Kangtunyakarn Fixed Point Theory and Applications 2012, 2012:30 ® Fixed Point Theory and Applications
http://www fixedpointtheoryandapplications.com/content/2012/1/30 a SpringerOpen Journal

RESEARCH Open Access

Hybrid iterative scheme for a generalized
equilibrium problems, variational inequality
problems and fixed point problem of a finite
family of k-strictly pseudocontractive mappings

Atid Kangtunyakarn

Correspondence:
beawrock@hotmail.com
Department of Mathematics,
Faculty of Science, King Mongkut's
Institute of Technology
Ladkrabang, Bangkok 10520,
Thailand

@ Springer

Abstract

In this article, by using the S-mapping and hybrid method we prove a strong
convergence theorem for finding a common element of the set of fixed point
problems of a finite family of krstrictly pseudocontractive mappings and the set of
generalized equilibrium defined by Ceng et al, which is a solution of two sets of
variational inequality problems. Moreover, by using our main result we have a strong
convergence theorem for finding a common element of the set of fixed point
problems of a finite family of k-strictly pseudocontractive mappings and the set of
solution of a finite family of generalized equilibrium defined by Ceng et al,, which is
a solution of a finite family of variational inequality problems.
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1 Introduction
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. A
mapping T of H into itself is called nonexpansive if | Tx - Ty|| < |x - y|| for all x, y € H.
We denote by F(T) the set of fixed points of T (i.e., F(T) = {x € H: Tx = x}) Goebel and
Kirk [1] showed that F(T) is always closed convex, and also nonempty provided 7 has a
bounded trajectory.

Recall the mapping 7 is said to be k-strict pseudo-contration if there exist k € [0, 1)
such that

|Tx =Ty < ||x = y||* + | (1 = T)x = (I = T)y|*Vx,y € D(T). (1.1)

Note that the class of k-strict pseudo-contractions strictly includes the class of nonex-
pansive mappings, that is 7' is nonexpansive if and only if T is O-strict pseudo-contractive.
If k = 1, T is said to be pseudo-contraction mapping. T is strong pseudo-contraction if
there exists a positive constant A € (0, 1) such that 7'+ Al is pseudo-contraction. In a real
Hilbert space H (1.1) is equivalent to

1—
(e—Tpx—y) < Jx—y[* = [0=Dx—(-Ty|* vxyeD(D). (2

© 2012 Kangtunyakarn; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:beawrock@hotmail.com
http://creativecommons.org/licenses/by/2.0

Kangtunyakarn Fixed Point Theory and Applications 2012, 2012:30 Page 2 of 21
http://www fixedpointtheoryandapplications.com/content/2012/1/30

T is pseudo-contraction if and only if
(Tx =Ty, x—y) < [x—y|* VxyeD(T).

T is strong pseudo-contraction if there exists a positive constant A € (0, 1)
(Tx —Ty,x— y) <(1- A)||x — y||2 Vx,y € D(T)

The class of x-strict pseudo-contractions falls into the one between classes of nonex-
pansive mappings and pseudo-contraction mappings and class of strong pseudo-con-
traction mappings is independent of the class of k-strict pseudo-contraction.

A mapping A of C into H is called inverse-strongly monotone, see [2] if there exists a
positive real number o such that

[x =y, Ax — Ay) > a|Ax — Ay|?

forall x, ye C.
The equilibrium problem for G is to determine its equilibrium points, i.e., the set

EP(G)={xe G:G(x,y) =0, VyeC} (1.3)

Given a mapping 7: C — H, let G(x, y) = (Tx, y - x) for all x, y € C. Then, z € EP
(F) if and only if (Tz, y - z) 2 0 for all y € C, i.e., z is a solution of the variational
inequality. Let A : C — H be a nonlinear mapping. The variational inequality problem
is to find a u € C such that

(v—u,Au) >0 (1.4)

for all v e C. The set of solutions of the variational inequality is denoted by VI(C, A).

In 2005, Combettes and Hirstoaga [3] introduced some iterative schemes of finding
the best approximation to the initial data when EP(G) is nonempty and proved strong
convergence theorem.

Also in [3] Combettes and Hiratoaga, following [4] define S, : H — C by

S/(x)={ze C:G(zy) + i (y—zz—x)=0vy eC}. (1.5)

hey proved that under suitable hypotheses G, S, is single-valued and firmly nonex-
pansive with F(S,) = EP(G).

Numerous problems in physics, optimization, and economics reduce to find a ele-
ment of EP(G) (see, e.g., [5-16])

Let CB(H) be the family of all nonempty closed bounded subsets of H and H(.,.) be
the Hausdorff metric on CB(H) defined as

H(U,V) = max {sup d(u, V), supd(U, v)} , VYU,V e CB(H),
uel veV

where d(u, V) = inf,c v d(u, v), d(U, v) = inf,_ ;; d(u, v), and d(u, v) = ||lu - v|.

Let C be a nonempty closed convex subset of H. Let ¢ : C — R be a real-valued
function, T': C — CB(H) a multivalued mapping and ® : H x C x C — R an equili-
brium-like function, that is, ®(w, u, v) + ®(w, v, u) = 0 for all (w, u, v) € Hx C x C
which satisfies the following conditions with respect to the multivalued map 7: C —

CB(H).
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(H1) For each fixed ve C, (o, u) » ®(w, u, v) is an upper semicontinuous func-
tion from H x C to R, that is, for (w, u) € H x C, whenever w, — @ and u,, — u as
n—> oo,

lim sup ®(wp, uy, v) < &(w, u, v);
n— o0
(H2) For each fixed (w, v) e H x C, u » ®(w, u, v) is a concave function;
(H3) For each fixed (w, u) € H x C, v = ®(w, u, v) is a convex function.

In 2009, Ceng et al. [17] introduced the following generalized equilibrium problem
(GEP) as follows:

Find u € C and w € T(u) such that

D(w,u,v) +9(v) —e(u) >0, VveC. (1.6)

(GEP) {
The set of such solutions u € C of (GEP) is denote by (GEP),(®, ¢).
In the case of ¢ =0 and ®(w, u, v) = G(u, v), then (GEP)s(®, ¢) is denoted by EP(G).
By using Nadler’s theorem they introduced the following algorithm:
Let x; € Cand w; € T(x,), there exists sequences {w,} € H and {x,}, {&,,} € C such
that

Wy € T(xn)/ ”wn — Wn41 ” = <1 + i) H(T(x,,), T(xn+1)),

1.7
D (wy, un, v) + (V) —(un) +  (Un —Xp, v —uy) >0, YueC, (1.7)
T,

n
Xne1 = nf (%) + (1 —otn)Sup, n=1,2,....

They proved a strong convergence theorem of the sequence {x,} generated by (1.7)
as follows:

Theorem 1.1. (See [17]) Let C be a nonempty, bounded, closed, and convex subset of a
real Hilbert space H and let ¢ : C — R be a lower semicontinuous and convex functional.
Let T : C — CB(H) be H -Lipschitz continuous with constant 4, ® : H x C x C — R be an
equilibrium-like function satisfying (H1)-(H3) and S be a nonexpansive mapping of C into
itself such that F(S) N (GEP)s(®, ¢) # 9. Let f be a contraction of C into itself and let {x,},
{w,}, and {u,} be sequences generated by (1.7), where {a,} € [0,1] and {r,} € (0, ) satisfy

. ) o
lim,_, sootn = 0, E el ap = 00, E el lotns1 — an| < 00,

. . o
lim inf,,_, oo, > Oand Zn=1 [The1 — Tnl| < 00.
If there exists a constant A > 0 such that
2
D(w, Ty, (11), T, (x2)) + (w2, Ty (x2), Ty (%1)) < =4[ Ty, (11) = Ty (x2) |~ (1.8)

forall (ry, r) € Ex E,(x,x0) € Cx Candw;e T(x;), i = 1,2, where Z = {r,:n > 1},
then for X = Pr(s)ncep), (o,0)f (X), there exists W € T(X) such that (X, W) is a solution of
(GEP) and

Xy — X, Wy — wand u, — X asn — oo.

In 2011, Kangtunyakarn [18] proved the following theorem for strict pseudocontrac-
tive mapping in Hilbert space by using hybrid method as follows:
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Theorem 1.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let F
and G be bifunctions from C x C into R satisfying (A1)-(Ay), respectively. Let A : C —
H be a o-inverse strongly monotone mapping and let B : C — H be a B-inverse strongly
monotone mapping. Let T : C — C be a k-strict pseudo-contraction mapping with
F = F(T) NEP(F,A)NEP(G,B) #@. Let {x,} be a sequence generated by x, € C = C;

and

1
F(up, u) + (AxXn, u —up) + (U —up un —xp) >0, YueC,
Tn

1
G(vn, v) + (Bxn, v —vn) +  (V—Un, ¥y —Xn) 20, Vv eC,
N

n
Zy = Spliy + (1 — 8p)vy (1.9)
Yn = nzy + (1 — o) T2y
Cu1=1{2€Cp: |lyn—2| < llxn —2l},

Xni1 = Pc,,,x1, VYn=>1,

where {an}i2, is sequence in [0,1], r, € [a, b] € (0, 2a) and s, € [c¢, d] < (0, 23)

satisfy the following condition:

(i) lim 8, =8 € (0,1)
n—oo

([0<k<ay,<1, Vn>1

Then x,, converges strongly to Prx; .

From motivation of (1.7) and (1.9), we define the following algorithm as follows:

Algorithm 1.3. Let T}, i = 1,2,...,N, be k;-pseudo contraction mappings of C into itself and
Kk = max{r; : i = 1,2,..., N} and let S, be the S-mappings generated by T, T, ..., Ty and

oM, ) where a].(") = ( q"j,a;’j,a;’j) eIxIxLI=[01],a} +a) +al =1

N n,

and « <a§a?'i,ot;’i§b< lfOFdlljzl,Z,...,N—l,K <c<af” < l,Kfot;l'Nfd< 1,K§a2’j§e< 1f07‘

allj=12,.,N. Let x, € C=C, and w} € T(x1),w} € D(x1) , there exists sequence

{wi}, {w?} € H and {x,}, {u,}, (v} € C such that

) M), 1)

w2, < (1 ; ) H(D(x), D)),

D, (w,ll,un,u) +o1(u) —o1(un) + Uy —xp,u—u,) >0, VuecC,
In (1.10)
1 .

Dy (W2, v, v) + @2 (V) — @2 () + S (Vg —xp,v—1,) >0, VYveC,
n

zn = 8pPc(I — AMA)uy + (1 — 8,)Pc(I — nB)vy,

Yn = QnZp + (1 - an)Snznr

Cu1={z€Cp: |yn—2| < llxu—2zll},

x1, Vn>1.

wh e T(xn), |wl—wh,| < <1 +
1

w2 € D(xp), ;
1

Xni1 = Pc

n+1

where D, T : C — CB(H) are H -Lipschitz continuous with constant p1, p,, respec-
tively, @1, @, : H x C x C — R are equilibrium-like functions satisfying (H1)-(H3), A :

Page 4 of 21
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C — H is a a-inverse strongly monotone mapping and B : C — H is a B-inverse
strongly monotone mapping.

In this article, we prove under some control conditions on {J,}, {¢,}, {s,.}, and {r,}
that the sequence {x,} generated by (1.7) converges strongly to Pgx; where

F= ﬂﬁlF(Ti) N (GEP)S(q)l,(pl) N (GEP)S(q)z,gl)z) N F(Gl) mF(Gz), Gl, Gz :C— Care
defined by Gy(x) = Pc(x - AAx), Go(x) = Pc(x - nBx), Vx € C and Ppx; is solution of
the following system of variational inequality:

(Ax*, x —x*) > 0,
(Bx*, x —x*) > 0.

2 Preliminaries

In this section, we need the following lemmas and definition to prove our main result.
Let C be a nonempty closed convex subset of H. Then for any x € H, there exists a

unique nearest point in C, denoted by Pcx, such that

lx — Pexll < |x—y|, forallyeC.

The following lemma is a property of Pc.
Lemma 2.1. (See [19].) Given x € H and y € C. Then Pcx = y if and only if there
holds the inequality

(x—ypy—2)>0 VzeC.

Lemma 2.2. (See [20]) Let C be a closed convex subset of a strictly convex Banach
space E. Let {T,, : n € N} be a sequence of nonexpansive mappings on C. Suppose
N2 F(Tn) is nonempty. Let {A,} be a sequence of positive numbers with Y oy Ap = 1.
Then a mapping S on C defined by

oo
S@) = AaTux

for x € C is well defined, nonexpansive and F(S) = N2, F(Ty) hold.

The following lemma is well known.

Lemma 2.3. Let H be Hilbert space, C be a nonempty closed convex subset of H. Let
T : C — C be a k-strictly pseudo-contractive, then the fixed point set F(T) of T is closed
and convex so that the projection Prcry is well defined.

In 2009, Kangtunyakarn and Suantai [21] introduced the S-mapping generated by a
finite family of x-strictly pseudo contractive mappings and real numbers as follows:
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Definition 2.1. Let C be a nonempty convex subset of real Hilbert space. Let {Ti}ﬁ 1
be a finite family of k;-strict pseudo-contractions of C into itself. For each j = 1,2,..., N,
let o = (ajl,aé,aé) eI xIx1I whereIe [0,1] and afl +aj2 +aé =1 . We define the
mapping S : C — C as follows:

Up=1

u,; = a%TlUO + (x%UO +a§1
U = i ToUy + a3 Uy + 31
Us = ;T3 + o3 Uy + 031

(2.1)

Un_1 = allvflTN,lUN,z + (XIZ\’71UN,7_ + ag\FlI
S=UN= (xll\]TNUN,l + (xlz\IUN,l +a§11.

This mapping is called S-mapping generated by T3, ..., Ty and o, 0y, ..., O

Lemma 2.4. (See [21]) Let C be a nonempty closed convex subset of real Hilbert
space. Let {T;}Y | be a finite family of k-strict pseudo contraction mapping of C into C
with (N, F(T;) #0 and r = max{x; : i = 1, 2,..., N} and let o; = (ajl,ajz,aé) elxIxI,
j=123,..N, where I=[0,1], &, +o + oy = 1, &}, &, € (k,1) for all j = 1,2,..,N - 1
and ol € (k, 1], € [k, 1) oé € [k, 1) forall j = 1,2,.., N. Let S be the mapping gen-
erated by T,...,Ty and o, 0ty,...,0n. Then F(S) = ﬂiN:IF(Ti) and S is a nonexpansive

mapping.

Lemma 2.5. (See [22]) Let C be a nonempty closed convex subset of a real Hilbert
space H and S : C — C be a self-mapping of C. If S is a k-strict pseudo-contraction
mapping, then S satisfies the Lipschitz condition

1+«
Jss—syl = 7

|x—y|, vx yeC.
We prove the following lemma by using the concept of the S-mapping as follows:
Lemma 2.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T, i = 1,2,..,.N be k; strictly pseudo-contraction mappings of C into itself and r = max

{k; : i = 1,2,...,N} and let a].(”) = (a;l/j, a;’j, a;/j), Qj = (o:jl,ocjz,aé) el xIxI, where

I=10,1], a’f’j +a;’j +a;’j =1 and 0/1 +otj2 +O[é =1 such that oti"'j — ozf €[0,1] as n
—> o fori=1,3andj=123,.., N. Foreveryne N, let S and S,, be the S-mapping

generated by Ty, Ts,..., Ty and oy, 0y,...0n and Ty, Ts,..., Ty and ag"),ag‘) ...,oz[(\?),

respectively. Then lim,,_,.. ||S,x, - Sx,|| = O for every bounded sequence {x,} in C.
Proof. Let {x,} be bounded sequence in C, U; and U, ; be generated by T1,T5,...,Tn

and of1,0,...,00n and T4,T5,...,Tx and ag”),ag") ,oc[(\?): respectively. For each n € N,

Joee e

we have
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H Un,1%n — Urxy H

n1 1 1 1
Hal Tixy + (1 — ) )xg —ayTixy — (1 — aq)x,
1 1
Haq’ T1xy — o) %y — o] Tix, + i x,

@t = )T, = (@ = o,

,1 1
a' = ol | 17120 =

and for k € {2, 3,.., N}, by using Lemma 2.5, we obtain

nk nk nk
Hun,kxn — Upxp || = HO[1 TpUpp—1%n + oty Up —1Xn + 3" Xp

= a;l'k HTkun,k—lxn — T Up—1xn H +

<

k k k
—o{ Ty Up—1xy — a5 Up—1Xy — a3Xy

nk nk k k
Hal TpUnp—1%n + a3 %y — a1 T U1y — a3xy

nk k
+oy" Upe—1%n — ay Up— 1%

HO(T’kaU,,,k,lxn — a?’kaUk,lx,, + Ol?’ka Up_1xp

k nk k nk k
—a TiUp—1 Xy + (05" — a3)xn + 0y Up—1Xn — oty Up—1Xy

+(a§’k — o), + a;”k U je_1Xn — kU1 %y

a?’k(TkUn,k—lxn — T Up—1xn) + (O{?'k - a?)TkUk—lxn

nk nk k
”0{1 (ThUp =10 — TieUp—1xn) + (o)™ — 7)) T U1

+ (a3’k — af)x, + a;"kUn,k,lxn — a;’kUk,lxn

nk k
+oty U1y — a3 Up—1xy

nk nk k
oy (TkUn,k—lxn - TkUk—lxn) + (Oll - Oll)TkUk—lxn

k ke
+ (a;' - 0‘§)~’Cn + 0’; (Un,k—lxn - Uk—lxn)

+(ag’k — ag)Uk_lxn

+

+

ot?’k ” TieUp —1%n — TelUp—1%n H +

o

o

nk
3

nk
2

K k
ot — o] 1Tl

n,

- Olg‘ llxn Il + azrk H Unj—1%0 — Uk—lan

k
— o] U1

ke k
ot — o] Tl

,k ke ke
+ 5" || Unjm1%n — U1 | + ‘1 . A A
k k ke k
+af + o | [[Up—1xll + |5 — aj| llx,]l
¥ 1+k« k
ot L. [ Un 120 — Up—12n]| + |}
k nk k nk
—Qy 1T Up—1 x4 1l +0, ”Un,k—lxn — Up—1xn “ + (‘al — o
ke k ke k
o — o) MUl + [ — o] )
1+x % X
L WU = Ui + o — o Tl
1—«
k k
* [T o120 — Up—1xa || + (‘0‘1 —af
— K
K k K k
o — o) MUl + [ = o] )

1

+

2
—x Hun,k—lxn - Uk—lan +

nk

o3

,k
o — ok | (Tl + 1 Uil

k
— o (11l + Tl

(2.2)

(2.3)
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By (2.2) and (2.3), we have

IS — Sxull = | Unnxn — Unia||
2 N
= . H UpN—1%n — Un—1% || + |af N — aﬁ\” (ITNUN—122]l
N N
+ | Un—1%a ) + |05 — o3 ’ (IUN— 1%l + l1%al))

nN—1
1

2 2
=, . (1 . [T N—2%n — U2 + |ex

N-1
—a 7 (1T Uy

,N—1 N-1
N — a1 (U3l + )

+ | Un—2%nl) +

+

LN N
o = | (1T Un-all + [ Un 1)

# o™ = | (Ul + )
2 Y a 2 \NF
-(,2,) M =+ 30 (2 )
j=N-1
e (I + U ])
N 2 \N- o
> (1—K> RE —“3‘(\|Uj—1an+llan)
j=N—-1

2 N-1
<(,2,) It tin] -

2 \NF
(:20) e

2
1—«

M=

J

z %
|

. N—j . .
e (I + U+ 32 7 ) [ = o (U] + )

T
~

N

2 N-1 2 N—j .

n,

=(1_K) a{"l—a}‘l\Tlxn—xn||+Z(1_K> o)
=2

—a | (T U] + [ U]

N 2 N—j
205
j=2

This together with the assumption a?'] a{: asn—> o (i=1,3,j=12,., N), we

o = o] (|Ur] + ).

can conclude that

lim ||S,x, — Sx,|| = 0.
n—-oo

Lemma 2.7. (See [23]) Let E be a uniformly convex Banach space, C be a nonempty
closed convex subset of E and S : C — C be a nonexpansive mapping. Then I - S is
demi-closed at zero.

Lemma 2.8. (See [24]) Let C be a closed convex subset of H. Let {x,} be a sequence in
H and u e H. Let q = Pcu, if {x,} is such the w(x,) © C and satisfy the condition

lxn —ull < u—q|, ¥YneN.

Then x, — q, as n — .
Definition 2.2. A multivalued map T : C — CB(H) is say to be H -Lipschitz contin-
uous if there exists a constant y > 0 such that
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H(T(w)—Tw)) <plu—vll, YuveC,

where H(.,.) is the Hausdorff metric on CB(H).
Lemma 2.9. (Nadler’s theorem, see [25]) Let (X, || - ||) be a normed vector space and
H(.,.) is the Hausdorff metric on CB(H). If U, V € CB(X), then for any given € > 0 and

u e U, there exists v e V such that
lu—v| < (1+e)H(U,V).

Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¢: C > H
be a real-valued function, T': C — CB(H) be a multivalued map and ® : H x C x C —>
R be an equilibrium-like function.

To solve the GEP, let us assume that the equilibrium-like function ® : H x C x C —>
R satisfies the following conditions with respect to the multivalued map 7: C — CB
(H).

(H1) For each fixed ve C, (v, u) » ®(w, u, v) is an upper semicontinuous function
from H x C to R, that is, for (w, u) € H x C, whenever w,, - w and u,, —> u as n —

00,

lim sup ®(wy, uy, v) < &(w, u, v);
n—oo

(H2) For each fixed (w, v) e H x C, u » ®(w, u, v) is a concave function;

(H3) For each fixed (w, u) € H x C, v > ®(w, u, v) is a convex function.

Theorem 2.10. (See [17]) Let C be a nonempty, bounded, closed, and convex subset of
a real Hilbert space H, and let ¢ : C — R be a lower semicontinuous and convex func-
tional. Let T : C — CB(H) be H -Lipschitz continuous with constant y, and ® : H x C
x C — R be an equilibrium-like function satisfying (H1)-(H3). Let r > 0 be a constant.
For each x € C, take w, € T(x) arbitrarily and define a mapping T, : C — C as fol-
lows:

Tr(x) = {ueC:@(wx,u,v)+g0(v)—<p(u)+ 1(u—x,v—u) >0, VveC}.

Then, there hold the following:
(a) T, is single-valued,
(b) T, is firmly nonexpansive (that is, for any u, ve C, |Tu - Ty|* < (T, u-T,v, u-v))
if
O(wy, Tr(x1), Tr(x2)) + @ (w2, T;(x2), Tr(x1)) < 0,

for all (x1, x5) € Cx Cand all w; e T(x), i = 1,2;

(c) K(T)) = (GEP){(®, ¢)

(d) (GEP){(D, ¢) is closed and convex.

Lemma 2.11. (See [26]) Let C be a nonempty closed convex subset of a Hilbert space
H and let G : C — C be defined by

G(x) = Pc(x — MAx), VxeC,

with VA > 0. Then x* € VI (C, A) if and only if x* € F(G).

Page 9 of 21
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3 Main results
In this section, we prove a strong convergence theorem of the sequence {x,} generated
by (1.10) to Prx;.

Theorem 3.1. Let C be a nonempty bounded, closed, and convex subset of Hilbert space
H and let ¢y, ¢, : be a lower semicontinuous and convex function. Let D, T : C — CB(H)
be H -Lipschitz continuous with constant py, o, respectively, ®1,0,: H x C x C— R be
equilibrium-like functions satisfying (H1) - (H3). Let A: C — H be a a-inverse strongly
monotone mapping and B : C — H be a [-inverse strongly monotone mapping, let T}, i =
1,2,..,N, be ki-pseudo contraction mappings of C into itself and r = max{x,; :i = 1,2,..., N}
with F = N, F(T;) N (GEP)(®1, ¢1) N (GEP)s(®2, 92) N F(G1) N F(Gy), where Gy, G
C — C are defined by Gi(x) Pc(x-AAx), Go(x) = Pc(x-nBx), Vx € C. Let S,, be the S-map-
pings generated by Ty, Ts... TN and ag”), ag"), - a[(\?) where

(n) J

(all,az ,as ) elxIxLI=][0,1]a} +052]+Ol3 =1 and v <a<a oy <b<1
forall j=1,2,.,N—1,« <c§a§"N§ 1,k <ay N<cd<n, K < a, "< o<1 forallj
= 1,2,..,N and let {x,}, {u,}, (v}, {wl} , and {w?} be sequences generated by (1.10), where
{0} is a sequence in [0,1], r,, A € [a, b] € (0, 2¢0) and s, N € [¢, d] € (0, 2B), for every n
€ N and suppose the following conditions hold:

(i) Jirgoan =8€(0,1),

@Ho<k<a,<1,Vn=1,
(m)Z <ooZ

(iv) There exists A1, Ao such that

n+1] n+1] n,;j

— 03

0‘1

3D yeeey.

[ @1 (wi, Tr, (1), Tr, (%2)) + @1 (wh, T, (x2), Tr, (31)) < =2 || T (x1) — T, (x2)||2ami (3.1)

O (w3, Ty, (1), Ty, (%2)) + @2 (w3, Ty, (%2), T, (1)) < —a| Ty, (1) = Ty, (22) |
Sor all (r,m) €O x 0O, (s1,5) € Ex &, w} € T(x;) and w} € D(x;) , for i = 1,2

where © = {r,:n > 1} and E = {s,, : n = 1}. Then {x,} converges strongly to Prx; which
is a solution of (3.2):

(3.2)

(Ax*, x —x*) >0,
(Bx*, x —x*) > 0.

Proof. From (3.1) for every r € ©, we have

@1 (wy, Tr(x1), Tr(x2)) + @1 (w), Tr(x2), Tr(x1)) < = || Tr(x1) — TT(xZ)HZ <0, (3.3

for all (), ;) € Cx Cand w! € T(x;), i=1,2.

Similarly, for every s € E, we have
O, (w}, Ty(x1), Te(x2)) + P2 (w3, Tu(x2), To(w1)) < —A2 || Te(r) — Ti(xa) |* < 0.3:4)

for all (%1, ;) € C x C and w? € D(x;), i=1,2. From (3.3) and (3.4), we have The-
orem 2.10 hold.

It is easy to see that / - A A and I - B are nonexpansive mapping. Indeed, since A
is a a-inverse strongly monotone mapping with A € (0, 2¢x), we have
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(1= 2rA)x — (I - /\A)y”2 = ||x —y — A(Ax — Ay) ”2

= |x—y|* = 2006 — y, Ax — Ap) + 22| Ax — Ay
||x - y||2 - 2aAHAx —Ay”2 + 22 ||Ax —Ay”2
|x = y|* + 200 — 20) [ Ax — Ay|)?

] IA

IA

= y]*.

Thus (I - AA) is nonexpansive, so is - NB. Since

1
D1 (wy, tn, u) + @1 (1) — @1 (un) + . (Up — Xn,u —uy) >0, YuecC,
n

and Theorem 2.10, we have u, = T;,x,. Since

1
O, (w2, vy, v) + 92(v) — @2 (vn) + s (Vg — Xy, v — 1) >0, YveC,
n

and Theorem 2.10, we have v, = Ty, x,. Let z € [, again by Theorem 2.10, we have
z2="T,z=Tsz=Pc(I — AMA)z = Pc(I — nB)z. From nonexpansiveness of
{T,}, {15}, {I — AA}, and {I - nB}, we have

lzn — 2zl = [[8a(Pc(I — 2A)uy — 2) + (1 — 84)(Pc(I — nB)v, — 2)|
< 8n |Pc(I — AA)uy — 2| + (1 = 8,) | Pc(I — nB)v, — 2|,

(3.5)
<& ||Trnxn - Z” + (1 - 57,) ||Tsnx,, —Z”
< llxn —zll..
By (3.5), we have
Hy,, — z” = ||a,,(z,, —2)+ (1 — ay)(Snzn — 2) ”
< anllzg — zll + (1 — o) ISnzn — zl| (3.6)
< llzn — zll < llxn —zll .

Next, we show that C, is closed and convex for every n € N. It is obvious that C,, is

closed. In fact, we know that, for ze C,,
[vn —2|| < llxa —2zll is equivalent to [y, — x, ||2 +2(Yn — X, Xy —2) < 0.
So, we have that Vz;, z, € C, and ¢ € (0,1), it follows that

[y = n]|* + 200 — %, %0 — (21 + (1 = D)22))
= t(2(yn — Xp, Xp — 21) + ”yn — X, ”2)
+ (1= 0)(2(yn — Xn, Xn — 22) + |y — Xn ”2)

SOI

then, we have C, is convex. By Theorem 2.10 and Lemma 2.3, we conclude that [ is
closed and convex. This implies that Py is well defined. Next, we show that F c C,
for every n € N. Putting g € [, by (3.6), it is easy to see that g € C,, then we have

F c C, forall » e N. Since x, = Pc,x1, for every w e C,, we have

%0 — 1]l < llw—x1]l, VneN. 3.7)
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In particular, we have
lln — X1l < [IPFx1 — 21 (3.8)

Since C is bounded, we have {x,} is bounded, so are {u,}, {v,,}, {z,}, and {y,}. Since

Xne1 = Pc,,, %1 € Cpu1 C Gy and xy, = P, x1, we have

n+1

0 < (X1 — X, Xn — Xns1)

(X1 — Xn, Xy — X1 + X1 — Xne1)

2
=M% = %117 + [l — w1 [ llx1 = Xl

IA

it implies that
lxn — 11l < X1 — 211l -
Hence, we have lim,,_,.. |x, - x1|| exists. Since

2 2
Iy — Xns1 117 = llxn — X1 + X1 — Xna1 |l
= [y — X112 + 2(x0 — X1, X1 — Xny1) + X1 — X1 1
2 2
=[x — X117+ 2(xX0 — X1, X1 — X + X — Xpa1) + X1 — Xnar |l (3'9)
2 2 2
=[xy — 21117 — 2llxn — x1 17 + 2{xn — X1, X0 — Xpa1) + (101 — Xpa ||

< llxy = Xpa1 12 = llxn — 21112,
it implies that
Jim (lxn — %pe1 |l = 0. (3.10)
Since xp.1 = Pc,,, X1 € Cys1, we have
lyn = xner || < %0 — xnatll,
by (3.10), we have

lim ||y,, — Xps1 || =0. (3.11)

=00
Since

[vn = %n]| < |yn — %01 | + %01 — xall s
by (3.10) and (3.11), we have

lim [y, — x| = 0. (3.12)
Next, we show that

lim 1z, — Suzall = 0. (3.13)
By definition of y,, we have

Yn —2n = (1 — on)(Snzn — 2n). (3.14)
Claim that

Jim iz, — x|l = 0. (3.15)
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Putting M,, = Pc(I - AA)u,, and N,, = P(I - nB)v,, we have
lzn — xnll < 8n 1My — Xull + (1 = 8) [Ny — x4l - (3.16)
Let z € F. Since T;, is firmly nonexpansive mapping and T;,x, = u,, we have

lz — unll® = | T2 — T |

=< (Trnz - Trnxnzz — Xp)

1
2 2 2
= 2(IIun—ZII + [l — 217 = llup — x4119).

Hence
2 2 2
lun —zll= < llxn — 2ll7 — llun — x411°. (3.17)

Since T;, is firmly nonexpansive mapping and T, x, = v, by using the same method
as (3.17), we have

llvn = 2l1% < 1l — 2l1* = l[va — xal1*. (3.18)
By nonexpansiveness of S,, and (3.17), (3.18), we have

2
lyn — 2| < llzn —2l?
< nllun — Z||2 + (1 - 871)”1/71 - Z||2
< 8n(llxn _Z”2 — llun — xn”z) + (1= 68,)(llxn — Z”2 — [lvn — xn”z)

= |lx, — Z”2 — Snlluy — xn”2 — (1 =8n)llve — xn||2r

it implies that

Sullttn — xull? < 12w — 201> = [[yn — 2> = (1 = 8a) llvw — xull?
2
< llxy — Z||2 - Hyn - ZH
< (lxn — 2l + lyn — 2||) %0 = yu »
by (3.12) and condition (i), we have
lim [[uy — xull = 0. (3.19)
n—o0
By using the same method as (3.19), we have
lim [[vy — xall = 0. (3.20)
n—oo
Since
[y = 2|* < emllzn — 212 + (1 — ) llzn — 2]
< anllxn — 21> + (1 — ) llzn — 217 (3.21)
< apllxn — Z”2 + (1 —ay) (an”Mn - Z||2
+(1 = 8)IN, —zlI%)
Claim that

lim ||Au, — Az| = lim ||Bv,, — Bz| = 0.
n—oo n—oo
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By nonexpansiveness of Pc, we have

lvn —2|* < lIzn — 2112
< 8| Pe(l = AA)uy — Pe(I — 1A)z|”
+ (1= 8,) | Pe(I = nB)va — Pe(I — nB)z|
< 8[| (1 = AA)un — (I = 2A)|* + (1 = 8,) | (I — nB)ww — (I — nB)z|
< 8| (un = Aty = (2 = 242) "+ (1 = 8) | (v — nBv = (= = nB2) |
= 8l (un = 2) = A(Aun = A2)|” + (1 = 8) | (vn — 2) = n(Bva — BS) |
= Sa(lltn — 2017 + A2 | Aty — Azl|? — 22 (1 — 2, Atty — A2))
+(1=8.)(llva — 2|I* + n*||Bv, — Bz||* — 2n(v, — 2, By, — Bz))
< 8n(llun — 2l + A2 || Auy, — Az|? — 22a||Auy, — Az||?)
+ (1 = 8,)(llva — 2lI* + n*| Buy — Bzl|> — 25B||Bv, — Bz|*)
< Sn(llxn — 21 + A(h — 2a) | Auy — Az|)?)
+ (1 = 8n)(llxn — 2lI* + n(n — 28)11Bv, — Bzl|?)
= [lxy — 2% = 8,12 — A)||Auy, — Az|)?
— (1= 8,)n(28 — n)IIBv, — Bz||?,

it follows that

80k (20 — ) Aty — Az|) < llxn — 212 = yn — 2|
- (1 - 5n)77(25 - n)llen - anz (3.22)
< (Ilxn — 2l + [yn = 2||) [yn = xa ],

by conditions (i), (if), A € (0, 2c) and (3.12), it implies that
lim ||Au, — Az| = 0. (3.23)
n—o0

By using the same method as (3.23), we have

lim ||Bv, — Bz|| = 0. (3.24)
n— o0

By nonexpansiveness of T, , we have
1My — 2I12 = | Pe(un — AAun) — Po(z — 1A2) |
< {(un — AMuy) — (z — AAz), M, — z)
- ;(|| (ty — MAUy) — (2 — 2AZ)||” + 1My — 2I1> = || (14 — 2Auy)
—(z— AA2) — (M, — 2)|)
< (= 21+ My = 217 = [ — My) = 2(Auy — 42)])

1 2
= U Tn = T2 ™ 1My — 20 = 1ty — Mo

+ 20Uy — My, Auy, — Az) — A2 || Au, — Az|)?)
1
< 2(”xn _Z”2 + 1My, _Z”2 — |luy _1\/171”2 + 2X(uy, — My, Au, — Az)

— A?||Au, — Az||?).
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Hence, we have

1M, — Z”z < |lx, _z”z — llu, — Mn||2 + 20 (uy, — My, Au,, — Az) (3 25)
— A2 ||Au, — Az

By using the same method as (3.25), we have
INy = 211> < ll%n = 201> = llvg = Niall> + 20ty — Ni, B — Bz) — n°||Bv, — Bz||>.  (3.26)
Substitute (3.25) and (3.26) in (3.21), we have

lvn = 2|* < allon — 212 + (1 = o) (8ull My — 2112
+ (1= 8,)INy —2II*)
< anlln — zlI? + (1 — atn) (8nllxn — 2l = llun — My )12
+ 20 (U — My, Au, — Az) — 22| Au, —Az\lz) + (1 +8,)(llxn —z|? = |lvu = Nu|I?
+20(vy — Ny, B, — Bz) — n*||Bv, — Bz||?))
< anlln — 201 + (1 — ) (Snllxn — 212 — Sullun — My?
+ 2000 {1y — My, Atty = A2) + (1 = 8n) 1 = 2]1% = (1 = 8) [vw — Nall®
+2n(1 = 8,) (v — Ny, Bvy — Bz))
anllxn — 2% + (1 — o) (% — 201> — Spllun — My )12
+ 2080 (tn — My, Atty — Az) — (1 = 8,) [l — Ny 1?
+20)(1 = 8,){vn — N, Buy — Bz))
anlln — 2lI7 + (1 — o) llxn — 2012 — (1 — &tn)8nllttn — Ml
+2(1 = @) A8y (Uy — My, Auy — Az) — (1 — 8,)(1 — ) [lvw — Ny 12
+2n(1 = 8,)(1 — an) vy — Ny, Bv, — Bz)
lls — 211> — (1 — atn)Snlln — My 12
+2(1 = ) A8y (tty — My, Atty — AZ) — (1 = 8,)(1 = atn)l|vm — N2
+2n(1 = 8,)(1 — an)(vy — Ny, Bvy, — Bz),

it implies that

2
(1 = @n)8ullttn — Mull> < llxa — 2lI° — ||yn — 2]
+2(1 = an)A8n{un — My, Aty — A2) — (1 = 8,)(1 — a) lvw — NIl
+2n(1 —68,)(1 — o) {vy — Ny, Bvy, — Bz)

(3.27)
< (llxn — zll + ”Yn _Z”) HYn — Xn |
+2(1 — an)A8n Uy — My, Auy, — Az)
+2n(1 —68,)(1 — an)(vy — Ny, Bvy, — Bz),
from (3.12), (3.23), (3.24) and conditions (i) and (ii), we have
lim |ju, — M,]| = 0. (3.28)
n—oo
By using the same method as (3.28), we have
lim vy — Nall = 0. (3.29)

By (3.19) and (3.28), we have

lim [|M, — x,] = 0. (3.30)
n—oo
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By (3.20) and (3.29), we have

lim [Ny — x|l = 0. (3.31)
n—-oo

From (3.16), (3.30) and (3.31), we have

JL“JO lzn — xull = 0. (3.32)
From (3.12) and (3.32), we have

lim |y, — 2| = 0. (3.33)

n—o00

From (3.14), (3.33) and condition (i), we have (3.13).
Let a € (0,1), by (3.10) there exists Ny € N such

1Xne1 — xall < a”, Vi > No. (3.34)

Thus, for any number #, p € N, p > 0, we have

n+p—1 n+p—1 a
Jtnep =2l = D2 Moer — el = 3o af < 7 (3.35)
k=n k=n

Since a € (0,1), we have lim,,_,.. a” = 0. By (3.35), we have {x,} is Cauchy sequence
in Hilbert space. Let lim,,_,.. x,, = x*. Since T : C — CB(H) be 7 -Lipschitz continuous
with constant y#; and (1.10), we have

1 1
||wrll — wrlHl ” < (1 + n)H(T(xn)/ T(xn+1)) =< (1 + n)ﬂl lXne1 — Xnll - (3.36)

By (3.34) and for any number 1, p € N, p > 0, we have

n+p—1
< 2 i —
k=n

n+p—1

1
> (1 + k) w1 e — el

k=n
n+p—1

Z Zmak
k=n

n

<2 a4
= Mll—a

1 1

mep — Wy

(3.37)

IA

Since a € (0,1), we have lim,,_,.. a” = 0. By (3.37), we have {w!} is cauchy sequence
in Hilbert space. Let limy_.oow) = wi. Next, we will prove that w} € T(x*). Since

w! € T(xy), we have
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d(w,ll,T(x*)) < rnax{d(w,ll,T(x*)), sup d(T(xn),wl)}

wy €T (x*)

Smax{ sup d(z, T(x*)), sup d(T(xy) w1)

z€T(xy,) wi €T (x*)

} (3.38)

= H(T(x,), T(x*)).
Since
d(w}, T(x*)) < [lw} —wy| +d(w,, T(x"))

< [wi = wy || + H(T(xn), T(x"))

= Jwi =l + e o =7

’

by lim,,_,.. x, = x* and lim,_, w} = w}, we have d(w}, T(x*)) = 0, this implies that
wi € T(x*). By using the same method as above, we have lim,_..ow? = w5 and
w} € D(x*).

Let w(x,) be the set of all weakly w-limit of {x,}. We shall show that w(x,) C F.
Since {x,} is bounded, then w(x,) #0. Let ¢ € w(x,), there exists a subsequence {xy,}
of {x,} converse weakly to g. Since {x,} is a Cauchy sequence in Hilbert space, we have
Xp, = 4 as {i - oo}, it implies that x,, > g as n — <. Since lim,,_, .. x,, = x* and
lim,_,.. x, = g, we have x* = g, then we have w} € T(q) and w5 € D(q). From (3.19)
and x,, > g as n — oo, we have u,, —> g as n — oo.

By uy = Ty, x, we have

1
D1 (wy, tn, u) + @1 (1) — @1 () + L —xn,u— ) 20, VueC,
n

by (3.19), (H1) and lower semicontinuity of ¢;, we have

D (wi, g u)+o1(u) —e1(q) =0, VueC,
then, we have

q € (GEP)s(®1, ¢1). (3.39)
By using the same method as (3.39), we have

g € (GEP)s(®2, ¢2). (3.40)

Since K<a§o{;l'], ag']§b<1 for all j=1,2..., N—l,K<c§a;"N§1,Kfag'N§d<1

and x < ag'j <e <1 forallj=1,2,., N. Without loss of generality, we may assume

o0’ > oy € (k1) asi > o > s e (k1) and oy —> o) € (k1) as i > 2, Vj =
1,2,..,.N.

Let S be S-mapping generated by 77, T, .., Tn. and Bi, Ba,...0n, where
Bi = (ajl, aé,aé). By Lemma 2.4, we have S is nonexpansive and F(S) = N, F(T;).
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By Lemma 2.6, we have

lim || Sz, — Szn, | = 0. (3.41)

k—00

By (3.13) and (3.41), we have
nll)rglo Hzni — Sz, H =0. (3.42)

Since %n; = ¢ as i — oo and (3.32), we have Zn, = ¢ as i — c. By Zn, = q as i — oo,
(3.42) and Lemma 2.7, we have

qe gl E(T). (3.43)

Next, we define Q : C — C by

Qx = 8Pc(I — AA)x + (1 — 8)Pc(I — nB)x. (3.44)
By Lemma 2.2, we have

F(Q) = F(Pc(I — 2A)) N (Pc(I — nB)) = F(G1) NF(G,). (3.45)

From (3.44), we have

1Quxn — xnll < 11Qun — znll + llzn — xnll

< |8Pc(I = 2A)xy + (1 = 8)Pc(I — nB)xy
—8uPc(I = AA)un — (1 = 8,)Pc(I — nB)vy I+]l 20 — x|

= [8Pc(I — AA)xy — 8Pc(I — AA)uy + 8Pc(I — AA)uy
+(1=8)Pc(I = nB)xy — (1 = 8)Pc(I — nB)vn + (1 — 8)Pc(I — nB)vy
—8nPc(I — AA)uy — (1 — 8,)Pc(I — nB)vy l1+] 25 — xu]|

< 8 |Pe(l = 2A)xn — P — AA)uy | + 18 — 8ul [ Pe(l — AA)uy
+(1=8) || Pc(I — nB)xy — Pc(I — nB)vu | +|(1 — 8) — (1 — 84)| | Pc(I — nB)va|
+ [lzn — xnll

< 8 ltn = ttnll + 18 = 8l [|Pc(l — AA)un |
+ (1= 8) llxn — vall + 185 — 81| Pc(I — nB)va||

+ llzn — Xl
by condition (i), (3.19), (3.20), and (3.32), we have

nli)rg) 1Qxy — xall = 0. (3.40)

Since Xn; = 4 as i — o and Lemma 2.7, we have
g € F(Q) = F(G1) NF(Gy). (3.47)

From (3.39), (3.40), (3.43), and (3.47), we have g € ['. Hence w(x,) C F. Hence, by
Lemma 2.8 and (3.8), it implies that {x,} converges strongly to Pgx;. This completes
the proof.

Remark 3.2. If we take T =D, w,} = w? u, = v,¥n € N, ®; = ®, and ¢; = ¢, then
the Algorithm 1.3 reduces to the following algorithm:
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w € T(x), |wh —wl, | < (1 + ;) H (T(xn), T(Xns1)) s

D (wp, tn, u) + @1 (1) — @1 (Un) +  (Uy — X, u — uy) > 0,Yu € C,
n
2 = Po(I — AA)uy, (3.48)
Yn = OnZp + (1 - an)snznr
Cps1 = {Z € Cyyr : HYn _Z” < |lxy _Z”} ,
Xne1 = Pc,, %1, Vn > 1,

under the same conditions of Theorem 3.1, we have the sequence {x,} generated by
algorithm (3.48) converges strongly to Prx; where

F = NN, F(T;) N (GEP)s(®1, ¢1) N F(G;), where G, : C — C is defined by G ,(x) = Pc
(x - AA x) Vx € C and Pgx; is a solution of (Ax*, x -x*) > 0

4 Application
In this section, by using our main result we prove a strong convergence theorem of the
sequence {x,} generated by Algorithm 4.1 as follows:

Algorithm 4.1. Let T}, i = 1,2,....N, be kipseudo contraction mappings of C into itself and
Kk = max{k; : i = 1,2,..., N} and let S,, be the S-mappings generated by Ty, Ts,..., T and

a§"),a§"),..., M where oz( ) _ (o¢1 ,052 ,a3]) elxIxII=]01]« +oc?_] +o¢3] =1
and K<asa7",a§"§b<1f0r all j=1,2,.,N-1k <c< a;”N <1« 505;1"\] <d<1,« Sa;w <e<l1
forallj=12,.,N. Let x, € C=Cy and w’i € T'(x1), there exists sequence {w;} € H and

{xa}, (Ui} CC, Vi=1,2,..,N such that

wi, € T'(xn),

wh — i, | < (1 + rll) H (T(xn), T(xne1)) Vi=1,2,...,N.

. . 1 . .
; (wh, ul, u) + @i(u) — @i(ul) + " (Uf —xp,u—ul) >0, VueC, Vi=1,2,.,N.

2 = 2ty SiPe(l — MiAd)ul, where SN s =1, (4.1)

Yn = 0pZp + (1 - O‘n)snznr
Cn+1 = {Z € Cn+l . “}’n —Z” =< ”xn _Z“}/
Xn+1 = Pc,,, %1, Vn > 1.

n+1

The following result can be obtained from Theorem 3.1. We, therefore, omit the proof.

Theorem 4.2. Let C be a nonempty bounded, closed, and convex subset of Hilbert space H
and let ¢; : be a lower semicontinuous and convex function, for all i = 1,2,.., N. Let T : C
— CB(H) be H -Lipschitz continuous with constant y;, ®;: H x C x C — R be equili-
brium-like functions satisfying (H1)-(H3) and A; : C — H be a o,-inverse strongly monotone
mappings Vi = 1,2,..., N and let T}, i = 1,2,..,N, be k;-pseudo contraction mappings of C into
itself and k = max{r; : i = 1,2,..., N} with [ = ﬂ E(TY) ﬂ <1 (GEP)s(®i, ¢i) ﬂ 1 F(Gy),
where G; : C — C is defined by G(x) = Pc(x - LAx) Vx e C, i =12,.,N. Let S, be the S-

mappings  generated by Ti, T,.., Tyn and otg )’agn)’ ---'0‘1(\?) where
a].(")=<a1],a2],a3)eIxIxII—[O o) +a) +ai =1 and
Kk<a< o/f’j, ag’j <b<1 for all

N

j=1,2,. , N-lrx<c<d"N <1 <afN <d<1,« gag/j§e< 1 forallj=12,.,

N and let {x,}, {ul}, {w'}, Vi=1,2,.. N, be sequences generated by (4.1), where {a.,} is
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a sequence in [0,1], ', A; € [a,b] C (0,22)Vi=1,2,...,N and ne N and suppose the fol-

lowing conditions hold:

(i) lim 8! =8"€(0,1), Vi=1,2,..,N
n—oo
@Ho<k<a,<1,Vn=1,
o0 1i .
(i) Y ’a’f* T — o
n=1

(iv) There exists A', Vi = 1,2,..., N such that

n+l,j n;j

a; " —a3’| <oo, forallje {1,2,.,N}.

o0
<00, ).
n=1

. . . 2
@, (w;, T, (11), Ty, (xz)) L, (w;, T, (12), Ty (xl)) < —x’ . (42

T, (1) = Ty (32)|

for all i=1,2,..,N, (r’i,ré) € O x O, w;; eTi(x) for k = 12 where

e = {r;, n > 1}. Then {x,} converges strongly to Prx, and Pgx, is a solutions of (4.3):

(A", x—x*) > 0,Vi=1,2,..,N. (4.3)
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