If the PCR amplicon matches the expected

fusion amplicon, the fusion junction sequence is considered as

confirmed.

Figure 2. The utilization of a five template set and expression profiling for fusion transcript detection. A. The concept of five template
set is illustrated with six RNA transcripts for a fusion transcript in a FFPE RNA sample. Each template is numbered under lines around the
corresponding RNA sequence. The preserved and discarded sides of donor or acceptor are indicated by arrowed lines indicating transcription
directions above each pre-mRNA. The red blocks are DNA breakpoints. The interrupt ratio (IR) is calculated by using the * marked preserved and
discarded sides accordingly for donor or acceptor fusion genes. B. All supporting RNA-Seq split reads are aligned to five templates of fusion
RABEP1-.DNAH9 in the Providence sample CSG. Each template is numbered according to Figure 1A. The vertical line indicates the junction site. C.
Two samples are shown as outliers (solid red dots) when the gene expression levels of donor RABEP1 are plotted against acceptor DNAH9 in the
Providence cohort. The expression levels are log2 base counts normalized by library size factors. TaqMan tested negative samples are labeled as solid
black dots. D. Exon and intron expression levels of acceptor DNAH9 in the Providence cohort show the interrupted expression pattern in samples CSG
and ECI at the predicted fusion junction site (orange line). The base counts of each exon and intron are normalized by library size, then center-scaled
across the Providence cohort. The vertical arrow indicates RNA samples from low to high IR values of DNAH9. The exons (black ticks) and introns of
DNAH9 are ordered according to the transcription direction (horizontal arrow), with the intron harboring DNA breakpoint omitted in Figure 2D and
2E. E. The base counts of exons and introns of acceptor DNAH9 in two samples show interrupted expression patterns at the fusion junction site. The
base counts are normalized by library size then divided by length of each exon or intron.
doi:10.1371/journal.pone.0094202.g002
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Survival analysis
Patients were stratified into different categories based on the

fusion number detected. The time to disease recurrence as defined

in the original studies [21,22] was used to generate the Kaplan-

Meier plot using the R package Survival.

Data access
The read alignments which support the fusion transcripts for

Providence and Rush cohorts are deposited into Dryad Digital

Repository (http://doi.org/10.5061/dryad.98m0m).

Results

Fusion transcripts were detected by gFuse, an integrated
cohort-based approach

Overall, 118 fusion events, representing 100 unique fusion

junctions, were identified in the two cohorts (Table S1). Forty

three of the fusion junctions are predicted to produce in-frame

chimeric proteins. Based on gene associations with cancer, we

selected a total of 60 fusion junction candidates, and designed

qRT-PCR assays for these fusion transcripts. Some of the

candidate fusions selected for TaqMan assay were observed in 2

or more samples. Therefore by using 60 designs, we tested 77

candidate fusion events by quantitative RT-PCR in amplified

RNA from selected patients harboring the corresponding candi-

date fusions (Table S2). A total of 47 of the 77 fusion events (61%)

were supported by TaqMan across the two cohorts irrespective of

the sequence evidence. The Tier-1 category of candidate fusions

(see Materials and Methods for definitions of Tiers), which have

the strongest sequence evidence have the highest support

frequency rate (89%). Tier-2 candidates, selected based on the

combination of sequence (single read coverage only) and

expression profiling, have a 45% support frequency rate. Tier-3

candidates, purely predicted from gene expression patterns, have

the lowest support frequency at 23% (Figures 1B). Thus, the

TaqMan results are consistent with the level of evidence observed

for the three different tiers of fusion candidates. To further confirm

fusion junction identified by TaqMan assays, a total of 19 fusion

events identified by TaqMan were selected for PGM sequencing.

Fusion junctions were amplified by using TaqMan primers, and

PCR products containing fusion amplicons were sequenced on the

PGM. In all 19 PCR reactions, the PCR amplicons matched the

predicted fusion junction sequences (Table 1 and Table S3). In 7

PGM libraries in which a single barcode was used for a single PCR

reaction, the amplicon reads represent the most prevalent clonal

population in each library indicating that the PCR reactions are

specific for these fusion junctions (Table 1).

The underlying fusion transcript method is based on the

detection of distant splicing within a single read feature as detected

by the RNA-Seq aligner GSNAP [24]. The utility of GSNAP for

fusion transcript detection has been demonstrated in fusion

transcript detection methods such as GSTRUCT-fusions and

GFP [9,12]. Both of these methods depend on GSNAP to provide

fusion read candidates, and then apply a set of filtering modules to

remove false positives in paired-end RNA-Seq datasets. To

compensate for the short FFPE RNA length, we leveraged data

from the two patient cohorts as shown in Figure 1A. The sample-

based strategy interrogates each RNA-Seq sample individually and

nominates candidate fusion junctions for the following cohort-

based analysis, which confirms the presence of each fusion

candidate in each individual sample across the whole cohort by

examining read alignment and expression profiling evidence. To

increase the chance of identifying recurrent fusion transcripts

across the cohorts, fusion candidate templates provided by the

sample-based strategy were combined in the beginning step of the

cohort based analysis. However, in recognition of inter-cohort

differences in block archive ages and library quality, the expression

profiling step was carried out separately within each cohort

(Figure 1B). The average insert size and complexity of the

Providence cohort libraries are higher than those of the Rush

cohort libraries. Here we describe results from the Providence

RNA-Seq dataset [17] to illustrate the performance of the cohort-

based computational approach.

Briefly, 50 bp single end reads were mapped to the human

reference genome to provide candidate reads splitting across

potential fusion junctions similar to GSTRUCT-fusion and GFP

(Figure 1A). The candidate fusion split reads were re-mapped

against the human reference genome under the GSNAP

parameters favoring local alignments. Any reads that aligned

locally, and were therefore not split across the fusion junction,

were discarded. This alignment re-testing step eliminated 28% of

distant spliced junctions identified in Step 1. The RefSeq

annotation file was used to annotate these distant spliced junctions.

Only junctions mapping to two different annotated genes were

kept, and 80% of distant spliced junctions identified in Step 2 were

eliminated during the annotation step.

Next, candidate fusion junctions having at least one supporting

read were combined from the two cohorts and further tested using

the cohort based strategy. The donor and acceptor mRNA or pre-

mRNA template sequences were used as controls for the sequence

homology search and to generate read alignments in the cohort

based approach. This step removed 27% of potential false positive

fusion junctions from Step 3. The remaining five template sets

were combined and constructed into a single template index. All

short reads mapping near any junction sites in the template index

as well as reads not mapped in Step 1 were aligned to the template

index for each RNA-Seq library. Fusion templates with at least

one supporting short read were selected for further cohort based

analysis. There are 3 tiers of candidate fusion transcripts generated

by gFuse, Tier-1, Tier-2 and Tier-3. The supporting evidence for

Tier-1 transcripts is strong while Tier-3 transcripts have weak

evidence. Any fusions with at least 2 non-redundant reads across

the fusion junctions are defined as Tier-1. Both Tier-2 and Tier-3

were selected based on the expression profiling described below;

Tier-2 consists of fusions with a single non-redundant read across

the fusion junction and Tier-3 represents predicted recurrent

fusions with no read across the putative fusion junction.

The expression profiling step can nominate candidate fusions

despite the existence of very limited reads. In fact, here we used

the expression profile data to predict known fusions in samples

having no detected fusion sequences as illustrated by the example

fusion RABEP1-.DNAH9 (Figure 2). This fusion junction was

initially found in a single Providence sample (CSG) as a Tier-1

fusion with 2 split reads (Figure 2B). In this Tier-1 fusion, there are

a total 17 reads across the donor RABEP1 mRNA and pre-mRNA

template junctions, and 1 read across the acceptor DNAH9

mRNA and pre-mRNA template junctions. This evidence suggests

that the strong donor promoter drives the expression of fusion

transcripts. Consistent with the read coverage around junction

sites, this fusion also appears as one of two expression outliers in

the Providence cohort (Figure 2C). A second patient (ECI) is the

only other patient that appears to have the same discrete

expression pattern which exists in the sample CSG as evidenced

by examination of the exon/intron expression levels of acceptor

DNAH9 across the Providence cohort (Figure 2D). The samples in

the cohort were ordered by IR (defined in the Materials and

Methods section) to facilitate the expression outlier identification.

The individual exon/intron expression levels of DNAH9 also show
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the discrete expression patterns around fusion junction site in two

Providence samples (Figure 2E). Therefore, we assigned the

sample ECI as a Tier-3 candidate for fusion of RABEP1-.

DNAH9, even in the absence of reads across fusion junction in

ECI. Both fusion events were supported by TaqMan with an

average CT of 30.11 (CSG) and 34.86 (ECI) respectively, while

other 39 samples tested were negative in the assay (Figure 2C).

Therefore we conclude that there are two fusions or recurrent

fusion events associated with a particular fusion junction ‘‘+
chr17:5250220 -. +chr17:11532734’’ in the Providence cohort

(Figures 2C, D and E).

Fusion partners are cancer related genes
The majority of fusion junctions are intra-chromosomal

genomic rearrangements (69 out of total 100 fusion junctions),

consistent with findings of others [10,26]. Of the 100 unique fusion

junctions, only TFG-.GPR128 had been described previously

[11,27,28]. It is noteworthy that a few of these fusion junctions are

detected in both of the examined patient cohorts. Three recurrent

fusion transcripts including TFG-.GPR128, ESR1-.AKAP12

and RABEP1-.DNAH9 were supported by TaqMan assays using

amplified RNA from 6, 3 and 2 patients respectively, in the two

cohorts of 212 total patients. Interestingly, among three ESR1-.

AKAP12 fusion events in three different patients, there are two

unique fusion junctions sharing the same acceptor junction site but

differing at the donor junction sites by one exon. Since both these

ESR1-.AKAP12 fusion junctions are in frame and the differing

ESR1 exon doesn’t harbor any known functional domains (Figure

S1A), these two fusion transcripts may possess the same biological

function. Both fusion protein isoforms replace the ESR1 ligand

binding site with functional domains from AKAP12 (Figures S1B

and S1C). The lost ligand binding site of ESR1 is known to

interact with another AKAP family member AKAP13 [29].

AKAP12 is a scaffold protein in signal transduction with tumor

suppressor activities, and present in the plasma membrane, cytosol

or endoplasmic reticulum [30]. The function of AKAP12 to

organize the protein kinase A and C at these biological relevant

locations might be disrupted if its location is changed. The fused

AKAP12 protein might have different cellular localization and

thus possess modified functions from the wild type AKAP12. In

addition, both fusion protein isoforms may cause constitutive

ligand-independent signaling. As a result, the patients harboring

ESR1-.AKAP12 fusion may exhibit different responses to breast

cancer hormone therapy.

On the other hand, in certain fusion cases we identified varied

junctions between two identical fused partners within a single

patient. One patient in the Providence cohort has three different

ERBB2-.IKZF3 junctions that only differ at the donor junction

site, and one patient in the Rush cohort has two different

TRIM37-.BCAS3 junctions that only differ at the donor junction

site (Table S1). In these two cases qRT-PCR assays were designed

to the junction sequences with the greatest number of RNA-Seq

reads, and the dominant fusion junctions were supported by

TaqMan in each case. Also, multiple recurrent partners fused to

different gene partners were identified in our dataset, and

supported by TaqMan assay: one tumor harboring ESR1-.

AKAP12, another with the fusion gene ESR1-.C6orf211; LRP5

fused to different acceptors KAT6A and SLC22A24 in the same

tumor; ADK as an acceptor in the fusion DLG5-.ADK in one

patient, and as a donor in the fusion ADK-.C10orf11 in another

patient; similarly, ACACA as the donor of ACACA-.MSI2 in

one patient, and as the acceptor of UTP18-.ACACA in another

patient.

Table 1. Fusion junctions are confirmed by PGM sequencing of PCR amplicons.

Sample Fusion Junction Tier Number of amplicon reads

HM1 ESR1-.AKAP12 +chr6:152265643-.+chr6:151669846 Tier-1 252

HM1 ESR1-.C6orf211 +chr6:152129499-.+chr6:151785588 Tier-2 9702

MJG TFG-.GPR128 +chr3:100438902-.+chr3:100348442 Tier-1 5009

MJG SEMA4C-.BRE -chr2:97527316-.+chr2:28561317 Tier-1 4853

ECI TFG-.GPR128 +chr3:100438902-.+chr3:100348442 Tier-3 2297

ECI RABEP1-.DNAH9 +chr17:5250220-.+chr17:11532734 Tier-3 1927

ECI ERBB2-.IKZF3 +chr17:37868701-.-chr17:37949186 Tier-1 2218

CSG RABEP1-.DNAH9 +chr17:5250220-.+chr17:11532734 Tier-1 7161#

D87 TFG-.GPR128 +chr3:100438902-.+chr3:100348442 Tier-2 6187#

II6 ESR1-.AKAP12 +chr6:152201906-.+chr6:151669846 Tier-2 6880#

IYM ESR1-.AKAP12 +chr6:152201906-.+chr6:151669846 Tier-1 9916#

JGV TFG-.GPR128 +chr3:100438902-.+chr3:100348442 Tier-3 6108#

L43 TFG-.GPR128 +chr3:100438902-.+chr3:100348442 Tier-2 5979#

MGM TFG-.GPR128 +chr3:100438902-.+chr3:100348442 Tier-2 7499#

DAP RIMS2-.DPYS +chr8:104709524-.-chr8:105436617 Tier-1 5440

DAP PREX1-.SLC9A8 -chr20:47324798-.+chr20:48431545 Tier-1 5809

GQW TANC2-.RDM1 +chr17:61086987-.-chr17:34247276 Tier-1 1000

GQW DDX5-.IQCG -chr17:62496667-.-chr3:197640913 Tier-1 1919

GQW EIF4A3-.TSPEAR -chr17:78120592-.-chr21:45953806 Tier-2 1296

#In these 7 PGM libraries containing a single PCR reaction with an unique PGM barcode, the fusion amplicons identify the most prevalent clonal population in the
library. The detailed experimental results including amplicon sequences are in Table S3.
doi:10.1371/journal.pone.0094202.t001
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We searched the Mitelman fusion database with all 184 unique

fusion partners including donors and acceptors from the final 118

fusion list, and 29 partners were found fused to various different

partners in that database [28]. The statistically significant

enrichment of Mitelman fusion genes (Fisher’s test P = 76e28) is

3.5 fold compared to all known RefSeq genes. Among them,

ACACA, BCAS3, DDX5, FBXL20, IKZF3, RAF1, TFG and

TRPS1 were fused to more than one partner in the database.

These observations suggest fusion events are unlikely to be random

although they appear to be rare in solid tumors.

The identified fusion partners tend to be cancer-related: 82% of

the total 83 fusion junctions (96 fusion events in Figure 1B)

identified from the Providence cohort have at least one partner in

COSMIC database, which contains sequences of many genes

frequently altered in cancers. This is consistent with other evidence

for frequently mutated genes prone to genomic rearrangements in

the cancer genomes [9]. The discovery of fusion transcripts

containing partners that regulate repair of DNA double-strand

breaks and homologous recombination, such as RAD21, RDM1,

BRCA2 and SHFM1, is consistent with abundant evidence for

aberrant regulation of DNA replication in cancer.

Higher numbers of fusion events are associated with
poor tumor prognosis

The average number of fusion events detected per patient across

Providence and Rush cohorts is 0.63 and 0.29, respectively, far less

than the average of 4.2 fusions reported in fresh frozen breast

cancer biopsies [10,11]. This difference can reasonably be

attributed to the poor quality of FFPE RNA, and a resulting limit

on our ability to comprehensively detect fusion events in these

samples. Between the Providence and Rush data sets, the latter has

older archival ages, poorer quality RNA, and yields far fewer

identified fusion transcripts (Figure 1B).

Within each patient cohort we stratified patients according to

the number of fusion events (Figure 3A) to determine whether the

number of fusion events detected within individual tumors related

to the likelihood of disease recurrence. Because not all candidate

fusions were tested by TaqMan assay, all fusion events from Tier-

1, Tier-2 as well as TaqMan supported Tier-3 from the final

candidate fusion list (Table S1) were used in stratification

regardless of TaqMan results. In view of the limited number of

fusions detected in the Rush dataset we evaluated just 2 categories:

fusion detected or not detected, whereas in the Providence dataset

we evaluated four abundance categories. The 8 patients with more

Figure 3. Breast cancers with high fusion frequency have poor prognosis. A. The distributions of block age, clinical recurrence and ER status
are shown according to fusion number categories in Providence and Rush cohorts. The archived block age is plotted as mean and standard deviation
for each category. ER status was assessed by immunohistochemistry. The patient number for each category is labeled accordingly. B. Kaplan-Meier
plots of each fusion number category show Providence patients with multiple fusions had poor prognosis, and a similar trend exists for Rush patients.
The log-rank p-values are indicated in Kaplan-Meier plots. C. Kaplan-Meier plot with the 36 TaqMan supported fusion transcripts in the Providence
cohort. There are another 11 TaqMan supported fusion transcripts from the Rush cohort but they are too few to generate a meaningful Kaplan-Meier
plot.
doi:10.1371/journal.pone.0094202.g003
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than two fusions (subsequently referred to as multiple fusions) in

Providence exhibited a statistically significant increased recurrence

risk compared to patients from the three other groups having

fewer detected fusion genes (Figure 3B). In the Rush dataset

disease recurred at an increased rate among patients with detected

fusions, although this relationship does not achieve statistical

significance, possibly due to the limited fusion number detected

from the low quality FFPE samples. Recognizing that including

predicted fusion transcripts in this analysis necessarily reduces

confidence in it, we also evaluated only the 36 TaqMan supported

fusion transcripts from the Providence cohort. Figure 3C shows

that a similar trend is still observed. The Rush data set yields only

11 TaqMan supported fusion transcripts which are too few to

generate a meaningful Kaplan-Meier plot. To check whether

minimizing the FFPE block age effect alters this relationship, we

grouped patients into either upper or lower quartiles of the block

age (binning patients with comparable block age or adjusting

fusion numbers by RNA-Seq quality was not meaningful given the

small numbers of patients and limited fusion numbers in these

cohorts). The correction by sub-setting strengthens the association

between fusion number and recurrence risk for both cohorts

(Figure S2).

Discussion

We present here novel evidence that increasing frequency of

fusion transcripts is associated with poor prognosis. This study also

adds to the molecular knowledge of breast cancer complexity by

identifying 118 candidate fusion transcripts and many TaqMan

supported fusion transcripts, all of which are novel except TFG-.

GPR128. Moreover, these fusions could be detected in single-end

RNA-Seq data from aged FFPE tumor tissues by applying gFuse, a

cohort based bioinformatics method. Among the total 118

candidate fusion transcripts identified, 3 unique fused gene pairs

were recurrent and supported by TaqMan in the two cohorts of

212 total patients. The rate at which recurrent fusions were

observed and the general novelty of the observed fusion transcripts

in this study are in line with the previous publications about the

very low recurrence of fusions in solid tumors such as 2–7%

EML4-ALK in non-small lung cancer patients [4,5]. It is notable

that the recent TCGA (The Cancer Genome Atlas) consortium

efforts with large patient cohorts and fresh frozen samples assisted

with whole genome sequencing identified primarily private (found

in one sample only) fusion transcripts [27,31–33]. In 416 clear cell

renal carcinoma patients, 70 out of 83 fusion transcripts are

private [27]. In 322 endometrial carcinoma patients, 47 out of 49

fusion transcripts are non-recurrent [31]. In 97 colorectal cancer

patients, 35 out of 38 fusion transcripts predicted from DNA

translocations only exist in one patient [32].

An important feature of the fusion transcript detection pipeline

described here is the use of expression profiling to nominate

candidate fusion transcripts from RNA-Seq data that has sparse

coverage of fusion junctions. With the dataset analyzed here, this

step (Step 7) retains 8% of fusion candidates (Figure 1A).

Generally, pathologically important gene fusions in cancer are

characterized by one gene that is expressed at relatively high levels

in non-fused state fused to another gene that is expressed at

relatively low levels in non-fused state, the strong promoter of the

59 gene up-regulates expression of an oncogenic 39 gene

(‘‘oncogenic gene fusion model’’) [34]. This predicts discontinuous

expression patterns could be observed at either 59 donor or 39

acceptor fusion junction sites. Among 31 TaqMan supported high

confidence Tier-1 fusions identified here (Figure 1B), 77% of them

exhibit such interrupted expression patterns at fusion junctions

(mostly acceptor junctions), consistent with the oncogenic gene

fusion model. It is also possible that the gene expression filter

removes a percentage of true fusion transcripts. When we

performed TaqMan assays on a few fusion candidates that had

single non-redundant reads without interrupted expression

patterns, only one (ESR1-.C6orf21) was supported by TaqMan.

It is likely that in many cases fusion gene candidates removed by

the gene expression filter that represent true fusion events are

expressed at low levels. While it seems plausible that such fusion

genes have little or no influence on tumor behavior, in fact their

contribution is unknown.

To tailor this method to the short insert size and low complexity

of FFPE RNA-Seq data, the candidate fusion templates are

extended across a cohort or from one cohort to another to

maximize the probability of identifying recurrent fusions. The

potential of the cohort-based approach was demonstrated by our

identification of a total of 6 recurrent TFG-.GPR128 fusions

across two cohorts, which include 1 Tier-1 fusion, 3 Tier-2 fusions,

and 2 Tier-3 fusions (Table S1). The Tier-1 fusion was initially

identified in a Rush sample, and extension of the Rush fusion

templates to the Providence cohort allowed us to identify one

Providence Tier-2 fusion, in which a single unique read split across

the fusion junction with only 10 bp aligned to its acceptor gene.

Sequence alignment tools cannot positively align a 10 bp sequence

to its correct position in a whole genome, but this targeted

exploration of candidate fusion sites allowed us to recognize

recurrent events that were missed in the individual sample

analysis. Further, assisted by the expression profiling analysis,

another Tier-3 fusion was predicted in the Providence cohort.

Our method also addresses intronic RNA sequences, in

recognition of the large amount of intronic sequence information

present in FFPE RNA. Both donor and acceptor pre-mRNAs are

built into 5 template sets to filter out reads mapped to mRNA

precursors. On the other hand, the introns are selectively included

in the expression profiling analysis to take advantage of abundant

intronic sequence information. The two different remapping steps

by GSNAP (Step 2 and Step 5 in Figure 1A) were designed to

improve the mapping accuracy given the short inset size of FFPE.

The success of these FFPE RNA-targeted designs is reflected by

the high frequency of TaqMan support rates in the Tier-1

category (Figure 1B).

Although the cohort based strategy described here was

developed with and applied to FFPE tissue and single end RNA-

Seq datasets, it is also relevant to fusion transcript detection in cell

lines and fresh frozen samples. Single molecule sequencing and

other long read approaches aimed at increasing read length are

expected to generally improve detection of genomic rearrange-

ments, but the benefit of these improvements for FFPE specimens

will be limited due to the short RNA fragments isolated from

archived FFPE samples. Rapidly decreasing sequencing costs will

enable data collection on more archived FFPE samples, therefore

we anticipate that the method presented here will continue to

facilitate fusion transcript detection and biomarker discovery in

FFPE RNA.

Fusion transcripts may result from genuine genomic rearrange-

ments or transcript level rearrangements such as trans-splicing

[35]. One type of widely occurring, but biologically irrelevant

trans-splicing, is a reverse transcriptase (RT) artifact derived from

sequence homology [36]. Although our method doesn’t distinguish

genuine genomic rearrangement-derived gene fusions from trans-

splicing derived fusions, there is no evidence of RT derived fusion

artifacts in our study. First, our method searches for template

sequence homologies to effectively remove false positive fusions

generated by mapping algorithm or RT errors. Second, the
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identified fusions have canonical splicing tags while non-canonical

splicing is characteristic of RT-derived trans-splicing [36]. Further

evidence against RT based trans-splicing artifacts in this study

comes from our TaqMan assay results. TaqMan assays were run

against amplified RNA samples that shared the same source RNA

as the RNA-Seq libraries but were prepared independently.

Systematic RT errors would generate dis-concordance between

the fusion calls made by the RNA-Seq fusion detection pipeline

and TaqMan assays, but fusion transcripts identified by our

pipeline and by the TaqMan assays are completely concordant

(Table S2). Taken together, these data suggest that the fusion

events we identified are unlikely to be due to artifactual trans-

splicing events during RNA-Seq library preparation and thus

represent bona-fide fusions of genomic or transcriptomic origin.

We do acknowledge that the TaqMan assays can tolerate a few

single nucleotide variants within the assayed amplicons and, while

we think it is unlikely, it is conceivable that some of the identified

fusion transcripts are not accurate.

Here we have observed a substantially higher percentage of

intronic reads (,60%) than what have been reported in many

studies using fresh tissue RNA [37]. We believe this is explained by

an intron sequence enrichment that occurs as a result of formalin

fixation of RNA. We note that in another study using FFPE tissues

more than 50% of the reads are intronic [38]. We have excluded

the possibility of genomic DNA (gDNA) contamination in our

FFPE RNA preparations by use of criteria: DNAase I treatment,

and confirmation by TaqMan assays for gDNA (Table S4). The

increased proportion of intronic reads from FFPE specimens may

reflect selective degradation of cytoplasmic RNA (i.e., non-intronic

RNA) by RNase during formalin fixation [39].

This study demonstrates the technical feasibility and potential

biomedical value of being able to detect fusion transcripts in

archival tumor specimens having attached clinical records.

Although the average frequency of detected fusion transcripts is

relatively low per patient, plausibly attributable to the low quality

of FFPE RNA-Seq libraries, the frequency of fusion events found

in our cohort nevertheless appears to have prognostic significance.

Many of the identified fusion partner genes belong to the kinase,

phosphatase and ubiquitin ligase families, which are attractive

pharmaceutical targets in oncology. Both fusion frequency and

tumor prognosis may be linked to cancer genome instability,

which can generate chromosome rearrangements and fusion

transcripts. In conclusion, this study significantly enriches the

current understanding of breast tumor complexity by discovering a

large number of novel fusion transcripts. It confirms one of the

challenges of cancer therapeutics, namely that each cancer is

different and personalized treatment is needed. In parallel we

demonstrate a unique approach that reveals the genetic compo-

sitions of individual cancers employing short read sequencing

methods and bioinformatics analysis adapted for FFPE tumor

tissues.

Supporting Information

Figure S1 Protein domains of fusion ESR1-.AKAP12 are

illustrated based on UniProt database (www.uniprot.org). The red

vertical line indicates the fusion position on the corresponding

protein. The amino acid length and amino acid positions of each

fusion position are labeled on the top of each protein. A. The

protein domains of ESR1 protein P03372 (UniProt ID). B. The

protein domains of AKAP12 protein Q02952 (UniProt ID). C.

The protein domains of two predicted fusion protein isoforms

ESR1-.AKAP12. The one amino acid insertion generated from

the fusion event is labeled on each fusion protein.

(EPS)

Figure S2 Kaplan-Meier plots of patient subsets of Providence

or Rush patients as a function of fusion numbers, segregated by

block age. Either upper quartile or lower quartile based on block

age is selected to examine the effect of the block ages on the disease

outcome. The log-rank p-values are displayed.

(EPS)

Table S1 An excel file contains the complete information of all

118 fusion transcripts from Providence and Rush cohorts. All Tier-

1 and Tier-2 fusions from Figure 2B are included regardless of

TaqMan status. The splicing consensus sequences are included

for47 TaqMan supported fusion transcripts, which all contain the

splicing tag GU-AG.

(XLSX)

Table S2 An excel file contains all TaqMan results.

(XLSX)

Table S3 An excel file contains the complete information of 19

fusion junction sequences confirmed by PGM.

(XLSX)

Table S4 TaqMan assays for examination of residual gDNA

contamination of all Providence and Rush cohorts using beta-

actin. Each sample from Providence has 6 TaqMan replicates, and

each sample from Rush has 3 TaqMan replicates. Each TaqMan

plate has Human Genomic DNA (Promega Corporation,

Madison, WI) triplicates as positive control, and no template

triplicates as negative control. A second DNase I treatment was

repeated on 2 Providence RNA samples which didn’t pass the first

residual gDNA contamination assays.

(XLSX)
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