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Abstract

Introduction: Measurements from upper limb rehabilitation robots could guide therapy progression, if a robotic
assessment’s measurement error was small enough to detect changes occurring on a time scale of a few days.
To guide this determination, this study evaluated the smallest real differences of robotic measures, and of clinical
outcome assessments predicted from these measures.

Methods: A total of nine older chronic stroke survivors took part in 12-week study with an upper-limb end-effector
robot. Fourteen robotic measures were extracted, and used to predict Fugl-Meyer Assessment-Upper Extremity (FMA-
UE) and Action Research Arm Test (ARAT) scores using multilinear regression. Smallest real differences and intraclass
correlation coefficients were computed for the robotic measures and predicted clinical outcomes, using data from seven
baseline sessions.

Results: Smallest real differences of robotic measures ranged from 8.8% to 26.9% of the available range. Smallest real
differences of predicted clinical assessments varied widely depending on the regression model (1.3 to 36.2 for FMA-UE,
1.8 to 59.7 for ARAT), and were not strongly related to a model’s predictive performance or to the smallest real
differences of the model inputs. Models with acceptable predictive performance as well as low smallest real differences
were identified.

Conclusions: Smallest real difference evaluations suggest that using robotic assessments to guide therapy progression is
feasible.
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including the Fugl-Meyer Assessment,*” the Action

Research Arm Test (ARAT),® the Functional
Independence Measure,'”!"  the Motor Power
Score,!? and the Motor Status Score.®” The models

used to establish these relationships have included
linear regression or correlation analyses using individ-
ual  metrics,***'3  multiple  linear  regression
approaches™”'*'* as well as nonlinear models.'*"?

A limitation of manual clinical assessments is that
they require time and trained personnel to perform, lim-
iting the frequency of administration. In contrast, if a
robotic device is being used for therapy multiple times
per week and can quantify function, more frequent data
points could be obtained. A natural question is then
whether these frequent measurements can be used to
guide day-to-day adjustments in the therapeutic plan.
In this manner, training could be progressed in a data-
driven and individualized manner, potentially optimizing
the use of the available training time and improving out-
comes. In order for the robotic measurements to be used
in this way, they must be able to detect very small
changes, so that the gradual changes that occur on a
time scale of days instead of weeks or months can be
meaningfully analyzed. To date, studies have focused
primarily on the ability of rehabilitation robots to esti-

mate function at isolated time points (valid-
ity),¥ 10121316 or to examine changes on the scale of
several weeks (responsiveness or recovery pro-

files).! 14151718 The ability of the robotic measures to
detect fine changes has received much less attention.
The smallest real difference (SRD), also known as
the minimum detectable difference (MDD), can be
used to quantify the smallest change that a method of
measurement can reliably detect, given the expected
variability or error in the measurements.'® In contrast
to test-retest reliability measures such as the intraclass
correlation coefficient (ICC), the SRD can provide a
practical guideline on how to interpret scores obtained
on two different days. For example, if the scores
obtained from a rehabilitation robot on two different
days differ by an amount greater than the SRD, that
change could be deemed to contain meaningful infor-
mation about the patient’s progression. From that per-
spective, if a robot-derived measure’s SRD is greater
than the changes that could be expected clinically
over a short timespan (e.g. a few days), then we could
conclude that basing day-to-day therapy adjustments
on these scores is not appropriate. Conversely, if a
robot-derived measure has a very low SRD, it would
be of interest to understand how these frequent meas-
urements could be incorporated into therapy planning.
We have evaluated SRD values for robot-based
assessments, based on a retrospective analysis of data
collected during an interventional clinical study in a
population of older adult stroke survivors, using an

end-effector upper limb rehabilitation robot. We fur-
ther sought to understand the relationship between a
regression model’s SRD and its performance in predict-
ing clinical outcome measures. Our focus here is not on
introducing new robot-based assessments, but rather
on evaluating the SRDs of techniques that have previ-
ously been used in the literature.

Methods
Study participants

Nine older adult stroke survivors took part in this
study. Inclusion criteria were to be 60 years old or
older, at least 6 months post stroke, have completed
all outpatient stroke rehabilitation, to have an upper
limb recovery between stages 3 to 5 (out of 7) for the
arm on the Chedoke McMaster Stroke Assessment
(CMSA) Stages of Motor Impairment,” and to be
able to attend up to four visits per week at the clinic.
Participants were excluded if they had significant upper
limb neurological or musculoskeletal conditions other
than stroke, or shoulder subluxation or significant pain
that limited active mobility treatment. Demographic
and stroke history information are provided in Table 1.

Additionally, six healthy volunteers without a his-
tory of stroke (40.84+/—15.7 years, two males), each
took part in a single session with the robot in order
to provide normative data that could be used to char-
acterize the range of expected values for each robot-
derived measure (see methods below).

Data collection

This study used data from an interventional study
whose outcomes will be reported elsewhere. In brief,
it was a pilot study designed as a multiple single-subject
research study. The study consisted of a baseline phase,
an intervention phase, and a second baseline phase
(i.e. intervention withdrawal or maintenance phase).
The intervention phase consisted of eight weeks of
training with an upper limb robotic rehabilitation
device in an outpatient clinic, in a therapy program
that combined therapy goal setting and ““homework.”
The robot used was an end-effector table-top robot,
described in Lu et al.?! and Huq et al.**** and shown
in Figure 1(a). Figure 1(b) provides a timeline of the
sessions involved in the study and shows which time
points were used for the analysis presented here.

The outcome measures of upper limb function used
in the analysis presented here were the motor compo-
nent of the Fugl-Meyer Assessment — Upper Extremity
(FMA-UE)** and the ARAT.»

All sessions with the robot began with a calibration
phase lasting approximately 10min and consisting of
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Table 1. Participant demographics and stroke history.

Age at Time post-stroke
Participant  enrollment Affected CMSA Hand (at enrollment, Relevant medical
number (years) Sex side stage dominance years and months)  Type of stroke history
| 63 F R 3 (arm) R (pre-stroke) 10 years L ischemic stroke Occasional osteoarthritis
2 (hand) L (now, for with secondary joint pain (knee), cata-
most tasks) extension ract surgeries both
eyes, anxiety/depres-
sion managed with
medications
2 68 M L 3 (@am) R 20 years L ischemic stroke, basilar  Myocardial infarct
2 (hand) artery
3 62 M L 3 (m) R 9 months R hemorrhagic stroke, None relevant
3 (hand) near R based ganglia
extending into exter-
nal capsule and corona
radiata
4 73 M L 3 (arm) L (pre-stroke) 5 years, | month R ischemic stroke, motor  Atrial fibrillation; hypo-

4 (hand) area tension; fatigue; hyper-
lipidemia;
hypothyroidism

5 60 M L 3 (arm) L (pre-stroke) 10 years, R ischemic stroke, loca-  Atrial fibrillation, diabetes

4 (hand) R (now) 10 months tion unknown

6 65 M L 3 (m) R 2 years R hemorrhagic stroke, Hypocholesterolemia,
3 (hand) basal ganglia and hypothyroidism
lentiform
7 67 F L 3 (hand) R 23 years Scans did not indicate Lateral epicondylitis in R,
3 (arm) type of stroke; mul- anxiety managed with
tiple area cortex medications
involvement
8 72 M R 3 (hand) R 10 months L hemorrhagic stroke Hypercholestrolemia;
3 (arm) hypertension; diabetes
9 65 F L 3 (hand) R Ist stroke |4 years Scans revealed 100% None relevant
4 (arm) 2nd stroke 4 years occlusion of carotid

artery

CMSA: Chedoke McMaster Stoke Assessment.
Note: Scale | =flaccid paralysis to 7 =normal.

the following tasks: (1) Active range of motion: The
participant was asked to move the robot arm around
the workspace, tracing out the largest area they could
reach on their own using their affected upper extremity.
They were reminded by a research therapist or therapy
assistant not to use compensatory motions like leaning
forward or rotating at the trunk to complete the task.
(2) Forward reaching: A sequence of 10 targets was
presented to the participant. These targets alternate in
location between directly forward (toward the robot)
and directly backward (toward the patient) in the hori-
zontal workspace from the start position. The targets
were all located at the edge of the participant’s active
range of motion in the given direction, as recorded
from the active range of motion task. This forward
motion task was performed first without any resistance
from the robot, then again with the robot exerting a
damping (resistive) force against the direction of
motion. The resistance gradually decreased as the task

progressed. (3) Passive range of motion: The therapist
used hand over hand guidance on the participant’s
hand to demonstrate the range of motion of the par-
ticipant’s upper extremity in the horizontal workspace.
Again, care was taken to avoid compensatory
movement.

During the intervention phase of the study, the cali-
bration phase was followed by target exercises, config-
ured by the therapist specifically for each participant,
their abilities, and their movement goals. A sequence of
targets was placed within the participant’s range of
motion, and haptic feedback (assistance or resistance)
was optionally applied for each target. The partici-
pant’s task was to reach each target in succession,
using the affected upper extremity. As the participant
gains strength, stability, and range of motion, the ther-
apist altered the amount of haptic feedback given and
the location of targets within the workspace to progres-
sively extend the range of motion. After the target
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(b) Time points used to develop predictive models

----------------------------------- 1B e e A 5
| Day2 Day8 Dayis Day 20 Day 43 Day 57 Day71 Day78 ;
‘ FMA  FMA FMA FMA FMA FMA FMA FMA FMA |
! ARAT ARAT  ARAT ARAT |
; e dommmmnene R

| aseinez ] Folowsp |

s 8 robot sessions | 28 robot sessions 6 robot sessions 4 weeks later

| over2weeks |

v
Time points used for SRD calculations

over 8 weeks + goal setting and homework

over 2 weeks

Figure 1. (a) The end-effector robot used in this study. (b) Timeline of the interventional study from which the data for this analysis
were drawn. The predictive models were developed using nine time points at which both clinical and robotic measures were available
(top red dotted box). The SRDs of the individual robotic measures as well as of the predictive model outputs were computed based
on the initial baseline phase, which provided repeated measures during a period in which the participants were expected to be stable
(bottom red dotted box). Note that the robot sessions during the baseline periods were for assessment only, while the robot sessions
during the intervention period included both treatment and assessment.

exercises, participants also performed game-based exer-
cises for part of each session. The game-based exercises
did not include targets that could be used to segment
the upper extremity movements.

All study procedures were approved by the
Institutional Review Board of the University Health
Network in Toronto, Ontario, Canada.

Robotic measures

A total of 14 measures were extracted from the robot
sensor data: 8 from kinematics and 6 from range-of-
motion (ROM). As this was a retrospective analysis of
data from an interventional study, we focused on meas-
ures that can be extracted from therapy sessions, rather
than requiring dedicated assessment procedures.*®

For kinematic information, only portions of the ses-
sion where the robot was not providing any haptic force
(assistance or resistance) were used. Most of these
measurements were taken from a calibration exercise

at the beginning of the session (forward reaching with-
out resistance, responsible for tailoring the subsequent
exercises to the speed and smoothness of user move-
ment), because it was always performed with no
force applied. However, forceless segments from any
target-based exercise were used. Discrete movements
were extracted, using the time between the appearance
of a new target on the display and the successful entry
of the end effector into the target area, as recorded by
the robot. Movements with fewer than 10 samples were
discarded (using a sampling rate of 100 Hz). The game-
based exercises were not used in the analysis, because
they did not include targets that could be used for
movement segmentation.

Eight smoothness and velocity-based measures,
drawn from previous literature,'>***’ were extracted
from each movement and averaged over each session.
The velocity metrics were mean velocity and peak vel-
ocity. The smoothness measures were root mean square
(RMS) jerk (normalized by movement duration), mean
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rectified jerk (normalized by peak velocity), number of
peaks (normalized by movement duration), path smooth-
ness (shortest path length divided by actual path length),
speed smoothness (mean velocity divided by peak vel-
ocity), and modified spectral arc length (SPARCY).

We additionally incorporated information from the
active and passive ROM assessments that were per-
formed during the calibration phase at the beginning
of each session. Six metrics were extracted from the
ROM data: X range, Y range, and total reachable
area, for each of passive and active ROM.

The definitions of the measures are listed in Table 2.

Predictive models
In addition to evaluating the SRDs of individual

robotic measures, it is necessary to evaluate the SRDs

Table 2. Description of robotic measures.

of the clinical estimates that can be derived from them.
The robotic measures described in the previous section
were used to construct predictive models to estimate
the concurrent value of two outcome measures: the
motor component of the FMA-UE and the ARAT.
The models were constructed using multiple linear
regression.

We are interested in understanding how the SRDs of
the predicted scores relate to two factors: (1) the pre-
diction accuracy of the model, and (2) the SRDs of the
inputs to the model. In order to answer these questions,
it is beneficial to examine multiple different models with
varying predictive accuracies and input SRDs. To gen-
erate an appropriate collection of models, instead of
conducting a variable selection process for the multiple
linear regression (e.g. a stepwise regression), we con-
structed a model from every possible combination of

Measure Description

Note

. N
Mean velocity'® Vmean = #anl Vn

Peak velocityI5 Vpeak = Max (v)
movement
. RMs (v
RMS jerk'* Jrms = % ()
morement
| N-2 dl
. . WZ| oAl
Mean-rectified ]erk's Imr = = e

Vpeak

6,26 N-
Npeaks = ‘{Vn > Vopl NV > anl}

A n=x1)*+Hyn—y1)*

Spath = .
S S N I

Number of peaks

Path smoothness®'®

5 Vmean

Speed smoothness'
Vpeak

ss[:reed =

SPARCY

V(w)

Where:V(w) = Vo)’

n=2 ‘

e 2 Y 2
swrc=— [ (1) (m) »
0 c

V(w) = FFT(v(t))

Normalized by movement duration

Normalized by peak velocity

Shortest path length divided by actual path
length

The arc length of the FFT of the velocity,
from 0 to an adaptive cut off frequency.
T is the maximum cut off frequency,

o™
and V is an amplitude threshold.

e = min{wQ”“",min{wl‘?(r) < VVr > a)}}

V = 0.05,0* = 4075~

Passive ROM X ROMx pgssive = max (x) — min (x)
Passive Passive
Exercise Exercise
Passive ROM Y ROMy pgssive = max (y) — min (y)
Passive Passive
Exercise Exercise
! Xn  Xn+l XN X
Passive ROM Area ROMareq, passive = % > | det + det Polygon area
n=1 Yoo Yo+l YNNI
Active ROM X% ROMx active = max (x) — min (x)
Active Active
Exercise Exercise
Active ROM Y% ROMy pcive = max (y)— min (y)
Active Active
Exercise Exercise
. R= Xn  Xn+l XN X|
Active ROM area ROMpreq, Active = 5 > | det + det Polygon area
n=1 Yn o Yo+l YN NI

N: number of samples in a given movement; v: velocity values at each time sample; v,: velocity at sample n; x,y: Cartesian coordinates of the end
effector at each time sample; x,,y,: Cartesian coordinates of the end effector at sample n; |-|: cardinality of a set.
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the 14 input variables (including all models with num-
bers of variables between 1 and 14). This resulted in a
total of 16,383 models, which can be expected to cover
a range of accuracies and input SRDs.

In order to train the models, the robotic measures
had to be mapped to the clinical assessments according
to time of occurrence. For each of the nine assessment
time points (Figure 1(b)) per stroke survivor partici-
pant, all sessions within four days of the assessment
day were identified, and the robotic measures averaged
over those days to obtain the predictive model inputs.
One participant performed 11 assessments rather than
9, 1 performed 8, and over the entire dataset 6 of the
assessments were removed from analysis due to missing
calibration data, resulting in 76 assessments for use in
regression modeling. Prior to constructing the models,
each of the robotic measures was divided by the stand-
ard deviation over all time points from all participants
for that measure, and thus normalized to have a vari-
ance of 1. The models were trained and evaluated using
a leave-one-subject-out cross-validation process. Note
that because of the cross-validation process, each par-
ticipant may have slightly different coefficients for a
given model. Each model is therefore identified by the
input variables used, rather than by the coefficients.

Statistical analysis

SRD computations were performed according to
Beckerman et al.'® In brief, a two-way analysis of vari-
ance (ANOVA) was conducted with the participant
modeled as a random variable and the day as a fixed
variable. The within-participant variance was obtained
from the results of the ANOVA. Then, the SRD was
computed according to equation (1).

SRD = 1.96 x v/2 x V/within — participant variance
M

SRD calculations for the robotic measures were car-
ried out using seven baseline measurements obtained
on different days before the training began (most par-
ticipants had eight baseline measurements, as per
Figure 1(b), but seven were used here due to some par-
ticipants missing data points). Before computing the
SRD, each of the metrics was normalized using the max-
imum absolute value observed for that metric across all
stroke survivors and able-bodied participants. This
normalization was designed to make the SRD values
easier to interpret, by expressing them as a fraction of
the estimated maximum value for each measure. The
inclusion of data from the healthy volunteers in the
normalization calculation ensured that the estimated
maximum was not artificially restricted by the impair-
ment of the participants.

Similarly, the SRDs for the predicted FMA-UE and
ARAT scores were computed using the values predicted
from the robot measures on each of the seven baseline
days. In this manner, one SRD was obtained for each
of the two outcome measures, for each of the 16,383
models described in the previous section.

Once the SRDs of the predicted FMA-UE and
ARAT values were obtained for all of the predictive
models, two relationships were investigated and quan-
tified by means of the coefficient of determination (R?)
of a linear regression:

e SRD of a model’s output vs. predictive accuracy
of that model. The predictive accuracy was measured
as the coefficient of determination between the cor-
rect and estimated values obtained during the leave-
one-subject-out cross-validation process.

e SRD of a model’s output vs. the SRDs of its input
variables. The normalized input SRDs were
weighted by their absolute coefficients in the regres-
sion model, normalized by the sum of the absolute
coefficients (excluding the constant term), to arrive
at a single value representing the combined SRDs of
the inputs.

Lastly, the ICC for each of the robotic measures and
predicted FMA-UE and ARAT scores was computed
again using the seven baseline measurements.”® The
ICC is a measure of reliability and can provide insight
into what benefits may be gained from using the SRD.
The ICC results were analyzed using the same methods
as the SRD analysis above.

Results
Robotic measures

The normalized SRDs of the robotic measures are
shown in Figure 2(a). The values obtained ranged
from 0.088 (for AROM Y) to 0.269 (for RMSJerk),
meaning that the SRDs range from 8.8% to 26.9% of
the maximum value observed in the dataset. For com-
parison, the ICCs of these measures are shown in
Figure 2(b) and were found to range from 0.884
(for SPARC) to 0.989 (for AROM Y). This comparison
suggests that high ICCs do not necessarily imply
low SRDs.

Predicted scores on outcome measures

Figure 3 provides a visualization of the SRDs observed
for the outputs of the 16,383 regression models con-
structed for each of FMA-UE and ARAT. The SRDs
ranged from 1.3 to 36.2 for the FMA-UE and from 1.8
to 59.7 for the ARAT. Figure 3 additionally shows to



Zariffa et al.

—_~
=)

03 -

0.25

0.2

0.15

0.1

Normalized SRD

0.05

ICC

Figure 2. (a) SRD values measured for each of the robotic measures. Values are normalized to the maximum value observed for
each metric across all stroke survivor participants and six healthy participants used for normative data. (b) ICC values measured for
each of the robotic measures. SRD: smallest real difference; ICC: intraclass correlation coefficient.

what extent the SRD of a model’s output was related to
the predictive performance of that model, or to
the weighted SRDs of its inputs. Although all of these
relationships were statistically significant because of
the large number of data points, the coefficients of
determination were generally extremely low and few
trends could be observed. The only exception was the
relationship between model R* and output SRD for the
ARAT, for which a coefficient of determination of
0.179 was found.

Figure 4 provides the analogous information for the
ICC results. The ICCs ranged from —0.04 to 0.98 for
the FMA-UE and from —1.07 to 0.981 for the ARAT,
but with high values occurring much more frequently.
Once again, however, no relationships could be found
between the ICC value and a model’s predictive per-
formance or with the weighted ICCs of its inputs.

Trade-off between accuracy and SRD

As revealed by Figure 3, selecting the model with the
highest R? value may not necessarily yield the smallest
SRD. The question therefore arises of whether a trade-
off should be sought between these two metrics. It may
be possible to find a model with only slightly worse pre-
dictive performance, but a much more advantageous
SRD. Table 3 illustrates several such possible trade-
offs. For example, it appears that one possibly advanta-
geous strategy may be to set a minimum acceptable
threshold for the R?, and then find the model that min-
imizes the SRD while still satisfying the constraint on the
R? Using this strategy for the FMA-UE, an SRD of
1.4621 (on a 66-point scale) can be achieved in combin-
ation with an R? of 0.4390, and for the ARAT, an SRD
of 2.6803 (on a 57-point scale) with an R? of 0.4246.
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Discussion

Upper limb rehabilitation robots have the potential to
be used as measurement devices capable of evaluating
the user’s motor function. The information obtained in
this manner could conceptually be used to track recov-
ery with a fine temporal resolution, and guide adjust-
ments to a therapeutic plan, such as the progression of
the type and difficulty of exercises. This application
would, however, require that the measurement error
of the robotic metrics be comparable or smaller to the

functional changes that can be expected on the time
scale of a few days. This study used the SRD to gain
insight into the plausibility of using rehabilitation
robots in this manner. The SRD is based on the
within-individual variance in repeated measurements,
and therefore reflects the reliability of the measure. It
additionally relates to responsiveness by showing
whether a change over time reflects an underlying
recovery process. Given our interest here in guiding
therapy progression, the SRD has the advantage of
being easily interpretable by providing a direct point
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of comparison for an observed change. For a more
in-depth discussion of the relationships between reli-
ability, responsiveness and the SRD, the reader is
referred to Beckerman et al.'”

Raw robotic measures were found to have rela-
tively high SRDs in this data (ranging from approxi-
mately 10% to 25% of the available range). On the
other hand, FMA-UE and ARAT scores predicted
from the robotic measures had a very wide range of
SRDs, depending on the regression model used, and
the SRD of a given model was not easily predicted by
either the predictive accuracy of that model or the
SRDs of its input variables. It was observed that expli-
citly seeking a trade-off between SRD and predictive
accuracy resulted in models with an acceptable balance.

From a methodological standpoint, the SRD is a
clinically intuitive means to quantify the expected
day-to-day wvariations. ICC values were generally
found to be quite high. This comparison shows that
most models provided results across different baseline
days that were certainly correlated, but that in many
cases there was still too much variability in the daily
measurements to use them as the basis for any short-
term clinical decision-making. The SRD provides a
more interpretable means to determine which models
could support this type of application.

Interpreting the results presented here requires
some estimate of how much change might occur over
a time scale of a few days, which is different from
how outcome measures are typically used, with time
points separated by several weeks. Although differences
in user function cannot be expected to change widely
from one day to the next, a majority of outcome meas-
ures (including the FMA-UE and ARAT) use ordinal
scales. There will, therefore, be a specific day when the
user first saw an increase in score. In other words,
there will be a specific day when the underlying con-
tinuous process of recovery translated into a discrete
step in the ordinal measure being used. As such, as a
general approximation independent of the specific
measure, there will be days when an increase of
one to two points can be expected. From Table 3, we
can see that by seeking a trade-off between the R* and
SRD of the predictive models, SRD values under 2
for the FMA-UE and under 3 for the ARAT could
be achieved. These results are within or close to the
target range for these models to be usable to track
day-to-day changes.

The predictive performance (R?) of the multilinear
regression models obtained here was in the range of
0.5-0.55 in the best case, and in the range of 0.4-0.45
for the trade-off models. This performance is in line

Table 3. Examples of possible trade-offs between SRD and R? model metrics.

Objective SRD R? Input variables of selected model
FMA-UE
Maximize R? 10.1695 0.5428 AROM area, AROM X range, AROM Y range
Maximize mean of ranking according 1.4621 0.4390 AROM area, AROM X range, AROM Y range,
to SRD and ranking according to R? PROM area, PROM X range, PROM Y range,
SPARC, mean velocity
Maximize R? subject to the constraint 1.4621 0.4390 AROM area, AROM X range, AROM Y range,
SRD <2 PROM area, PROM X range, PROM Y range,
SPARC, mean velocity
Minimize SRD subject to R%> 045 2.6671 0.4551 AROM area, AROM X range, AROM Y range,
PROM Area PROM X range, PROM Y range
SPARC, mean velocity
Minimize SRD subject to RZ> 0.4 1.4621 0.4390 AROM area, AROM X range, AROM Y range,
PROM area, PROM X range, PROM Y range,
SPARC, mean velocity
ARAT
Maximize R? 8.7030 0.4987 AROM AREA, AROM X range, AROM Y range
Maximize mean of ranking according 2.7249 0.4410 AROM area, AROM X range, AROM Y range
to SRD and ranking according to R?
Maximize R? subject to the constraint 1.8067 0.3088 AROM area, AROM X range, AROM Y range,
SRD <2 PROM Area, PROM X range
Minimize SRD subject to R2> 0.45 4.0953 0.4867 AROM area, AROM X range
Minimize SRD subject to R?> 0.4 2.6803 0.4246 AROM area, AROM X range, AROM Y range

FMA-UE: Fugl-Meyer Assessment — Upper Extremity; ARAT: Action Research Arm Test.
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with or better than what could be expected based on
previous work with similar methods. For example,
Bosecker et al.” used multilinear regression models to
estimate FMA scores in individuals with chronic stroke
based on robotic measures and obtained a R value of
0.427 (i.e. R? of 0.18).

The lack of a relationship between SRD and predict-
ive performance (R?) is more surprising, but can be
partly explained by the different data points used to
compute the two metrics (see Figure 1(b)). In other
words, models that were able to capture long-term
trends in function (as evidenced by a high R?) were
not necessarily the same models that could consistently
reproduce estimates over the seven closely spaced base-
line assessments (as evidenced by a low SRD).
Nonetheless, it was possible to find models that could
satisfy both requirements to a reasonable degree. It
does appear that the relationship between SRD and
R? is partly dependent on the specific outcome measure,
since a stronger relationship was found for the ARAT
compared to the FMA-UE. This relationship is
expected to depend on the outcome measure being pre-
dicted as well as the choice of robotic metrics, the mod-
eling techniques used, and the design of the robotic
device itself.

While several investigations of the reliability of
upper limb robotic assessments have been conducted
previously, their implications for guiding therapy pro-
gression have not been examined. Colombo et al.?’
quantified the intra-session and inter-session reliability
of multiple individual robotic measures, finding high
ICCs and minimal detectable differences (i.e. SRDs)
that were smaller than the observed change over the
course of a multi-week intervention. Keller et al.*° mea-
sured inter- and intra-rater reliability of robotic meas-
ures using an upper-limb exoskeleton-type robot and a
group of individuals with spinal cord injury. Although
these results cannot be directly compared with our
results from a population of stroke survivors using an
end-effector robot, they found reliability values that
ranged from poor to good depending on the metric.
Their reliability analysis was based on ICC and correl-
ation coeflicients, which, as demonstrated here, are not
necessarily indicative of SRD values. Several studies
have described moderate to excellent inter-rater reli-
ability depending on the measure.’ ** None of these
studies looked at the reliability of clinical outcome
measure scores predicted from the robotic assessments,
or considered the application of the measures for dir-
ecting day-to-day therapy progression.

One limitation of this study is the sample size avail-
able, which was limited to nine individuals. Considering
the nine planned assessments per participant and the use
of leave-one-subject-out cross-validation, and account-
ing for missing data points, each model was trained on

approximately 68 data points on average. It is possible
that a larger dataset would have impacted on the robust-
ness and properties of the models obtained. On the other
hand, the availability of seven baseline assessments per
participant from which to compute the SRDs and ICCs
is a strength of the study, since few clinical studies are
designed to include so many measurements during a
stable period. The fact that the participants had chronic
stroke is beneficial for the purposes of this study,
because the multiple repeated baseline assessments in
the pre-intervention phase could be conducted without
the confounding influence of on-going recovery. The
SRDs obtained would be expected to remain valid if
the same measures were applied to individuals in the
sub-acute stage.

Another limitation related to the sample size is the
modeling technique chosen. Here we used multiple
linear regression. Recent studies have investigated the
use of nonlinear models to predict outcome measures
from robotic assessments,'!® and demonstrated
improved performance. However, as the complexity
of the model increases, so does the risk of overfitting,
and a larger dataset becomes necessary to ensure that
the models obtained can generalize well. In this study,
we judged that the amount of data available was not
sufficient to support the development of nonlinear
models. Doing so on a larger dataset would result in
models with different properties. Nonetheless, our con-
clusions are based on a large number of linear models
(16,383). While nonlinear models may result in higher
R? values, we do not believe that there is any reason to
expect that they would introduce stronger relationships
between the model output SRDs and the model R?s or
input variable SRDs. It is important to keep in mind
that the SRDs are not solely a result of the mathemat-
ical model, but are also influenced by the choice of
metrics and the data collection procedures. For exam-
ple, ROM in an end-effector robot may be difficult to
reproduce very exactly day after day, because it may be
partly influenced by small changes in the participant’s
positioning with respect to the table. These types of
considerations will be reflected in the SRDs regardless
of the modeling technique used.

Conclusion

If upper limb rehabilitation robots can estimate the
user’s function with a measurement error that is lower
than the expected clinical changes on a timescale of
days, then these robotic measures could be used to
inform treatment decisions. This study has demon-
strated that predictive models can be constructed that
have suitable SRDs for this application. However,
models with the highest predictive performance are
not always the ones with the smallest SRDs, and vice
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versa. We recommend that future work on using
robotic rehabilitation devices for assessment explicitly
include SRD evaluations.
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