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Abstract

Very recently, Yao et al. (Appl. Math. Comput. 216, 822-829, 2010) have proposed a
hybrid iterative algorithm. Under the parameter sequences satisfying some quite
restrictive conditions, they derived a strong convergence theorem in a Hilbert space.
In this article, under the weaker conditions, we prove the strong convergence of the
sequence generated by their iterative algorithm to a common fixed point of an
infinite family of nonexpansive mappings, which solves a variational inequality. It is
worth pointing out that we use a new method to prove our results. An appropriate
example, such that all conditions of this result that are satisfied and that other
conditions are not satisfied, is provided. Furthermore, we also give a weak
convergence theorem for their iterative algorithm involving an infinite family of
nonexpansive mappings in a Hilbert space.
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1 Introduction
Let H be a real Hilbert space and C be a nonempty, closed, convex subset of H, let F :

H ® H be a nonlinear operator. The variational inequality problem is formulated as

finding a point x* Î C such that

〈Fx∗, v − x∗〉 ≥ 0, ∀v ∈ C.

In 1964, Stampacchia [1] introduced and studied variational inequality initially. It is

now well known that variational inequalities cover as diverse disciplines as partial dif-

ferential equations, optimal control, optimization, mathematical programming,

mechanics, and finance [1-5].

It is known that a mapping T : H ® H is said to be nonexpansive if ||Tx - Ty|| ≤ ||x

- y||, ∀x, y Î H. We use F (T ) to denote the set of fixed points of T, that is F (T) = {x

Î H : Tx = x}.

Yamada [2] introduced the following hybrid iterative method for solving the varia-

tional inequality:

xn+1 = Txn − μλnF(Txn), n ≥ 0, (1:1)
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where F is a k-Lipschitzian and h-strongly monotone operator with k > 0, h > 0 and

0 <μ < 2h /k2. Let a sequence {ln} of real numbers in (0,1) satisfy the conditions

below:

(C1) limn®∞ ln = 0,

(C2)
∑∞

n=0 λn = ∞,

(C3) limn→∞(λn − λn+1)/λ2
n+1 = 0.

He has proved that {xn} generated by (1.1) converges strongly to the unique solution

of the variational inequality:

〈Fx̃, x − x̃〉 ≥ 0, ∀x ∈ F(T).

An example of sequence {ln} which satisfies conditions (C1)-(C3) is given by ln = 1/

ns, where 0 <s < 1. We note that the condition (C3) was first used by Lions [3]. It was

observed that Lion’s conditions on the sequence {ln} excluded the canonical choice ln
= 1/n. This was overcome in 2003 by Xu and Kim [4], if {ln} satisfies conditions (C1),
(C2), and (C4)

(C4) : lim
n→∞ λn/λn+1 = 1, or equivalently, lim

n→∞(λn − λn+1)/λn+1 = 0

who proved the strong convergence of {xn} to the unique solution u* of the varia-

tional inequality 〈Fu*, v - u*〉 ≥ 0, ∀v Î C. It is easy to see that the condition (C4) is

strictly weaker than condition (C3), coupled with conditions (C1) and (C2). Moreover,

(C4) includes the important and natural choice {1/n} of {ln}.
Very recently, motivated by Xu and Kim [4], Yao et al. [5] considered the following

algorithms: for x0 Î H arbitrarily,{
yn = xn − λnF(xn),
xn+1 = (1 − αn)yn + αnWnyn, n ≥ 0,

(1:2)

where F is a k-Lipschitzian and h-strongly monotone operator on H, and Wn is a W-

mapping defined by (2.3) cited later. Take k Î [1, ∞), h Î (0, 1), and {ln} satisfying the

conditions (C1) and (C2). If a sequence {an} satisfying (C5)

(C5) : αn ∈
[
γ ,

1
2

]
for some γ > 0,

then they proved that the sequences {xn} and {yn} defined by (1.2) converge strongly

to x∗ ∈ ∩∞
n=1F(Tn), which solves the following variational inequality:

〈Fx∗, x − x∗〉 ≥ 0, ∀x ∈ ∩∞
n=1F(Tn).

We remind the reader of the fact that in order to guarantee the strong convergence

of the iterative sequence {xn}, there is at least one parameter sequence converging to

zero (i.e., ln ® 0) as a result of Yamada [2], Xu and Kim [4, Theorem 3.1, and Theo-

rem 3.2] and Yao et al. [5, Theorem 3.2]. In addition, h Î (0, 1) and (C5) are quite

restrictive assumptions in Yao et al. [5].

In this article, under the convergence of no parameter sequences to zero and the

weaker conditions on an and h, we prove that the sequence {yn} generated by the
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iterative algorithm (1.2) converges to a common fixed point of an infinite family of

nonexpansive mappings, which solves the variational inequality 〈Fx*, u - x*〉 ≥ 0,

∀u ∈ ∩∞
n=1F(Tn). In the meantime, we illustrate that this result is more general than

Theorem 3.2 of Yao et al. [5]. That is, we give an appropriate example such that all

conditions of this result are satisfied and the conditions h Î (0, 1), (C1), and (C5) in

Yao et al. [5, Theorem 3.2] are not satisfied. Furthermore, we also give a weak conver-

gence theorem for hybrid iterative algorithm (1.2) involving an infinite family of non-

expansive mappings in a Hilbert space H. It is worth pointing out that we use a new

method to prove our main results. The results presented in this article can be viewed

as the improvement, supplement, and extension of the results obtained in [2-5].

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·,·〉 and norm ||·||. For the sequence

{xn} in H, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x.

xn ® x implies that {xn} converges strongly to x. We denote by ωw(xn) the weak

ω-limit set of {xn}, that is

ωw(xn) = {x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}}.
A mapping F : H ⇀ H is called k-Lipschitzian if there exists a positive constant k

such that

||Fx − Fy|| ≤ k||x − y||, ∀x, y ∈ H. (2:1)

F is said to be h-strongly monotone if there exists a positive constant h such that

〈Fx − Fy, x − y〉 ≥ η||x, y||2, ∀x, y ∈ H. (2:2)

It is known that X satisfies Opial’s property [6] provided, for each sequence {xn} in X,

the condition xn ⇀ x implies

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||, ∀y ∈ X, y �= x.

It is known that each lp(1 ≤ p < ∞) enjoys this property, while Lp does not unless

p = 2.

Finally, it is known that in a Hilbert space, there holds the following equality

||λx + (1 − λ)y||2 = λ||x||2 + (1 − λ)||y||2 − λ(1 − λ)||x − y||2

for all x, y Î H and l Î [0,1] (see Takahashi [7]).

In order to prove our main results, we need the following lemmas:

Lemma 2.1. [8]. Let H be a Hilbert space, C a closed, convex subset of H, and T :

C ® C a nonexpansive mapping with F (T ) ≠ ∅; if {xn} is a sequence in C weakly

converging to × and if {(I - T )xn} converges strongly to y, then (I - T )x = y.

Lemma 2.2. [9]. Let {xn} and {zn} be bounded sequences in Banach space E and {gn}
be a sequence in [0,1] which satisfies the following condition:

0 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < 1.

Suppose that xn+1 = gnxn + (1 - gn)zn, n ≥ 0, and lim supn®∞(||zn+1 - zn|| - ||xn+1 - xn||)

≤ 0. Then, limn®∞ ||zn - xn|| = 0.
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Lemma 2.3. [10,11]. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnδn + γn, n ≥ 0,

where {ln} and {gn} satisfy the following conditions: (i) {ln} ⊂ [0,1] and∑∞
n=0 λn = ∞, (ii) lim supn®∞ or

∑∞
n=0 λnδn < ∞, (iii) gn ≥ 0(n ≥ 0),

∑∞
n=0 γn < ∞.

Then limn®∞ Sn = 0.

Lemma 2.4. [12]. Let {an} and {bn} be sequences of nonnegative real numbers such

that
∑∞

n=0 bn < ∞and an+1 ≤ an + bn for all n ≥ 0. Then limn®∞ an exists.

Lemma 2.5. [13]. Let F be a k-Lipschitzian and h-strongly monotone operator on a

Hilbert space H with 0 <h ≤ k and 0 <t <h/k2. Then S = (I - tF ) : H ® H is a contrac-

tion with contraction coefficient τt =
√
1 − t(2η − tk2).

Let {Ti : H ® H}. be a family of infinitely nonexpansive mappings, {ξi}be a real

sequence such that 0 <ξi ≤ b < 1, ∀i ≥ 1. For any n ≥ 1, define a mapping Wn : H ® H

as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+1 = I,
Un,n = ξnTnUn,n+1 + (1 − ξn)I,
Un,n−1 = ξn−1Tn−1Un,n + (1 − ξn−1)I,
· · ·
Un,k = ξkTkUn,k+1 + (1 − ξk)I
Un,k−1 = ξk−1Tk−1Un,k + (1 − ξk−1)I
· · ·
Un,2 = ξ2T2Un,3 + (1 − ξ2)I,
Wn = Un,1 = ξ1T1Un,2 + (1 − ξ1)I.

(2:3)

Such a mapping Wn : H ® H is called a W-mapping generated by Tn, Tn-1,..., T1 and

ξn, ξn-1,..., ξ1.

We have the following crucial conclusion concerning Wn. We can find them in

[14-17]. Now we only need the following similar version in Hilbert spaces:

Lemma 2.6. Let H be a real Hilbert space, {Ti : H ® H} be a family of infinitely non-

expansive mappings with ∩∞
i=1F(Ti) �= ∅, {ξi} be a real sequence such that 0 <ξi ≤ b < 1,

∀i ≥ 1. Then,

(1) Wn is a nonexpansive and F(Wn) = ∩n
i=1F(Ti)for each n ≥ 1;

(2) For every x Î H and k Î N, the limit limn®∞ Un, kx exists;

(3) If we define a mapping W : H ® H as Wx = limn®1 Wnx, and Wnx = limn®∞

Un,1x, for every Î H, then, F(W) = ∩∞
i=1F(Ti);

(4) For any bounded sequence {xn} ⊂ H, we have limn®∞ ||Wxn - Wnxn|| = 0.

3 Main results
Let F be a k-Lipschitzian and h-strongly monotone operator on H with 0 <k, T : H ®

H be a nonexpansive mapping. Let t Î (0,h/k2) and τt =
√
1 − t(2η − tk2), and con-

sider a mapping St on H defined by

Stx = T[(I − tF)x], x ∈ H.
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It is easy to see that St is a contraction. Indeed, from Lemma 2.5, we have

||Stx − Sty|| ≤ ||T[(I − tF)x] − T[(I − tF)y]||
≤ ||(I − tF)x − (I − tF)y||
≤ τt||x − y||,

for all x, y Î H. Hence, it has a unique fixed point, denoted as xt, which uniquely

solves the fixed point equation

xt = T[(I − tF)xt], xt ∈ H. (3:1)

Theorem 3.1. Let H be a real Hilbert space. Let T : H ® H be a nonexpansive map-

ping such that F (T ) ≠ ∅,. Let F be a k-Lipschitzian and h-strongly monotone operator

on H with 0 <h ≤ k. For each t Î (0, h/k2), let the net {xt} be generated by (3.1). Then,

as t ® 0, the net {xt} converges strongly to a fixed point x* of T which solves the varia-

tional inequality:

〈Fx∗, x∗ − u〉 ≤ 0, ∀u ∈ F(T). (3:2)

Proof. We first show the uniqueness of a solution of the variational inequality (3.2),

which is indeed a consequence of the strong monotonicity of F. Suppose x* Î F (T )

and x̃ ∈ F(T) both are solutions to (3.2), then

〈Fx∗, x∗ − x̃〉 ≤ 0, (3:3)

and

〈Fx̃, x̃ − x∗〉 ≤ 0. (3:4)

Adding up (3.3) and (3.4) yields

〈Fx∗ − Fx̃, x∗ − x̃〉 ≤ 0.

The strong monotonicity of F implies that x∗ = x̃ and the uniqueness is proved. Later,

we use x* Î F (T ) to denote the unique solution of (3.2).

Next, we prove that {xt} is bounded. Take u Î F (T ), from (3.1) and using Lemma

2.5, we have

||xt − u|| = ||T[(I − tF)xt] − Tu||
≤ ||(I − tF)xt − u||
≤ ||(I − tF)xt − (I − tF)u − tFu||
≤ ||(I − tF)xt − (I − tF)u|| + t||Fu||
≤ τt||xt − u|| + t||Fu||,

that is,

||xt − u|| ≤ t
1 − τt

||Fu||. (3:5)

Observe that

lim
t→0+

t

1 − τt
=
1
η
.
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From t ® 0, we may assume, without loss of generality, that t ≤ η

k2
− ε, where is a

arbitrarily small positive number. Thus, we have
t

1 − τt
is continuous, ∀ t ∈ [0,

η

k2
− ε].

Therefore, we obtain

sup
{

t
1 − τt

: t ∈ (0,
η

k2
− ε]

}
< +∞. (3:6)

From (3.5) and (3.6), we have that {xt} is bounded and so is {Fxt}.

On the other hand, from (3.1), we obtain

||xt − Txt|| = ||T[(I − tF)xt] − Txt|| ≤ ||(I − tF)xt − xt|| = t||Fxt|| → 0(t → 0). (3:7)

To prove that xt ® x*. For a given u Î F (T ), using Lemma 2.5, we have

||xt − u||2 = ||T[(I − tF)xt] − Tu||2
≤ ||(I − tf )xt − (I − tF)u − tFu||2
≤ τt

2||xt − u||2 + t2||Fu||2 + 2t〈(I − tF)u − (I − tF)xt, Fu〉
≤ τt||xt − u||2 + t2||Fu||2 + 2t〈u − xt, Fu〉 + 2t2〈Fxt − Fu, Fu〉
≤ τt||xt − u||2 + t2||Fu||2 + 2t〈u − xt, Fu〉 + 2t2k||xt − u|| ||Fu||.

Therefore,

||xt − u||2 ≤ t2

1 − τt
||Fu2|| + 2t

1 − τt
〈u − xt, Fu〉 + 2t2k

1 − τt
||xt − u|| ||Fu||. (3:8)

From τt =
√
1 − t(2η − tk2), we have limt→0

t2

1 − τt
= 0 and limt→0

2t2k
1 − τt

= 0.

Observe that, if xt ⇀ u, we have limt→0
2t

1 − τt
〈u − xt, Fu〉 = 0.

Since {xt} is bounded, we see that if {tn} is a sequence in (0,
η

k2
− ε] such that tn ® 0

and xtn ⇀ x̃, then by (3.8), we see xtn → x̃. Moreover, by (3.7) and using Lemma 2.1,

we have x̃ ∈ F(T). We next prove that x̃ solves the variational inequality (3.2). From

(3.1) and u Î F (T ), we have

||xt − u||2 ≤ ||(I − tF)xt − u2

= ||xt − u2|| + t2||Fxt||2 − 2t〈Fxt, xt − u〉,
that is,

〈Fxt, xt − u〉 ≤ t
2

||Fxt||2. (3:9)

Now replacing t in (3.9) with tn and letting n ® ∞, we have

〈Fx̃, x̃ − u〉 ≤ 0.

That is x̃ ∈ F(T) is a solution of (3.2), hence x̃ = x∗ by uniqueness. In a nutshell, we

have shown that each cluster point of {xt} (at t ® 0) equals x*. Therefore, xt ® x* as

t ® 0.

Theorem 3.2. Let H be a real Hilbert space. Let F be a k-Lipschitzian and h-strongly
monotone operator on H with 0 <h ≤ k. Let {Tn}∞n=1 : H → Hbe an infinite family of
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nonexpansive mappings such that ∩∞
n=1F(Tn) �= ∅and Wn be a W-mapping defined by

(2.3). Let {ln} be a sequence in [0, ∞) and {an} be a sequence in [0,1], ε be a arbitrarily

small positive number. Assume that the control conditions (C2), (C1)’, and (C5)’ hold

for {ln} and {an},

(C1)’: 0 < λn ≤ η

k2
− ε, ∀n ≥ n0 for some integer n0 ≥ 0, and

(C5) ‘: 0 < g ≤ lim infn®∞ an lim supn®∞ an < 1 for some g Î (0, 1).

For x0 Î H arbitrarily, let the sequence {yn} be generated by (1.2). Then,

yn → x∗ ⇔ λnF(xn) → 0(n → ∞),

where x∗ ∈ ∩∞
n=1F(Tn)solves the variational inequality

〈Fx∗, x∗ − u〉 ≤ 0, u ∈ ∩∞
n=1F(Tn).

Proof. On the one hand, suppose that lnF(xn) ® 0(n ® ∞). We proceed with the fol-

lowing steps:

Step 1. We claim that {xn} is bounded. In fact, let u ∈ ∩∞
n=1F(Tn), from (1.2), (C1)’ and

using Lemma 2.5, we have

||yn − u|| = ||xn − λnF(xn) − u||
≤ ||(I − λnF)xn − (I − λnF)u − λnFu||
≤ τλn ||xn − u|| + λn||Fu||,

(3:10)

∀n ≥ n0 for some integer n0 ≥ 0, where τλn =
√
1 − λn(2η − λnk2) ∈ (0, 1). Then,

from (1.2) and (3.10), we obtain

|| xn+1 − u|| = ||(1 − αn)(yn − u) + αn(Wnyn − u)||
≤ ||yn − u||
≤ [1 − (1 − τλn)] ||xn − u || + λn ||Fu||

≤ max
{
||xn − u|| , ||λnFu||

1 − τλn

}
.

By induction, we have

||xn − u || ≤ max{||x0 − u ||,M1 ||Fu ||},

∀n ≥ n0 for some integer n0 ≥ 0, where M1 = sup{ λn

1 − τλn

: 0 < λn ≤ η

k2
− ε} < +∞.

Therefore, {xn} is bounded. We also obtain that {yn}, {Wnyn} and {Fxn} are bounded.

Step 2. We claim that limn®∞ ||xn+1 - xn|| = 0. To this end, define xn+1 = (1 - an)xn
+ anzn. We observe that

||zn+1 − zn|| =
∥∥∥∥xn+2 − (1 − αn+1)xn+1

αn+1
− xn+1 − (1 − αn)xn

αn

∥∥∥∥
≤

∥∥∥∥(1 − αn+1)yn+1 + αn+1Wn+1yn+1 − (1 − αn+1)xn+1
αn+1

− (1 − αn)yn + αnWnyn − (1 − αn)xn
αn

∥∥∥∥
≤

∥∥∥∥αn+1Wn+1yn+1 − (1 − αn+1)λn+1F(xn+1)
αn+1

− αnWnyn − (1 − αn)λnF(xn)
αn

∥∥∥∥
≤ 1 − αn+1

αn+1
||λn+1F(xn+1)|| + 1 − αn

αn
||λnF(xn)|| + ||Wn+1yn+1 − Wnyn||

≤ 1 − γ

γ
||λn+1F(xn+1)|| + 1 − γ

γ
||λnF(xn)|| + ||Wn+1yn+1 − Wnyn||.

(3:11)
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From (2.3), for u ∈ ∩∞
n=1F(Tn), we have

||Wn+1yn − Wnyn|| = ||ξ1T1Un+1,2yn − ξ1T1Un,2ynn||
≤ ξ1||Un+1,2yn − Un,2ynn||
= ξ1||ξ2T2Un+1,3yn − ξ2T2Un,3yn||
≤ ξ1ξ2||Un+1,3yn − Un,3yn||
≤ · · ·
≤ ξ1ξ2 · · · ξn||Un+1,n+1yn − Un,n+1yn||
= ξ1ξ2 · · · ξn||ξn+1Tn+1yn + (1 − ξn+1)yn − yn||

≤
(

n+1∏
i=1

ξi

)
(||Tn+1yn − u|| + ||u − yn||)

≤
(

n+1∏
i=1

ξi

)
(2||yn − u||)

≤ M2

n+1∏
i=1

ξi,

(3:12)

where M2 = sup{2 ||yn - u||, n ≥ 0}. By (1.2) and (3.12), we have

||Wn+1yn+1 − Wnyn || ≤ ||Wn+1yn+1 − Wn+1yn || + ||Wn+1yn − Wnyn ||
≤ || yn+1 − yn || + ||Wn+1yn − Wnyn ||

≤ || xn+1 − λn+1F(xn+1) − xn + λnF(xn) || +M2

n+1∏
i=1

ξi

≤ || xn+1 − xn || + ||λn+1F(xn+1) || + ||λnF(xn) || +M2

n+1∏
i=1

ξi.

(3:13)

Substituting (3.13) into (3.11), we have

||zn+1 − zn|| ≤ 1 − γ

γ
||λn+1F(xn+1)|| + 1 − γ

γ
||λnF(xn)|| + ||xn+1 − xn|| + ||λn+1F(xn+1))||

+ ||λnF(xn)|| +M2

n+1∏
i=1

ξi

=
1
γ

||λn+1F(xn+1)|| + 1
γ

||λnF(xn)|| + ||xn+1 − xn|| +M2

n+1∏
i=1

ξi,

that is,

||zn+1 − zn || − || xn+1 − xn || ≤ 1
γ

||λn+1F(xn+1) || + 1
γ

||λnF(xn) || +M2

n+1∏
i=1

ξi.

Observing lnF(xn) ® 0(n ® ∞) and 0 <ξi ≤ b < 1, it follows that

lim sup
n→∞

(||zn+1 − zn || − || xn+1 − xn ||) ≤ 0. (3:14)

By (C5)’ and using Lemma 2.2, we have limn®∞ ||zn - xn|| = 0. Therefore,

lim
n→∞ || xn+1 − xn || = lim

n→∞ αn||zn − xn || = 0.

Wang Fixed Point Theory and Applications 2011, 2011:3
http://www.fixedpointtheoryandapplications.com/content/2011/1/3

Page 8 of 14



Step 3. We claim that limn®∞ ||xn - Wnxn|| = 0. Observe that

||xn − Wnxn|| ≤ ||xn − xn+1 || + ||xn+1 − Wnxn||
≤ ||xn − xn+1 || + (1 − αn) ||yn − Wnxn || + αn||Wnyn − Wnxn ||
≤ ||xn − xn+1 || + (1 − αn) ||yn − xn || + (1 − αn) ||xn − Wnxn || + αn|| yn − xn ||
= || xn − xn+1 || + || yn − xn || + (1 − αn)|| xn − Wnxn ||,

that is,

||xn − Wnxn|| ≤ 1
αn

(||xn+1 − xn || + || yn − xn ||)

≤ 1
γ
(|| xn+1 − xn || + ||λnF(xn) ||) → 0(n → ∞).

(3:15)

Step 4. We claim that limn®∞ ||xn - Wxn|| = 0. Indeed, we have

||xn − Wxn|| ≤ ||xn − Wnxn || + ||Wnxn − Wxn||. (3:16)

By (3.15), (3.16) and using Lemma 2.6, we obtain

lim
n→∞ || xn − Wxn|| = 0.

Step 5. We claim that lim supn®∞〈Fx*, x* - xn〉 ≤ 0, where x* = limn®∞ xt and xt
defined by xt = W[(1 - tF)xt]. Since xn is bounded, there exists a subsequence {xnk} of
{xn} which converges weakly to ω. From Step 4, we obtain Wxnk ⇀ ω. From Lemma

2.1, we have ω Î F(W). Hence, by Theorem 3.1, we have

lim sup
n→∞

〈Fx∗, x∗ − xn〉 = lim
k→∞

〈Fx∗, x∗ − xnk〉 = 〈Fx∗, x∗ − ω〉 ≤ 0.

Step 6. We claim that {xn} converges strongly to x∗ ∈ ∩∞
n=1F(Tn). From (1.2), we have

|| xn+1 − x∗||2 ≤ (1 − αn)|| yn − x∗||2 + αn||Wnyn − x∗||2
≤ ||yn − x∗||2
= ||xn − λnF(xn) − x∗||2
≤ ||(I − λnF)xn − (I − λnF)x∗ − λnFx∗||2
≤ τ 2

λn
||xn − x∗||2 + λ2

n|| Fx∗||2 + 2λn〈(I − λnF)x∗ − (I − λnF)xn, Fx∗〉
≤ τλn || xn − x∗||2 + λ2

n|| Fx∗||2 + 2λn〈x∗ − xn, Fx∗〉 + 2λn〈λnFxn, Fx∗〉 − 2λ2
n||Fx∗||2

≤ [1 − (1 − τλn)]|| xn − x∗||2 + 2λn〈x∗ − xn, Fx∗〉 + 2λn||λnFxn|| ||Fx∗|| − λ2
n|| Fx∗||2

≤ [1 − (1 − τλn)]|| xn − x∗||2 + (1 − τλn)
[

2λn

1 − τλn

〈x∗ − xn, Fx∗〉 +
λnM3

1 − τλn

||λnFxn||
]

≤ [1 − (1 − τλn)]|| xn − x∗||2 + (1 − τλn)[2M1〈x∗ − xn, Fx∗〉 +M1M3||λnFxn||] ,

∀n ≥ n0 for some integer n0 ≥ 0, where M3 = 2||Fx*||. For every n ≥ n0, put
μn = 1 − τλn and δn = 2M1〈x* - xn, Fx*〉 +M1M3 ||lnFxn||. It follows that

||xn+1 − x∗||2 ≤ (1 − μn)||xn − x∗||2 + μnδn, ∀n ≥ n0.

It is easy to see that
∑∞

n=1
μn = ∞ and lim supn®∞ δn ≤ 0. Hence, by Lemma 2.3,

the sequence {xn} converges strongly to x∗ ∈ ∩∞
n=1F(Tn).

Observe that

||yn − x∗|| ≤ ||yn − xn || + || xn − x∗|| ≤ ||λnF(xn) + || xn − x∗|| → 0(n → ∞).

It follows that the sequence {yn} converges strongly to x∗ ∈ ∩∞
n=1F(Tn). From x* =

limt®0 xt and Theorem 3.1, we have x* is the unique solution of the variational

inequality: 〈Fx*, x* - u〉 ≤ 0, ∀u ∈ ∩∞
n=1F(Tn).
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On the other hand, suppose that yn → x∗ ∈ ∩∞
n=1F(Tn) as n ® ∞, where

x∗ ∈ ∩∞
n=1F(Tn) solves the variational inequality:

〈Fx∗, x∗ − u〉 ≤ 0, u ∈ ∩∞
n=1F(Tn).

From (1.2), we have

||xn+1 − x∗|| = ||(1 − αn)(yn − x∗) + αn(Wnyn − x∗) ||
≤ (1 − αn)|| yn − x∗|| + αn|| yn − x∗||
= ||yn − x∗ → 0(n → ∞),

(3:17)

that is, xn → x∗ ∈ ∩∞
n=1F(Tn). Again from (1.2), we obtain that

||λnF(xn) || = ||yn − xn || ≤ ||yn − x∗|| + || xn − x∗||.

Since yn → x∗ ∈ ∩∞
n=1F(Tn) and xn → x∗ ∈ ∩∞

n=1F(Tn), we get lnF(xn) ® 0. This com-

pletes the proof.

Remark 3.3. It is clear that condition (C1)’ is strictly weaker than condition (C1). In

the meantime, condition (C5)’ is also strictly weaker than condition (C5).

Corollary 3.4. (Yao et al. [5, Theorem 3.2]). Let H be a real Hilbert space. Let F : H

® H be k-Lipschitzian and h-strongly monotone operator with k Î [1, ∞) and h Î (0,

1). Let {Tn}∞n=1 : H → Hbe an infinite family of nonexpansive mappings such that

∩∞
n=1F(Tn) �= ∅ and {Wn} be W-mapping defined by (2.3). Let {ln} be a sequence in [0,

∞) and {an} be a sequence in [0,1]. Assume that

(C1) limn®1 ln = 0;

(C2)
∑∞

n=0 λn = ∞;

(C5) αn ∈
[
γ ,

1
2

]
for some g > 0.

Then, the sequence {xn} and {yn} generated by (1.2) converge strongly to

x∗ ∈ ∩∞
n=1F(Tn), which solves the following variational inequality 〈Fx*, x* - x〉 ≤ 0,

x∗ ∈ ∩∞
n=1F(Tn).

Proof. Since limn®∞ ln = 0, it is easy to see that λn ≤ η

k2
− ε, ∀n ≥ n0 for some inte-

ger n0 ≥ 0. Without loss of generality, we assume that 0 < λn ≤ η

k2
− ε, ∀n ≥ n0 for

some integer n0 ≥ 0. Repeating the same argument as in the proof of Theorem 3.2, we

know that {xn} is bounded, and so are the sequence {yn} and {F(xn)}. Therefore, we

have lnF(xn) ® 0.

From αn ∈
[
γ ,

1
2

]
for some g > 0, we have 0 <g ≤ lim infn®∞ an ≤ lim supn®∞ an <

1 for some g Î (0, 1). Therefore, all conditions of Theorem 3.2 are satisfied. Hence,

using Theorem 3.2, we have that {yn} converges strongly to x∗ ∈ ∩∞
n=1F(Tn) which

solves the following variational inequality 〈Fx*, x* - x〉 ≤ 0, x∗ ∈ ∩∞
n=1F(Tn). It follows

from (3.17) that {xn} also converges strongly to x∗ ∈ ∩∞
n=1F(Tn). This completes the

proof.
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Remark 3.5. Theorem 3.2 is more general than Theorem 3.2 of Yao et al. [5]. The

following example shows that all conditions of Theorem 3.2 are satisfied. However, the

conditions ln ® 0, h Î (0, 1) and αn ∈
[
γ ,

1
2

]
for some g > 0 in [5, Theorem 3.2] are

not satisfied.

Example 3.6. Let H = R the set of real numbers and Tn ≡ T. Define a nonexpansive

mapping T : H ® H and an operator F : H ® H as follows:

Tx = 0 and F(x) = x, ∀x ∈ R.

It is easy to see that F(T) = {0}, ∩∞
n=1F(Tn) = {0}and Wnx = (1 - ξ1)x, ∀x Î R. Let

ξ1 =
1
2
, we have Wnx =

1
2
x, ∀x Î R. Given sequences {an} and {λn} : αn =

2
3
, λn =

1
2
for

all n ≥ 0. For an arbitrary x0 Î H, let {xn} defined as follows:

{
yn = xn − λnF(xn),
xn+1 = (1 − αn)yn + αnWnyn, n ≥ 0,

that is,

yn = xn − λnF(xn) =
1
2
xn,

xn+1 =
1
3
yn +

2
3
Wnyn =

2
3
yn =

1
3
xn, n ≥ 0.

Observe that for all n ≥ 0,

||xn+1 − 0|| = 1
3

|| xn − 0 ||.

Hence, we have ||xn+1 − 0 || =
(
1
3

)n+1

|| x0 − 0 ||for all n ≥ 0. This implies that {xn}

converges strongly to 0 ∈ ∩∞
n=1F(Tn). Since ||yn − 0 || =

1
2

|| xn|| → 0, we have that {yn}

converges strongly to 0 ∈ ∩∞
n=1F(Tn).

Observe that 〈F(0), 0 - u〉 ≤ 0, u ∈ ∩∞
n=1F(Tn), that is, 0 is the solution of the varia-

tional inequality 〈Fx*, x* - u〉 ≤ 0, u ∈ ∩∞
n=1F(Tn).

Finally, we have

||λnF(xn) || =
1
2

|| xn || → 0(n → ∞).

By F(x) = x, we have h = k = 1. Furthermore, it is easy to see that the following hold

true:

(B1) 0 < λn =
1
2

≤ 1 − ε, ∀n ≥ n0 for some integer n0 ≥ 0;

(B2)
∑∞

n=0
λn =

∑∞
n=0

1
2
= ∞;

(B3) 0 <
1
2

≤ lim infn→∞ αn =
2
3
= lim supn→∞ αn < 1for some constant γ =

1
2
.
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Hence, there is no doubt that all conditions of Theorem 3.2 are satisfied. Since λn =
1
2
,

h = 1 and αn ∈ [γ , 12 ], the conditions that ln ® 0, αn ∈
[
γ ,

1
2

]
for some g > 0 and h Î

(0, 1) of Yao et al. [5, Theorem 3.2] are not satisfied.

Next, we give a weak convergence theorem for hybrid iterative algorithm (1.2) invol-

ving an infinite family of nonexpansive mappings in a Hilbert space.

Theorem 3.7. Let H be a real Hilbert space. Let F : H ® H be k-Lipschitzian

and h-strongly monotone operator with 0 < h ≤ k. Let {Tn}∞n=1 : H → Hbe an infi-

nite family of nonexpansive mappings such that ∩∞
n=1F(Tn) �= ∅, and {Wn} be W-

mapping defined by (2.3). Let {ln} and {an} be two sequences in (0, 1). Assume

that

(A1)
∑∞

n=0 λn = ∞;

(A2) 0 < lim infn®∞ an ≤ lim supn®∞ an < 1.

Then, the sequence {xn} and {yn} generated by (1.2) converge weakly to x∗ ∈ ∩∞
n=1F(Tn).

Proof. From (A1), we have 0 < λn ≤ η

k2
− ε, ∀n ≥ n0 for some integer n0 ≥ 0. Repeat-

ing the same argument as in the proof of Theorem 3.2, we know that {xn} is bounded,

and so are the sequences {yn} and {F(xn)}. Assuming p ∈ ∩∞
n=1F(Tn), we have

||xn+1 − p ||2 = || (1 − αn)(yn − p) + αn(Wnyn − p) ||2
= (1 − αn)|| yn − p ||2 + αn||Wnyn − p ||2 − (1 − αn)αn|| yn − Wnyn||2
≤ || yn − p ||2 − (1 − αn)αn|| yn − Wnyn ||2
= || xn − p − λnF(xn) ||2 − (1 − αn)αn|| yn − Wnyn||2
≤ [|| xn − p|| + λn|| F(xn) ||]2 − (1 − αn)αn|| yn − Wnyn||2
= || xn − p ||2 + λ2

n|| F(xn) ||2 + 2λn|| xn − p || || F(xn) || − (1 − αn)αn|| yn − Wnyn||2
≤ || xn − p ||2 + M4(λ2

n + λn),

(3:17a)

where M4 = sup{||F(xn)||
2, 2 ||xn - p|| ||F(xn)||, n ≥ 0}. Since

∑∞
n=0 λn = ∞, we have∑∞

n=0 λ2
n < ∞. Therefore,

∑∞
n=0 M4(λ2

n + λn) < ∞. Utilizing Lemma 2.4, we deduce that

limn®∞ ||xn - p|| exists. Further-more, from(3.17), we have

(1 − αn)αn||yn − Wnyn||2 ≤ ||xn − p ||2 − || xn+1 − p ||2 + M4(λ2
n + λn). (3:18)

Since ln ® 0, λ2
n → 0 and (A2), it follows from (3.18) that

||yn − Wnyn|| → 0(n → ∞).

Utilizing Lemma 2.6, we have

||yn − Wyn|| ≤ ||yn − Wnyn|| + ||Wnyn − Wyn|| → 0(n → ∞).

Now, we show that ωw(yn) ⊂ F(T). Indeed, let x* Î ωw(yn). Then, there exists a sub-

sequence {yni} of {yn} such that yni ⇀ x∗. Since ||yn - Wyn|| ® 0, by Lemma 2.1, we

have x∗ ∈ F(W) = ∩∞
n=1F(Tn).
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Next, we show that ωw(yn) is a singleton. Indeed, let {ymj} be another subsequence of

{yn} such that ymj ⇀ x̃. Then, x̃ ∈ ∩∞
n=1F(Tn). If x

∗ �= x̃, then, by Opial’s property of H,

we have

lim
n→∞ ||yn − x∗|| = lim

i→∞
||yni − x∗||

< lim
i→∞

||yni − x̃||
= lim

j→∞
||ymj − x̃||

< lim
j→∞

||ymj − x∗||

= lim
n→∞ ||yn − x∗||.

This is a contradiction. Therefore, ωw(yn) is a singleton. Consequently, {yn} converges

weakly to x∗ ∈ ∩∞
n=1F(Tn). From (1.2), we have that {xn} converges weakly to

x∗ ∈ ∩∞
n=1F(Tn). This completes the proof.

Remark 3.8. It is worth pointing out that the conditions (C1) and (C2) in [5, Theorem

3.2] are replaced by the one (A1) in Theorem 3.7. It is also worth pointing out that condi-

tion (A2) is strictly weaker than the condition (C5). The advantages of there results in this

study are that weaker and fewer restrictions are imposed on parameters an, ln and h.
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