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Abstract
In this paper, we study the qualitative behavior of a discrete-time host-pathogen
model for spread of an infectious disease with permanent immunity. The time-step is
equal to the duration of the infectious phase. Moreover, the local asymptotic stability,
the global behavior of unique positive equilibrium point, and the rate of convergence
of positive solutions is discussed. Some numerical examples are given to verify our
theoretical results.
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1 Introduction
It is awell-known fact that in the population growth, the disease is an important agent con-
trolling the population dynamics. Many experiments show that parasites can reasonably
reduce the host population and even take the host population to complete annihilation.
This natural phenomenon is successfully modeled by many simple SI type host-parasite
models. The most interesting properties of such models are their ability of generating
host annihilation dynamics with the ideal parametric values and initial conditions. This is
possible, because such models naturally contain the proportion transmission term, which
is often referred to as ratio-dependent functional response in the case of predator-prey
models. In the SI model, the population is subdivided into two classes, susceptibles S and
infectives I . The notation SI means that there is a transfer from the susceptible to infec-
tive class, susceptibles become infective and do not recover from the infection. Thus, the
transfer continues until all individuals become infected. This type of model is very simple,
but may represent some complicated dynamical properties. Most of the SI type models
consist of the mass action principle, i.e., the assumption that the new cases arise in a sim-
ple proportion to the product of the number of individuals which are susceptible and the
number of which are infectious. However, this principle has a limited validity and in the
discrete models, this principle leads to biologically irrelevant results, unless some restric-
tions are suggested for the parameters. It ismore appropriate for discrete epidemicmodels
to include an exponential factor in the rate of transmission. Exponential difference equa-
tions can be used to study the models in population dynamics [–]. We consider here a
simple exponential discrete-time host-pathogen model for spread of an infectious disease
with permanent immunity. The time-step is equal to the duration of the infectious phase.
The state variables are Sn, the number of susceptible individuals at time n, and In repre-
senting the number of individuals, getting the disease (new cases) between times n – 
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and n,

In+ = Sn
(
 – e–αIn

)
, Sn+ = Sne–αIn + β , ()

where β is the number of births between n and n + , all added to the susceptible class
and assumed to be constant over time. So, the difference equation Sn+ = Sne–αIn + β is
just a ‘conservation of mass’ for the susceptible class. The first part In+ = Sn( – e–αIn )
of the model is just like Nicholson-Bailey; it comes from assuming that each susceptible
escapes infectionwith probability e–αIn ; themore infectives there are, the lower the chance
of escape. The model ignores mortality in the susceptible class, on the assumption that
everyone gets the disease while young, and mortality occurs later in life.
Many ecological competition models are governed by differential and difference equa-

tions. We refer to [, ] and the references therein for some interesting results, related to
the global character and local asymptotic stability. As it is pointed out in [, ], the discrete
time models governed by difference equations are more appropriate than the continuous
ones when the populations are of non-overlapping generations. The study of the discrete-
timemodels described by difference equations has now been given a great attention, since
these models are more reasonable than the continuous time models when populations
have non-overlapping generations. Discrete-time models give rise to more efficient com-
putationalmodels for numerical simulations and also show rich dynamics compared to the
continuous ones. In recent years, many papers have been published on the mathematical
models of biology that discussed the system of difference equations generated from the
associated system of differential equations as well as the associated numerical methods.
Mathematical models of epidemics have created a major area of research interest during
the last few decades. Recently, theory on the effects of parasites on host population dy-
namics has receivedmuch attention and epidemiological models are often used to explain
empirical results for host-parasites interaction system. For more details of such biological
models, one can see [–].
More precisely, our aim is to investigate local asymptotic stability of unique positive

equilibrium point, the global asymptotic character of equilibrium point, and the rate of
convergence of positive solutions of system (). For more results for the systems of differ-
ence equations, we refer the reader to [–].

2 Boundedness and persistence
The following theorem shows that every positive solution {(In,Sn)}∞n= of system () is
bounded and persists.

Theorem  Every positive solution {(In,Sn)} of system () is bounded and persists.

Proof Let {(In,Sn)}∞n= be any positive solution of system (). It is easy to see that Sn ≥ β and
In ≤ β for all n = , , . . . . Then, it follows that In+ ≥ β(–e–αβ ) and Sn+ ≤ Sne–αβ(–e–αβ ) +β .
Consider the following difference equation

zn+ = zne–αβ(–e–αβ ) + β
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with initial condition z ≥ S, then its solution is given by

zn = zAn– +
β( –An)
 –A

,

where A = e–αβ(–e–αβ ). Since e–αβ(–e–αβ ) < , therefore,

zn → β

 – e–αβ(–e–αβ )
as n→ ∞.

Then, by comparison we have Sn ≤ zn ≤ β

–e–αβ(–e–αβ )
. Hence,

β
(
 – e–αβ

) ≤ In ≤ β

and

β ≤ Sn ≤ β

 – e–αβ(–e–αβ )

for all n = , , . . . . �

Theorem  Let {(In,Sn)} be a positive solution of the system (). Then, [β( – e–αβ),β] ×
[β , β

–e–αβ(–e–αβ )
] is an invariant set for system ().

Proof Let {(In,Sn)} be a positive solution of system () with initial conditions I ∈ I = [β(–
e–αβ ),β] and S ∈ J = [β , β

–e–αβ(–e–αβ )
]. Then, from system ()

I = S
(
 – e–αI

) ≥ β
(
 – e–αβ

)
and

I = S
(
 – e–αI

) ≤ β

 – e–αβ(–e–αβ )

(
 – e–αβ(–e–αβ )) = β .

Similarly, we have

S = Se–αI + β ≥ βe–αβ + β = β
(
 + e–αβ

) ≥ β

and

S = Se–αI + β ≤ β

 – e–αβ(–e–αβ )
e–αβ(–e–αβ ) + β ≤ β

 – e–αβ(–e–αβ )
.

Hence, I ∈ I and S ∈ J . Suppose that the result is true for n = k > , i.e., Ik ∈ I and Sk ∈ J .
Then from system (), one can easily obtain

β
(
 – e–αβ

) ≤ Ik+ ≤ β

and

β ≤ Sk+ ≤ β

 – e–αβ(–e–αβ )
.

Hence, the proof is completed. �
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3 Linearized stability
Let us consider two-dimensional discrete dynamical system of the form

xn+ = f (xn, yn),

yn+ = g(xn, yn), n = , , . . . ,
()

where f : I × J → I and g : I × J → J are continuously differentiable functions and I , J
are some intervals of real numbers. Furthermore, a solution {(xn, yn)}∞n= of system () is
uniquely determined by initial conditions (x, y) ∈ I × J . An equilibrium point of () is a
point (x̄, ȳ) that satisfies

x̄ = f (x̄, ȳ),

ȳ = g(x̄, ȳ).

Let (x̄, ȳ) be an equilibrium point of a map F(x, y) = (f (x, y), g(x, y)), where f and g are con-
tinuously differentiable functions at (x̄, ȳ). The linearized system of () about the equilib-
rium point (x̄, ȳ) is

Xn+ = F(Xn) = FJXn,

where Xn =
( xn
yn

)
and FJ is Jacobian matrix of system () about the equilibrium point (x̄, ȳ).

Let (Ī, S̄) be the equilibrium point of system (), then one has

Ī = S̄
(
 – e–αĪ), S̄ = S̄e–αĪ + β .

Then, it follows that (Ī, S̄) = (β , β

–e–αβ ) is the unique positive equilibrium point of sys-
tem (). Moreover, the Jacobian matrix FJ (Ī, S̄) of system () about the equilibrium point
(Ī, S̄) is given by

FJ (Ī, S̄) =

(
αS̄e–αĪ  – e–αĪ

–αS̄e–αĪ e–αĪ

)
.

The characteristic polynomial of FJ (Ī, S̄) is given by

P(λ) = λ – e–αĪ( + αS̄)λ + αS̄e–αĪ . ()

Lemma  [] Consider the second-degree polynomial equation

λ + pλ + q = , ()

where p and q are real numbers. Then, the necessary and sufficient condition for both roots
of Equation () to lie inside the open disk |λ| <  is

|p| <  + q < .

http://www.advancesindifferenceequations.com/content/2013/1/263


Din et al. Advances in Difference Equations 2013, 2013:263 Page 5 of 13
http://www.advancesindifferenceequations.com/content/2013/1/263

Lemma  [] Assume that Xn+ = F(Xn), n = , , , . . . , is a system of difference equations
and X̄ is the fixed point of F . If all eigenvalues of the Jacobianmatrix JF about X̄ lie inside the
open unit disk |λ| < , then X̄ is locally asymptotically stable. If one of them has a modulus
greater than one, then X̄ is unstable.

Theorem  Assume that eαβ ( + αβ) < +eαβ

 . Then, the unique positive equilibrium point
(Ī, S̄) = (β , β

–e–αβ ) is locally asymptotically stable.

Proof The characteristic polynomial of FJ (Ī, S̄) about positive equilibrium point (β , β

–eαβ )
is given by

P(λ) = λ –
(
e–αβ +

e–αβαβ

 – e–αβ

)
λ +

e–αβαβ

 – e–αβ
. ()

Let

f (λ) = λ, g(λ) =
(
e–αβ +

e–αβαβ

 – e–αβ

)
λ –

e–αβαβ

 – e–αβ
.

Assume that eαβ ( + αβ) < +eαβ

 , and |λ| = . Then, one has

∣∣g(λ)∣∣ ≤
(
e–αβ +

e–αβαβ

 – e–αβ

)
+

e–αβαβ

 – e–αβ

= e–αβ +
e–αβαβ

 – e–αβ

=
eαβ + αβeαβ – 

eαβ – eαβ
< .

Then, by Rouche’s theorem f (λ) and f (λ)–g(λ) have the same number of zeroes in an open
unit disk |λ| < . Hence, both roots

λ =
 – eαβ – eαβαβ +

√
–eαβ (–eαβ + eαβ )αβ + ( – eαβ – eαβαβ)

(eαβ – eαβ )

and

λ =
– + eαβ + eαβαβ +

√
–eαβ (–eαβ + eαβ )αβ + ( – eαβ – eαβαβ)

(–eαβ + eαβ )

of () lie in an open disk |λ| < , and it follows from Lemma  that the equilibrium point
(β , β

–e–αβ ) is locally asymptotically stable. �

The following theorem shows the necessary and sufficient condition for the local asymp-
totic stability of a unique positive equilibrium point of system ().

Theorem The unique positive equilibrium point (Ī, S̄) = (β , β

–e–αβ ) of system () is locally
asymptotically stable if and only if +αβ

eαβ < .
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Proof Let p = –(e–αβ + e–αβαβ

–e–αβ ) and q = e–αβαβ

–e–αβ , then () can be written as

P(λ) = λ + pλ + q.

Then, |p| = e–αβ + e–αβαβ

–e–αβ <  + e–αβαβ

–e–αβ =  + q and  + q =  + e–αβαβ

–e–αβ <  if and only if +αβ

eαβ < .
Hence, from Lemma , the unique positive equilibrium point (Ī, S̄) = (β , β

–e–αβ ) of system
() is locally asymptotically stable if and only if +αβ

eαβ < . �

4 Global character
The following lemma is similar to Theorem . of [].

Lemma  Let I = [a,b] and J = [c,d] be real intervals, and let f : I× J → I and g : I× J → J
be continuous functions.Consider system ()with initial conditions (x, y) ∈ I× J . Suppose
that the following statements are true:

(i) f (x, y) is non-decreasing in both arguments.
(ii) g(x, y) is non-increasing in x, and non-decreasing in y.
(iii) If (m,M,m,M) ∈ I × J is a solution of the system

m = f (m,m), M = f (M,M),

m = g(M,m), M = g(m,M)

such that m =M, andm =M.
Then, there exists exactly one equilibrium point (x̄, ȳ) of the system () such that

limn→∞(xn, yn) = (x̄, ȳ).

Theorem  The unique positive equilibrium point (Ī, S̄) = (β , β

–e–αβ ) of system () is a
global attractor.

Proof Let f (x, y) = y( – e–αx), and g(x, y) = ye–αx + β . Then, it is easy to see that f (x, y)
is non-decreasing in both x and y. Moreover, g(x, y) is non-increasing in x, and non-
decreasing in y. Let (m,M,m,M) be a solution of the system

m = f (m,m), M = f (M,M),

m = g(M,m), M = g(m,M).

Then, one has

m =m
(
 – e–αm

)
, M =M

(
 – e–αM

)
()

and

m =me–αM + β , M =Me–αm + β . ()

From system (), one has

e–αm =
m –m

m
, e–αM =

M –M

M
. ()
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From (), one has

e–αm =
M – β

M
, e–αM =

m – β

m
. ()

Furthermore, assuming as in the proof of Theorem . of [], it suffices to suppose that

m ≤ M, m ≤ M.

Using the fact that e–αm ≥ e–αM , one has from () and ()

m –m

m
≥ m – β

m
,

M – β

M
≥ M –M

M
. ()

It follows from () thatm ≤ β ≤ M. Then, () implies that

M –m =
β(e–αm – e–αM )

( – e–αm )( – e–αM )
. ()

Using () in (), we obtain

|M –m| = β

∣∣∣∣M

M
–
m

m

∣∣∣∣.
Following the same technique as in the proof of Proposition . of [], one has |M –m| ≤
β

M
|M –m|, i.e., ( – β

M
)|M –m| ≤ . Thus,m =M and, similarly, one can show that

m =M. Hence, from Lemma , the equilibrium point (β , β

–e–αβ ) of system () is a global
attractor. �

Lemma  The unique positive equilibrium point (Ī, S̄) = (β , β

–eαβ ) of system () is globally
asymptotically stable if and only if +αβ

eαβ < .

Proof The proof follows from Theorem  and Theorem . �

5 Rate of convergence
In this section, we determine the rate of convergence of a solution that converges to the
unique positive equilibrium point of system (). Similar methods can be found in []
and [].
The following result gives the rate of convergence of solutions of a system of difference

equations

Xn+ =
(
A + B(n)

)
Xn, ()

where Xn is anm-dimensional vector, A ∈ Cm×m is a constant matrix, and B : Z+ → Cm×m

is a matrix function satisfying

∥∥B(n)∥∥ →  ()

as n→ ∞, where ‖ · ‖ denotes any matrix norm, which is associated with the vector norm

∥∥(x, y)∥∥ =
√
x + y.
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Proposition  (Perron’s theorem []) Suppose that condition () holds. If Xn is a solution
of (), then either Xn =  for all large n or

ρ = lim
n→∞

(‖Xn‖
)/n ()

exists and is equal to the modulus of one the eigenvalues of matrix A.

Proposition  [] Suppose that condition () holds. If Xn is a solution of (), then either
Xn =  for all large n or

ρ = lim
n→∞

‖Xn+‖
‖Xn‖ ()

exists and is equal to the modulus of one the eigenvalues of matrix A.

Let {(In,Sn)} be any solution of system () such that limn→∞ In = Ī , and limn→∞ Sn = S̄.
To find the error terms, one has from system ()

In+ – Ī = Sn
(
 – e–αIn

)
– S̄

(
 – e–αĪ)

and

Sn+ – S̄ = Sne–αIn – S̄e–αĪ .

Let en = In – Ī , and let en = Sn – S̄, then one has

en+ = anen + bnen

and

en+ = cnen + dnen,

where

an =
S̄(e–αĪ – e–αIn )

In – Ī
, bn =  – e–αIn ,

cn =
S̄(e–αIn – e–αĪ)

In – Ī
, dn = e–αIn .

Moreover,

lim
n→∞an = αS̄e–αĪ , lim

n→∞bn =  – e–αĪ ,

lim
n→∞ cn = –αS̄e–αĪ , lim

n→∞dn = e–αĪ .

Now, the limiting system of error terms can be written as
[
en+
en+

]
=

[
αS̄e–αĪ  – e–αĪ

–αS̄e–αĪ e–αĪ

][
en
en

]
,

which is similar to linearized system of () about the equilibrium point (Ī, S̄).
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Using Proposition , one has the following result.

Theorem Assume that {(In,Sn)} is a positive solution of system () such that limn→∞ In =
Ī and limn→∞ Sn = S̄, where (Ī, S̄) is a unique positive equilibrium point of (). Then, the
error vector en =

( en
en

)
of every solution of () satisfies both of the following asymptotic rela-

tions

lim
n→∞

(‖en‖) 
n =

∣∣λ,FJ (Ī, S̄)
∣∣, lim

n→∞
‖en+‖
‖en‖ =

∣∣λ,FJ (Ī, S̄)
∣∣,

where λ,FJ (Ī, S̄) are the characteristic roots of the Jacobian matrix FJ (Ī, S̄).

6 Examples
In order to verify our theoretical results and to support our theoretical discussions, we
consider several interesting numerical examples in this section. These examples represent
different types of qualitative behavior of solutions to the system of nonlinear difference
equations (). All plots in this section are drawn with Mathematica.

Example  Let α = ., and let β = .. Then, system () can be written as

xn+ = yn
(
 – e–.xn

)
, yn+ = yne–.xn + ., ()

with initial conditions x = ., y = .
In this case, the unique equilibrium point (β , β

–e–αβ ) = (., .). Moreover, in Fig-
ure , the plot of xn is shown in Figure (a), the plot of yn is shown in Figure (b), and an
attractor of system () is shown in Figure (c). The basic reproductive number of system
() is R = +αβ

eαβ = . < .

(a) Plot of xn for system (). (b) Plot of yn for system ().

(c) An attractor of system ().

Figure 1 Plots for system (16).
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(a) Plot of xn for system (). (b) Plot of yn for system ().

(c) An attractor of system ().

Figure 2 Plots for system (17).

Example  Let α = ., and let β = .. Then, system () can be written as

xn+ = yn
(
 – e–.xn

)
, yn+ = yne–.xn + ., ()

with initial conditions x = ., y = ..
In this case, the unique equilibrium point (β , β

–e–αβ ) = (., .). Moreover, in Fig-
ure , the plot of xn is shown in Figure (a), the plot of yn is shown in Figure (b), and an
attractor of system () is shown in Figure (c). The basic reproductive number of system
() is R = +αβ

eαβ = . < .

Example  Let α = ., and let β = .. Then, system () can be written as

xn+ = yn
(
 – e–.xn

)
, yn+ = yne–.xn + ., ()

with initial conditions x = ., y = ..
In this case, the unique equilibrium point (β , β

–e–αβ ) = (., .). Moreover, in Fig-
ure , the plot of xn is shown in Figure (a), the plot of yn is shown in Figure (b), and an
attractor of system () is shown in Figure (c). The basic reproductive number of system
() is R = +αβ

eαβ = . < .

Example  Let α = ., and let β = .. Then, system () can be written as

xn+ = yn
(
 – e–.xn

)
, yn+ = yne–.xn + ., ()

with the initial conditions x = ., y = .
In this case, the unique equilibrium point (β , β

–e–αβ ) = (., .). Moreover, in Fig-
ure , the plot of xn is shown in Figure (a), the plot of yn is shown in Figure (b), and an
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(a) Plot of xn for system (). (b) Plot of yn for system ().

(c) An attractor of system ().

Figure 3 Plots for system (18).

(a) Plot of xn for system (). (b) Plot of yn for system ().

(c) An attractor of system ().

Figure 4 Plots for system (19).
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(a) Plot of xn for system (). (b) Plot of yn for system ().

(c) An attractor of system ().

Figure 5 Plots for system (20).

attractor of the system () is shown in Figure (c). The basic reproductive number of
system () is R = +αβ

eαβ = . < .

Example  Let α = ., and let β = . Then, system () can be written as

xn+ = yn
(
 – e–.xn

)
, yn+ = yne–.xn + , ()

with the initial conditions x = , y = ,.
In this case, the unique equilibrium point (β , β

–e–αβ ) = (, ,). Moreover, in Fig-
ure , the plot of xn is shown in Figure (a), the plot of yn is shown in Figure (b), and an
attractor of system () is shown in Figure (c). The basic reproductive number of system
() is R = +αβ

eαβ = . < .

Conclusion and future work
This work is related to the qualitative behavior of an exponential discrete-time host-
pathogenmodel for spread of an infectious disease with permanent immunity.We proved
that system () has a unique positive equilibrium point, which is locally asymptotically sta-
ble. The main objective of dynamical systems theory is to predict the global behavior of a
system based on the knowledge of its present state. An approach to this problem consists
of determining the possible global behaviors of the system and determining which initial
conditions lead to these long-term behaviors. In the paper, a general result for global char-
acter for such type of systems is proved. Due to the simplicity of our SI-type model, we
have carried out a systematic local and global stability analysis of it. The most important
finding here is that the unique positive equilibrium point can be a global asymptotic at-
tractor for model (). Moreover, the rate convergence of positive solutions has also been
investigated. In suchmodels, there is a threshold parameter that might tell whether a pop-
ulation will increase or die out, or whether an infectious disease will persist or die out
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within a population. This parameter is commonly known as the basic reproductive num-
ber and is denoted by R. In epidemiology, this number R is defined as the number of
newly infected individual, produced by a single infected individual in its period of infec-
tivity. In case of system (), the basic reproductive number is given by R = +αβ

eαβ . From
our investigations, it is obvious that the unique positive equilibrium point of system () is
globally asymptotically stable if R < , and unstable if R > . Some numerical examples
are provided to support our theoretical results. These examples are experimental verifi-
cations of theoretical discussions. The qualitative behavior of the general model, where
there is host mortality at some constant rate, will be our next aim to study.
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