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The block-grid method (see Dosiyev, 2004) for the solution of the Dirichlet problem on polygons,
when a boundary function on each side of the boundary is given from C2,λ, 0 < λ < 1, is analized.
In the integral represetations around each singular vertex, which are combined with the uniform
grids on ”nonsingular” part the boundary conditions are taken into account with the help of
integrals of Poisson type for a half-plane. It is proved that the final uniform error is of order
O(h2 + ε), where ε is the error of the approximation of the mentioned integrals, h is the mesh
step. For the p-order derivatives (p = 0, 1, . . .) of the difference between the approximate and the

exact solution in each ”singular” part O((h2 + ε)r
1/αj−p
j ) order is obtained, here rj is the distance

from the current point to the vertex in question, αjπ is the value of the interior angle of the jth
vertex. Finally, the method is illustrated by solving the problem in L-shaped polygon, and a high
accurate approximation for the stress intensity factor is given.

1. Introduction

In the last two decades among different approaches to solve the elliptic boundary value

problems with singularities, a special emphasis has been placed on the construction of

combined methods, in which differential properties of the solution in different parts of the

domain are used (see [1–3], and references therein).
In [3–8], a new combined difference-analytical method called the block-grid method

(BGM) is analyzed for the solution of the Laplace equation on polygons, when the boundary

functions on the sides causing the singular vertices are given as algebraic polynomials of the

arc length. This method is a combination of the exponentially convergent block method (see
[9, 10]) in “singular” part, and the finite difference method, which has a simple structure
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on “nonsingular” part of the polygon. A kth order gluing operator (Sk) is constructed for

gluing together the grids and blocks. The uniform estimate for the error of the BGM is of

order O(hk), (h is the mesh step) when the boundary functions on the sides of the polygon

which are not causing the singular vertices are from the Hölder classes Ck,λ, 0 < λ < 1 (see
[3–5] for k = 6, [8] for k = 4, and [6] for k = 2). For the p-order derivatives (p = 0, 1, . . .)
of the difference between the approximate and the exact solutions in each “singular” part,

O(h2/r
p−1/αj

j ) order is obtained, where h is mesh step, rj is the distance from the current

point to the vertex in question, and αjπ is the value of the interior angle at the considered

vertex. Moreover, BGM can give a simple and high accurate formula for the stress intensity

factor which is one of the important quantities from an engineering standpoint [11].
In [7] the error of the BGM for the solution of the Dirichlet problem on arbitrary

polygons is estimated when the boundary functions on the sides not causing the singular

vertices are given from C1,1, that is, they have the first derivative, which satisfies a Lipschitz

condition. The uniform estimate of order O(h2(| lnh| + 1)), for the error of the approximate

solution, is obtained, and the requirements on the boundary functions cannot be essentially

lowered in Ck,λ.
In this paper, the BGM is developed for the solution of Laplace’s equation on polygons

with nonanalytic boundary conditions of the first kind, that is, we remove the restriction on

the boundary functions to be algebraic polynomials on the sides of the polygon causing the

singular vertices. It is assumed that the boundary function on each side of the polygon is

given from the Hölder classes C2,λ, 0 < λ < 1. In the integral representation of the solution

for each “singular” part, which is combined with the uniform grids on “nonsingular” part,

the boundary conditions are taken into account with the help of integrals of Poisson type for

a half-plane. Taking n number of quadrature nodes, n ≥ [ln1+κh−1] + 1, where κ is a fixed

number, for the composite midpoint rule in the approximation of the integral representation

of the solution, and by evaluating Poisson type integrals with ε accuracy, the final uniform

error is of order O(h2 + ε). For the p-order derivatives (p = 0, 1, . . .) of the difference between

the approximate and the exact solutions in each “singular” part, O((h2 + ε)r
1/αj−p
j ) order is

obtained. We illustrate the method in solving the problem in L-shaped polygon with the

corner singularity, and we give a simple formula for the stress intensity factor for a high

accurate approximation.

For the analytical treatment of singularities of a solution of the elliptic equations, see

for instance [12–14].

2. Integral Representation of a Solution

Let G be an open simply connected polygon, γj , j = 1(1)N, its sides, including the ends,

enumerated counterclockwise, γ = γ1 ∪ · · · ∪ γN the boundary of G, and αjπ, 0 < αj ≤ 2, be the
interior angle formed by the sides γj−1 and γj , (γ0 = γN). Denote by Aj = γj−1 ∩ γj the vertex

of the jth angle, by rj , θj a polar system of coordinates with pole in Aj , where the angle θj is
taken counterclockwise from the side γj .

We consider the boundary value problem

Δu = 0 on G, u = ϕj(s) on γj , 1 ≤ j ≤ N, (2.1)

where Δ ≡ ∂2/∂x2 + ∂2/∂y2, ϕj is a given function on γj of the arc length s taken along γ, and
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ϕj ∈ C2,λ(γj), 0 < λ < 1, that is, ϕj has the second derivative on γj , which satisfies a Hölder

condition with exponent λ.
At some verticesAj, (s = sj) for αj = 1/2, the continuity condition ϕj−1 = ϕj is fulfilled.

Let E be the set of all j, (1 ≤ j ≤ N) for which αj /= 1/2 or αj = 1/2 but ϕj−1(sj)/=ϕj(sj). In
the neighborhood of Aj, j ∈ E, we construct two fixed block-sectors Ti

j = Tj(rji) ⊂ G, i = 1, 2,

where 0 < rj2 < rj1 < min{sj+1 − sj , sj − sj−1}, Tj(r) = {(rj , θj) : 0 < rj < r, 0 < θj < αjπ}.
Let (see [15])

ϕj0(t) = ϕj

(
sj + t

) − ϕj

(
sj
)
, ϕj1(t) = ϕj−1

(
sj − t

) − ϕj−1
(
sj
)
,

Qj

(
rj , θj

)
= ϕj

(
sj
)
+

(
ϕj−1

(
sj
) − ϕj

(
sj
))
θj

αjπ
+

1

π

1∑
k=0

∫σjk

0

ỹjϕjk(tαj )dt(
t − (−1)kx̃j

)2
+ ỹ2

j

,
(2.2)

where

x̃j = r
1/αj

j cos

(
θj

αj

)
, ỹj = r

1/αj

j sin

(
θj

αj

)
, (2.3)

σjk =
∣∣sj+1−k − sj−k

∣∣1/αj . (2.4)

It can be shown that the function Qj(rj , θj) has the next properties:

(a) Qj(rj , θj) is harmonic and bounded in the infinite angle 0 < rj < ∞, 0 < θj < αjπ ;

(b) it satisfies the boundary conditions in (2.1) on γj−1 ∩ T
1

j and γj ∩ T
1

j , j ∈ E, except
for the point Aj (the vertex of the sector) when ϕj−1(sj)/=ϕj(sj), and except at the

endpoints of γj−1 and γj located at other vertices.

Remark 2.1. We formally set the value of Qj(rj , θj) and the solution u of problem (2.1) at the
vertex Aj equal to (ϕj−1(sj) + ϕj(sj))/2, j ∈ E.

Let

Rj

(
r, θ, η

)
=

1

αj

1∑
k=0

(−1)kR
⎛⎝( r

rj2

)1/αj

,
θ

αj
, (−1)k η

αj

⎞⎠, j ∈ E, (2.5)

where

R
(
r, θ, η

)
=

1 − r2

2π
(
1 − 2r cos

(
θ − η

)
+ r2

) (2.6)

is the kernel of the Poisson integral for a unit circle.



4 Boundary Value Problems

Lemma 2.2 (Volkov [10]). The solution u of the boundary value problem (2.1) can be represented

on T
2

j \ Vj, j ∈ E, in the form

u
(
rj , θj

)
= Qj

(
rj , θj

)
+
∫αjπ

0

Rj

(
rj , θj , η

)(
u
(
rj2, η

) −Qj

(
rj2, η

))
dη, (2.7)

where Vj is the curvilinear part of the boundary of T2
j , and Qj(rj , θj) is the function defined by (2.2).

3. Description of the Block-Grid Method

The idea of BGM for the solution of problem (2.1) is as follows. Let tj be a polygonal line

which lies on T2
j and has a positive distance from the vertex Aj and curvilinear boundary Vj

of T2
j , j ∈ E. The set of points T2

j from Aj up to tj is denoted byΠ∗
j . In the “nonsingular” part

of G, GNS = G \ Π∗
j , the Laplace equation is approximated by finite difference method. On

the grids located on tj , j ∈ E, (part of boundary of GNS) as a boundary condition, the integral

representation (2.7) is used. The integrals in (2.2) are calculated with the given accuracy ε,
and for the integral in (2.7), which contains the unknown value u(rj2, η) of the exact solution,
a composite mid-point rule is used. The values at quadrature nodes and at the grids are

connected by simplest linear interpolation or by high accurate gluing operators constructed

in [3, 5, 16]. After solving the finite difference problem on “nonsingular” part GNS, as an

approximate solution at any point of the “singular” part, Π∗
j , j ∈ E of G is defined by the

same approximation of representation (2.7).
Now, we consider one of the realizations of the above-described construction of the

BGM (see also [5]).
In addition to the sectors T1

j and T2
j (see Section 2) in the neighborhood of each vertex

Aj, j ∈ E, of the polygon, G we construct two more sectors T3
j and T4

j , where 0 < rj4 < rj3 <

rj2, rj3 = (rj2 + rj4)/2, and T3
k
∩ T3

l
= ∅, k /= l, k, l ∈ E, and let GT = G \ (⋃j∈E T

4
j ).

Let Πk ⊂ GT, k = 1(1)M, (M < ∞) be certain fixed open rectangles with arbitrary

orientation, generally speaking, with sides a1k and a2k, a1k/a2k, being rational and G =
(
⋃M

k=1 Πk)∪(
⋃

j∈E T
3
j ). Let ηk be the boundary of the rectangleΠk and Vj the curvilinear part of

the boundary of the sector T2
j , and tkj = ηk∩T

3

j . The following general requirement is imposed

on the arrangement of the rectangles Πk, k = 1(1)M, and sectors T2
j , j ∈ E: any point P lying

on ηk ∩ GT, 1 ≤ k ≤ M, or located on Vj ∩ G, j ∈ E, falls inside at least one of the rectangles

Πk(p), 1 ≤ k(p) ≤ M, depending on P, and the distance from P to GT
⋂
ηk(p) is not less than

some constant κ0 > 0 independent of P.
The quantity κ0 is called a depth of gluing of the rectangles Πk, k = 1(1)M. We

introduce the parameter h ∈ (0,κ0/2] and define a square grid on Πk, k = 1(1)M, with

maximal possible step hk ≤ min{h,min{a1k, a2k}/2} such that the boundary ηk lies entirely

on the grid lines. Let Πh
k be the set of grid nodes on Πk, η

h
k the set of nodes on ηk, and Π

h

k =
Πh

k
∪ ηh

k
.We denote the set of nodes on the closure of ηk ∩GT by ηh

k0
, the set of nodes on tkj by

thkj , and the set of remaining nodes on ηk by ηh
k1.We also introduce the natural number n and

the quantities n(j) = max{4, [αjn]}, βj = αjπ/n(j), and θ
q

j = (q − 1/2)βj , j ∈ E, 1 ≤ q ≤ n(j).
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On the arc Vj we choose the points (rj2, θ
q

j ), 1 ≤ q ≤ n(j), and denote the set of these points

by V n
j .

From the estimation (2.29) in [9] follows the existence of the positive constants n0 and

σ such that, for n ≥ n0,

max
(rj ,θj )∈T

3

j

βj

n(j)∑
q=1

Rj

(
rj , θj , θ

q

j

)
≤ σ < 1. (3.1)

Let

ωh,n =

(
M⋃
k=1

ηh
k0

)
∪
⎛⎝⋃

j∈E
V n
j

⎞⎠, G
h,n

T = ωh,n ∪
(

M⋃
k=1

Π
h

k

)
. (3.2)

We define the matching operator S2 at each point P ∈ ωh,n in the following way. We

consider the set of all rectangles {Πk} in the intersections of which the point P lies, and we

choose one of these rectangles Πk(P), part of whose boundary situated in GT is furthest away

from P. The value S2u at the point P is computed according to the values of the function at

the four vertices Pk, k = 1, 2, 3, 4, of the closure of the cell, containing the point P of the grid

constructed onΠk(P), by multilinear interpolation in the directions of the grid lines. Thus, S2u
has the expression

S2u ≡
4∑

μ=1

λμuμ, (3.3)

where u = u(P), uμ = u(Pμ), and

λμ ≥ 0,
4∑

μ=1

λμ = 1. (3.4)

Let

Qj = Qj

(
rj , θj

)
, Q

q

j2 = Qj

(
rj2, θ

q

j

)
. (3.5)

The quantities (3.5) are given by (2.2)–(2.4), which contain integrals that usually cannot be

computed exactly. Assume that the approximate values Qε
j and Q

qε

j2 of the quantities in (3.5)
are known with accuracy ε > 0, that is,

∣∣∣Qε
j −Qj

∣∣∣ ≤ c1ε,
∣∣∣Qqε

j2 −Q
q

j2

∣∣∣ ≤ c1ε, (3.6)

where j ∈ E, 1 ≤ q ≤ n(j), and c1 is a constant independent of ε.
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Consider the system of linear algebraic equations

uε
h = Auε

h on Πh
k, (3.7)

uε
h = ϕm on ηh

k1 ∩ γm, (3.8)

uε
h

(
rj , θj

)
= Qε

j + βj

n(j)∑
q=1

(
uε
h

(
rj2, θ

q

j

)
−Q

qε

j2

)
Rj

(
rj , θj , θ

q

j

)
on

(
rj , θj

) ∈ thkj , (3.9)

uε
h = S2uε

h on ωh,n, (3.10)

where 1 ≤ k ≤ M, 1 ≤ m ≤ N, j ∈ E;

Au
(
x, y

)
=

(
u
(
x + h, y

)
+ u
(
x − h, y

)
+ u
(
x, y + h

)
+ u
(
x, y − h

))
4

. (3.11)

Definition 3.1. The solution of the system (3.7)–(3.10) is called a numerical solution of

problem (2.1) on G
h,n

T .

Definition 3.2. The function

Uε
h

(
rj , θj

)
= Qj

(
rj , θj

)
+ βj

n(j)∑
q=1

Rj

(
rj , θj , θ

q

j

)(
uε
h

(
rj2, θ

q

j

)
−Q

qε

j2

)
(3.12)

is called an approximate solution of problem (2.1) on the closed block T
3

j , j ∈ E, where

uε
h
(rj2, θ

q

j ), 1 ≤ q ≤ n(j), j ∈ E, is the solution values of the system (3.7)–(3.10) on V h
j (at

the quadrature nodes).

Theorem 3.3. There is a natural number n0 such that, for all n ≥ n0 and for any ε > 0, the system
(3.7)–(3.10) has a unique solution.

Proof. The proof is obtained on the basis of maximum principle by taking into account (3.1),
(3.3), (3.4), and (3.11) by analogy with [5].

4. Convergence of the Block-Grid Equations on “Nonsingular” Part

Let

ξεh = uε
h − u, (4.1)

where uε
h is a solution of the system (3.7)–(3.10), and u is the trace on G

h,n

T of the solution of

(2.1). On the basis of (2.1), (3.7)–(3.10), and (4.1), the error ξε
h
satisfies the system of difference
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equations

ξεh = Aξεh + r1h on Πh
k,

ξεh = 0 on ηh
k1,

ξεh
(
rj , θj

)
= βj

n(j)∑
q=1

ξεh

(
rj2, θ

q

j

)
Rj

(
rj , θj , θ

q

j

)
+ r2jh,

(
rj , θj

) ∈ thkj ,

ξεh = S2ξεh + r3h on ωh,n,

(4.2)

where 1 ≤ k ≤ M, j ∈ E,

r1h = Au − u on
M⋃
k=1

Πh
k, (4.3)

r2jh = βj

n(j)∑
q=1

(
u
(
rj2, θ

q

j

)
−Q

qε

j2

)
Rj

(
rj , θj , θ

q

j

)
−
(
u −Qε

j

)
on

M⋃
k=1

⎛⎝⋃
j∈E

thkj

⎞⎠, (4.4)

r3h = S2u − u on ωh,n. (4.5)

In what follows, for simplicity, we will denote constants which are independent of h
and ε by c.

Lemma 4.1. There exists a natural number n0 such that, for all n ≥ max{n0, [ln
1+κh−1] + 1}, and

ε > 0, where κ > 0 is a fixed number,

max
j∈E

∣∣∣r2jh∣∣∣ ≤ c
(
h2 + ε

)
. (4.6)

Proof. On the basis of (4.4), Lemma 2.2, and by the virtue of rj3 = (rj2 + rj4)/2 < rj2, t
h
kj

∈ T
3

j ,

we have

∣∣∣r2jh∣∣∣ ≤
∣∣∣∣∣∣
∫αjπ

0

Rj

(
rj , θj , η

)(
u
(
rj2, η

) −Qj

(
rj2, η

))
dη − βj

n(j)∑
q=1

(
u
(
rj2, θ

q

j

)
−Q

q

j2

)
Rj

(
rj , θj , η

)∣∣∣∣∣∣
+
∣∣∣Qj −Qε

j

∣∣∣ +
∣∣∣∣∣∣βj

n(j)∑
q=1

(
Q

q

j2 −Q
qε

j2

)
Rj

(
rj , θj , η

)∣∣∣∣∣∣, 1 ≤ k ≤ M, j ∈ E.

(4.7)

From this, from [9, Lemma 2.10] and inequalities (3.1) and (3.6), it follows that there exists a

natural n0 such that for all n ≥ n0, and for the given ε > 0, we obtain

∣∣∣r2jh∣∣∣ ≤ c0j exp
{
−d0

j n
}
+ c1ε + c1σε, 0 < σ < 1, j ∈ E, (4.8)
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where c0j and d0
j > 0 are constants, independent of n. Putting c0 = maxj∈E{c0j }, and d =

minj∈E{d0
j } from (4.8), we have

max
j∈E

∣∣∣r2jh∣∣∣ ≤ c0 exp
{
−d0n

}
+ 2c1ε. (4.9)

Then, for

n ≥ max
{
n0,
[
ln1+κh−1

]
+ 1
}
, (4.10)

where κ > 0 is a fixed number, we have the inequality (4.6).

Since the set of points ωh,n are strictly interior points of the polygon G, then from (4.5)
on the basis of Lemma 3 in Chapter III [17], we obtain

max
ωh,n

∣∣∣r3h∣∣∣ ≤ ch2. (4.11)

Theorem 4.2. There exists a natural number n0 such that for n ≥ max{n0, [ln
1+κh−1] + 1}, where

κ > 0 is a fixed number, and for the given ε > 0,

max
G

h,n

T

∣∣uε
h − u

∣∣ ≤ c
(
h2 + ε

)
. (4.12)

Proof. Let vε
h
be a solution of the system (4.2) when the functions r1

h
, r2

jh
, and r3

h
in some

rectangular grid Πh
k∗ are the same as in (4.3)–(4.5), but are zero in G

h,n

T \Πh

k∗ . Let thk∗j /= ∅. It is
obvious that

W = max
G

h,n

T

∣∣vε
h

∣∣ = max
Π

h

k∗

∣∣vε
h

∣∣. (4.13)

We represent the function vh on G
h,n

T in the form

vε
h =

4∑
κ=1

vε
h,k, (4.14)
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where the functions vε
h,k

, κ = 2, 3, 4, are defined onΠ
h

k∗ as a solution of the system of equations

vε
h,2 = Avε

h,2 on Πh
k∗ , vε

h,2 = 0 on ηh
k∗1,

vε
h,2

(
rj , θj

)
= r2jh,

(
rj , θj

) ∈ thk∗j , vε
h,2 = 0 on ωh,n;

(4.15)

vε
h,3 = Avε

h,3 on Πh
k∗ , vε

h,3 = 0 on ηh
k∗1,

vε
h,3

(
rj , θj

)
= 0,

(
rj , θj

) ∈ thk∗j , vε
h,3 = r3h on ωh,n;

(4.16)

vε
h,4 = Avε

h,4 + r1h on Πh
k∗ , vε

h,4 = 0 on ηh
k∗1,

vε
h,4

(
rj , θj

)
= 0,

(
rj , θj

) ∈ thk∗j , vε
h,4 = 0 on ωh,n,

(4.17)

with

vε
h,k = 0, κ = 2, 3, 4 on G

h,n

T \Πh

k∗ . (4.18)

Hence according to (4.14)–(4.18) the function vε
h,k

satisfies the system of equations

vε
h,1 = Avε

h,1 on Πh
k, vε

h,1 = 0 on ηh
k1,

vε
h,1

(
rj , θj

)
= βj

n(j)∑
q=1

Rj

(
rj , θj , θ

q

j

)
S2

(
4∑

κ=1

vε
h,k

(
rj2, θ

q

j

))
,
(
rj , θj

) ∈ thkj ,

vε
h,1 = S2

(
4∑

κ=1

vε
h,k

)
on ηh

k0, 1 ≤ k ≤ M, j ∈ E,

(4.19)

where the functions vε
h,k

, κ = 2, 3, 4, are assumed to be known.

Taking into account (4.6) and (4.11), on the basis of (4.15), (4.16), (4.18), and the

principle of maximum, we have

W2 = max
G

h,n

T

∣∣∣vε
h,2

∣∣∣ ≤ c
(
h2 + ε

)
, (4.20)

W3 = max
G

h,n

T

∣∣∣vε
h,3

∣∣∣ ≤ ch2. (4.21)

The function vε
h,4 being a solution of the system (4.17), (4.18) is the error of finite

difference solution, with step hk∗ ≤ h, of the Dirichlet problem on

Δw = 0 on Πk∗ , w = ψk∗ on ηk∗ , (4.22)
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where

ψk∗ =

⎧⎨⎩ϕl on ηk∗1 ∩ γl,

u on ηk∗0,
(4.23)

u is a solution of problem (2.1). It is obvious that a solution of problem (4.22) is unique, and
w ≡ u on Πk∗ . As the boundary of Πk∗ located from the vertices Aj, j ∈ E, of the polygon G
is the distance exceeding some positive quantity independent of h, ψk∗ ∈ C2,λ(ηk∗), 0 < λ < 1,
and by the virtue of (4.18) and [18, Theorem 1.1], we obtain

W4 = max
G

h,n

T

∣∣∣vε
h,4

∣∣∣ = max
Π

h

k∗

∣∣∣vε
h,4

∣∣∣ ≤ ch2. (4.24)

On the basis of (3.1) and (3.4), the function vε
h,1 is a unique solution of (4.19) (the

functions vε
h,k

, k = 2, 3, 4, are assumed to be known). By the gluing condition of the rectangles

Πk, k = 1, 2, . . . ,M, from (4.19) by maximum principle (see [18]), there exists a real number

λ∗, 0 < λ∗ < 1, independent of h, such that for n ≥ max{n0, [ln
1+κh−1] + 1} and for ε > 0, we

have

W1 = max
G

h,n

T

∣∣∣vε
h,1

∣∣∣
≤max

⎧⎨⎩max⋃M
k=1 ηk0

∣∣∣∣∣S2

(
4∑
i=1

vε
h,i

)∣∣∣∣∣, max
(rj ,θj )∈(

⋃
j∈E V n

j )

∣∣∣∣∣S2

(
4∑
i=1

vε
h,i

(
rj , θj

))∣∣∣∣∣ max
(rj ,θj )∈tkj

βj

n(j)∑
q=1

Rj

(
rj , θj , θ

q

j

)⎫⎬⎭
≤ λ∗W +

4∑
i=2

max
G

h,n

T

∣∣∣vε
h,i

∣∣∣.
(4.25)

From (4.13), (4.14), (4.20), (4.21), (4.24), and (4.25), we obtain

W ≤ λ∗W + c
(
h2 + ε

)
, 0 < λ∗ < 1, (4.26)

that is,

W = max
G

h,n

T

∣∣vε
h

∣∣ ≤ c
(
h2 + ε

)
. (4.27)

In the case when thk∗j ≡ ∅, the function v2
h ≡ 0 on G

h,n

T and the inequality (4.27) holds
true.
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Since the number of grid rectangles in G
h,n

T is finite, for the solution of (4.2), we have

max
G

h,n

T

∣∣ξεh∣∣ ≤ c
(
h2 + ε

)
. (4.28)

5. Convergence of the Approximate Solution on “Singular” Part

We consider the question of convergence of the function Uε
h
(rj , θj) defined by the formula

(3.12). Taking into account the properties of the functions Qj(rj , θj), j ∈ E, and the fact that

Rj(rj , 0, η) = Rj(rj , αjπ, η) = 0, the function Uε
h(rj , θj) is defined on T ∗

j , where r∗j = (rj2 +
rj3)/2. Moreover, the function Uε

h
(rj , θj) is bounded, harmonic on T ∗

j , and continuous up to

its boundary, except for the vertex Aj when the specified boundary values are discontinuous

atAj. In addition, on the rectilinear parts of the boundary of T ∗
j , except, maybe, the vertexAj,

function Uε
h
(rj , θj) satisfies the boundary conditions defined in (2.1).

Theorem 5.1. There is a natural number n0, such that for n = max{n0, [ln
1+κh−1] + 1}, κ > 0 is a

fixed number, and for any ε > 0, the following inequalities are valid:

∣∣∣∣ ∂p

∂xp−q∂yq

(
Uε

h

(
rj , θj

) − u
(
rj , θj

))∣∣∣∣ ≤ cp
(
h2 + ε

)
on T

3

j , (5.1)

for integer 1/αj when p ≥ 1/αj ;

∣∣∣∣ ∂p

∂xp−q∂yq

(
Uε

h

(
rj , θj

) − u
(
rj , θj

))∣∣∣∣ ≤ cp
(
h2 + ε

)
rp−1/αj

on T
3

j , (5.2)

for any 1/αj if 0 ≤ p < 1/αj ;

∣∣∣∣ ∂p

∂xp−q∂yq

(
Uε

h

(
rj , θj

) − u
(
rj , θj

))∣∣∣∣ ≤ cp
(
h2 + ε

)
rp−1/αj

on T
3

j \Aj, (5.3)

for noninteger 1/αj, when p > 1/αj . Everywhere 0 ≤ q ≤ p, u is a solution of problem (2.1).

Proof. Since r∗j = (rj2 + rj3)/rj2, then for n ≥ [ln1+κh−1] + 1, κ > 0 is a fixed number, we have

∣∣∣∣∣∣βj
n(j)∑
q=1

Rj

(
rj , θj , θ

q

j

)(
u
(
rj2, θ

q

j

)
−Qj

(
rj , θ

q

j

))

−
∫αjπ

0

Rj

(
rj , θj , η

)(
u
(
rj2, η

) −Qj

(
rj2, η

))
dη

∣∣∣∣ ≤ ch2 on T
∗
j , j ∈ E.

(5.4)
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On the basis of (3.1), (3.6), and Theorem 4.2 for n ≥ max{n0, [ln
1+κh−1] + 1}, and for

any ε > 0, we obtain

∣∣∣∣∣∣βj
n(j)∑
q=1

Rj

(
rj , θj , θ

q

j

)[(
uε
h

(
rj2, θ

q

j

)
− u
(
rj2, θ

q

j

))
+
(
Qj

(
rj , θ

q

j

)
−Q

qε

j2

)]∣∣∣∣∣∣
≤ c
(
h2 + ε

)
on T

∗
j , j ∈ E.

(5.5)

In accordance with the formulae (2.7), (3.12), (5.4), and (5.5) for all n ≥
max{n0, [ln

1+κh−1] + 1}, for any ε > 0, we have

∣∣Uε
h

(
rj , θj

) − u
(
rj , θj

)∣∣ ≤ c
(
h2 + ε

)
on T

∗
j , j ∈ E. (5.6)

Let

ςεh
(
rj , θj

)
= Uε

h

(
rj , θj

) − u
(
rj , θj

)
on T

∗
j , j ∈ E. (5.7)

From (3.12), (5.7), and Remark 2.1, it follows that the function ςεh(rj , θj) is continuous
on T

∗
j and is a solution of the boundary value problem

Δςεh = 0 on T ∗
j ,

ςεh = 0 on γm ∩ T
∗
j , m = j − 1, j,

ςεh

(
r∗j , θj

)
= Uε

h

(
r∗j , θj

)
− u
(
r∗j , θj

)
, 0 ≤ θj ≤ αjπ,

(5.8)

where according to (5.6)

max
0≤θj≤αjπ

∣∣∣ςεh(r∗j , θj)∣∣∣ ≤ c
(
h2 + ε

)
. (5.9)

Taking into account (5.9), from [19, Lemma 3.3] follows all inequalities of Theorem 5.1.

Remark 5.2. The right-hand side of the estimations (4.12) and (5.1)–(5.3) depend on the step

size h of the grid, and on the parameter ε > 0 determining the accuracy of the approximations

of the quantities (3.5) in the formulation of the algebraic equations (3.7)–(3.10). Thus, for
simplicity, we can set h � ε−1/2.

6. Schwarz’s Alternating Method for the System of
Block-Grid Equations

We define the following classes Bq, q = 1, 2, . . . , q∗, of rectangles Πk, k = 1, 2, . . . ,M (see [5]).
Class B1 includes all rectangles whose intersection with the boundary γ of the polygon G
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contains a certain segment of positive length. Class B2 contains all the rectangles which are

not in the class B1,whose intersectionwith rectangles of B1 contains a segment of finite length,

and so on.

We calculate the values Qε
j (rj2, θ

q

j ) for all j ∈ E, 1 ≤ q ≤ n(j), and the values Qε
j (rj , θj)

on the grids thj , j ∈ E, with the given accuracy of ε. Suppose, we have a zero approximation

u
ε(0)
h

to the exact solution uε
h
of (3.7)–(3.10). Finding u

ε(1)
h

for all j ∈ E by the formula (3.9) on

thj and on ηk0 by (3.10), we solve the system (3.7)–(3.10) on each grid Π
h

k of rectangles, first

from class B1, then from class B2, and so on. The next iteration is similar.

Consequently, we have the sequence u
ε(1)
h

, u
ε(2)
h

, . . . , generated by the Schwarz’s

alternating method

u
ε(m)
h

(
rj , θj

)
= Qε

j

(
rj , θj

)
+ βj

n(j)∑
q=1

Rj

(
rj , θj , θ

q

j

)(
uε(m−1)

(
rj2, θ

q

j

)
−Qε

j

(
rj2, θ

q

j

))
on thj ,

u
(m)
h

= S2u
ε(m−1)
h

on ωh,n,

u
(m)
h

= Au
ε(m)
h

on Πh
k, u

ε(m)
h

= ϕ on ηh
k1,

(6.1)

where 1 ≤ k ≤ M, j ∈ E, m = 1, 2, . . . .

Theorem 6.1. For n ≥ max{n0, [ln
1+κh−1] + 1} and for each ε > 0, the system (3.7)–(3.10) can be

solved by Schwarz’s alternating method with any accuracy ε > 0 in a uniform metric with the number
of iterations O(ln ε−1), independent of h, n, and ε where n0 and κ mean the same as in Theorem 5.1.

Proof. The proof is obtained by analogy with the proof of Theorem 3 from [5].

Remark 6.2. In the case when on the sides of a sector T1
j , j ∈ E, the boundary functions are

given by algebraic polynomials of s, it is expedient to use a simpler elementary harmonic

function as in [5] instead of the function (2.2).

Remark 6.3. From the error estimation formula (5.2) of Theorem 5.1, it follows that the error

of the approximate solution on the “singular” parts decreases as r
1/αj

j (h2 + ε),which gives an

additional accuracy of the BGM near the “singular” points.

Remark 6.4. The method and results of this paper hold for multiply-connected polygons.

7. Stress Intensity Factor

Let, in the condition ϕj ∈ C2,λ(γj), the exponent λ be such that

{
αj(2 + λ)

}
/= 0,

{
2αj(2 + λ)

}
/= 0, (7.1)

where {·} is the symbol of fraction part. These conditions for given αj can be fulfilled by

decreasing λ and letting nαj = [αj(2 + λ)], [·] be the integer part.
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On the basis of [20, Section 2], a solution of problem (2.1) can be represented in the

form

u
(
xj , yj

)
= ũ

(
xj , yj

)
+

2∑
k=0

μ
(j)
k

Im
{
zk ln z

}
+

nα∑
k=1

τ
(i)
k
rk/αj sin

kθ

α
, (7.2)

where z = xj + iyj , μ
(j)
k
, and τ

(j)
k

are some numbers, and ũ(xj , yj) ∈ C2,λ(Tj) is harmonic on Tj .
By taking θj = αjπ/2 from the formula (7.2), it follows that the coefficient τ1 which is called

the stress intensity factor can be represented as

τ
(j)
1 = lim

rj → 0

1

r
1/αj

j

(
u
(
xj , yj

) − ũ
(
xj , yj

) − 2∑
k=0

μ
(j)
k Im

{
zk ln z

})
. (7.3)

From the formulae (2.2), (3.12), and (7.3), it follows that τ
(j)ε
1,n can be approximated by

τ
(j)ε
1,n = lim

rj → 0

1

r
1/αj

j

(
Uε

h

(
rj , θj

) −(ϕj

(
sj
)
+
(
ϕj−1

(
sj
) − ϕj

(
sj
)) θj

αjπ

))

= lim
rj → 0

1

r
1/αj

j

1

π

⎡⎢⎣ 1∑
k=0

∫σjk

0

ỹjϕjk(tαj )dt(
t − (−1)kx̃j

)2
+ ỹ2

j

+ βj

n(j)∑
q=1

(
uε
h

(
rj2, θ

q

j

)
−Q

qε

j2

)
Rj

(
rj , θj , θ

q

j

)⎤⎥⎦.
(7.4)

Using the formulae (2.3), (2.5), (2.6) from (7.4) for the stress intensity factor, we obtain

the next formula

τ
(j)ε
1,n =

1

π

∫σj0

0

ϕj0(tαj )dt

t2 + r
2/αj

j

+
1

π

∫σj1

0

ϕj1(tαj )dt

t2 + r
2/αj

j

+
2

n
(
j
)
r
1/αj

j2

n(j)∑
q=1

(
uε
h

(
rj2, θ

q

j

)
−Q

qε

j2

)
sin

1

αj
θ
q

j .

(7.5)

8. Numerical Results

Example 8.1. Let G be L-shaped and defined as follows:

G =
{(

x, y
)
: −1 < x < 1, −1 < y < 1

} \Ω, (8.1)

where Ω = {(x, y) : 0 ≤ x ≤ 1, −1 ≤ y ≤ 0}, and γ the boundary of G.
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Figure 1: Description of BGM for the L-shaped domain.

We consider the following problem:

Δu = 0 in G,

u = v(r, θ) on γ,
(8.2)

where

v(r, θ) =
9

56
r8/3 cos

(
8

3
θ

)
+ r2/3 sin

(
2

3
θ

)
(8.3)

is the exact solution of this problem.

We choose a “singular” part of G as

GS =
{(

x, y
)
: −0.5 < x < 0.5, −0.5 < y < 0.5

} \Ω1, (8.4)

where Ω1 = {(x, y) : 0 ≤ x ≤ 0.5, −0.5 ≤ y ≤ 0}. Then GNS = G \ GS is a “nonsingular” part

of G.

The given domain G is covered by four overlapping rectanglesΠk, k = 1, . . . , 4, and by

the block sector T3
1 (see Figure 1). For the boundary of GS on G, that is, t1 the polygonal line

abcde is taken. The radius r12 of sector T2
1 is taken as 0.93. According to (8.3), the function

Q(r, θ) in (2.2) is

Q(r, θ) =
1

π

9

56

∫1

0

ỹt4dt

(t − x̃)2 + ỹ2
+

1

π

9

56

∫1

0

ỹt4dt

(t + x̃)2 + ỹ2
, (8.5)
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Figure 2: Dependence on ε for h−1 = 16, 32.
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Figure 3: Dependence on ε for h−1 = 64, 128.
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Table 1: The order of convergence in “nonsingular” part when h = 2−m and ε = 5 × 10−9.

(2−m, n) ‖ζε
h
‖
GNS Rm

GNS

(2−4, 70) 3.221892 × 10−5
3.92

(2−5, 70) 8.21629 × 10−6

(2−5, 45) 9.605851 × 10−6
4.36

(2−6, 50) 2.198578 × 10−6

(2−5, 70) 8.216298 × 10−6
3.995

(2−6, 90) 2.056572 × 10−6

(2−6, 45) 4.244817 × 10−6
4.08

(2−7, 85) 1.037951 × 10−6

(2−6, 75) 2.152420 × 10−6
3.99

(2−7, 100) 3.387851 × 10−7

Table 2: The order of convergence in “singular” part when h = 2−m and ε = 5 × 10−9.

(2−m, n) ‖ζε
h
‖
GS Rm

GS

(2−4, 70) 1.5957022 × 10−5
4.37

(2−5, 65) 3.6479479 × 10−6

(2−5, 45) 8.569069 × 10−6
4.11

(2−6, 50) 2.084891 × 10−6

(2−5, 65) 3.647947 × 10−6
3.97

(2−6, 100) 9.174034 × 10−7

(2−6, 45) 4.383277 × 10−6
3.96

(2−7, 85) 1.105764 × 10−6

(2−6, 85) 2.648988 × 10−6
4.18

(2−7, 100) 6.332288 × 10−7

Table 3: The minimum errors of the solution over the pairs (h−1, n) in maximum norm when ε = 5 × 10−9.

(h−1, n) ‖ζε
h
‖
GNS ‖ζε

h
‖
GS Iteration

(16, 45) 2.567 × 10−5 1.391 × 10−5 15

(32, 70) 8.216 × 10−6 8.732 × 10−6 16

(64, 70) 1.736 × 10−6 1.035 × 10−6 17

(128, 75) 4.038 × 10−7 2.399 × 10−7 17

Table 4: Theminimum errors of the derivatives over the pairs (h−1, n) in maximum normwhen ε = 5×10−9.

(h−1, n) maxGS∩{r≥0.2}r1/3‖∂Uε
h
/∂x − ∂u/∂x‖ maxGS∩{r≥0.2}r1/3‖∂Uε

h
/∂y − ∂u/∂y‖

(16, 45) 7.407 × 10−4 7.407 × 10−4

(32, 70) 1.771 × 10−4 1.772 × 10−4

(64, 70) 4.630 × 10−5 4.630 × 10−5

(128, 75) 1.294 × 10−5 1.294 × 10−5

where x̃ = r2/3 cos(2θ/3), and ỹ = r2/3 sin(2θ/3). Since we have only one singular point, we

omitted subindices in (8.5). We calculate the values Qε(r12, θq) and Qε(r, θ) on the grids th1 ,
with an accuracy of ε using the quadrature formulae proposed in [15].
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Table 5: The stress intensity factor for the pairs (h−1, n) when ε = 5 × 10−9.

(h−1, n) Stress intensity factor

(16, 45) 1.000004963400265

(16, 75) 1.000013397592036

(32, 65) 0.999994989029130

(32, 75) 0.9999973755906025

(32, 90) 0.9999973633441369

(64, 65) 1.000001087887584

(64, 70) 1.000000179113669

(64, 100) 0.9999997881749654

(128, 65) 1.000000056469357

(128, 75) 1.000000202312094

(128, 80) 1.000000008763244

On the basis of (7.5) and (8.5) for the stress intensity factor, we have

τε1,n =
3

28π
+

2

n(0.93)2/3

n∑
q=1

(
uε
h

(
0.93, θ

q

j

)
−Q

qε

j2

)
sin

2

3
θ
q

j . (8.6)

Taking the zero approximation u
ε(0)
h

= 0, the results of realization of the iteration (6.1)
for the solution of the problem in Example 8.1 are given in Tables 1–4. Tables 1 and 2 represent

the order of convergence

Rm
GNS =

maxGNS

∣∣uε
2−m − u

∣∣
maxGNS

∣∣∣uε
2−(m+1) − u

∣∣∣ , (8.7)

in “nonsingular”, and the order of convergence

Rm
GS =

maxGS

∣∣Uε
2−m − u

∣∣
maxGS

∣∣∣Uε
2−(m+1) − u

∣∣∣ (8.8)

in “singular” part of G, respectively, for ε = 5 × 10−9. In Table 3, the minimal values over the

pairs (h−1, n), of the errors in maximum norm, of the approximate solution when ε = 5 × 10−9

are presented. The similar values of errors for the first-order derivatives are presented

in Table 4 when ∂Q/∂x and ∂Q/∂y are approximated by second-order central difference
formula on GS for r ≥ 0.2. For r < 0.2, the order of errors decrease is down to 10−3 which

are not presented in Table 4. This happens because the integrands in (8.5) are not sufficiently

smooth for second-order differentiation formula. The order of accuracy of the derivatives for

r < 0.2 can be increased if we use similar quadrature rules which we used for the integrals

in (8.5) for the derivatives of integrands also. Table 5 represents the stress intensity factor for

the pairs (h−1, n) when ε = 5 × 10−9.
Figures 2 and 3 show dependence on ε for different mesh steps h. Figure 4

demonstrates the convergence of BGM with respect to the number of quadrature nodes for
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Figure 4: Maximum error depending on the number of quadrature nodes n.

different mesh steps h. The approximate solution and the exact solution in “singular” part

are given in Figure 5 to illustrate the accuracy of the BGM. The error function for ε = 5 × 10−9

of calculating the function Q(r, θ) in (8.5) is presented in Figure 6. Figures 7 and 8 show the

behavior of the first-order partial derivatives of the approximate solution in “singular” part.

9. Conclusions

We have developed the block-grid method for nonanalytic boundary conditions of the first

kind on the whole boundary, that is, we remove the restriction on the boundary functions

to be algebraic polynomials on the sides of the polygon causing the singular vertices. It

is assumed that the boundary function on the whole boundary is given from the Hölder

classes C2,λ, 0 < λ < 1. In the integral representations around each singular vertex, which

are combined with the finite difference equations on “nonsingular” part, the boundary

conditions are taken into account with the help of integrals of Poisson type for a half-plane.
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(a) (b)

Figure 5: The approximate solution Uε
h
and the exact solution u in the “singular” part for ε = 5 × 10−9.

Figure 6: The error function in “singular” part when ε = 5 × 10−9.

It is proved that the final uniform error is of order O(h2 + ε), where ε is the error of the

approximation of the mentioned integrals, and h is the mesh step. For the p-order derivatives
(p = 0, 1, . . .) of the difference between the approximate and the exact solutions in each

“singular” part, O((h2 + ε)r
1/αj−p
j ) order is obtained. The method is illustrated in solving

the problem in L-shaped polygon with the corner singularity, and a simple formula for the

stress intensity factor for a high accurate approximation is given. Moreover, dependence of
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Figure 7: ∂Uε
h
/∂x in the “singular” part.

Figure 8: ∂Uε
h
/∂y in the “singular” part.

the approximate solution and its errors on ε, h, and a number of quadrature nodes n are

demonstrated.
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