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Abstract

A second-order abstract problem of neutral type with derivatives of non-integer
order in the nonlinearity as well as in the nonlocal conditions is investigated. This
model covers many of the existing models in the literature. It extends the integer
order case to the fractional case in the sense of Caputo. A fixed point theorem is
used to prove existence of mild solutions.
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1 Introduction
In this paper, we investigate the following neutral second-order abstract differential

problem

⎧⎪⎨
⎪⎩

d
dt

[
u′ (t) + g(t, u(t), u′(t))

]
= Au(t) + f

(
t, u (t) ,CDαu (t)

)
, t ∈ I = [0,T]

u (0) = u0 + p
(
u,CDβu(t)

)
,

u′ (0) = u1 + q
(
u,CDγ u (t)

) (1)

with 0 ≤ a, b, g ≤ 1. Here, the prime denotes time differentiation and CD�, � = a, b,
g denotes fractional time differentiation (in the sense of Caputo). The operator A is the

infinitesimal generator of a strongly continuous cosine family C(t), t ≥ 0 of bounded

linear operators in the Banach space X and f, g are nonlinear functions from R+ × X ×

X to X, u0 and u1 are given initial data in X. The functions p : [C(I; X)]2 ® X, q : [C(I;

X)]2 ® X are given continuous functions (see the example at the end of the paper).

This problem has been studied in case a, b, g are 0 or 1 (see [1-8]). Well-posedness

has been established using different fixed point theorems and the theory of strongly

continuous cosine families in Banach spaces. We refer the reader to [7,9,10] for a good

account on the theory of cosine families.

Fractional non-local conditions are the natural generalization of the integer order

non-local conditions as studied by Hernandez [5] and others. They include the discrete

case where the solution is prescribed at some finite number of times.
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Time delay is a natural phenomena which occurs in many problems (see [11,12]).

It is caused for instance by the finite switching speed of amplifiers in electronic net-

works or finite speed for signal propagation in biological networks. We can trace

problems with delays back to Volterra who introduced past states in population

dynamics. It has been also introduced by Boltzmann in viscoelasticity in the form of

a convolution. When there is a dependence on all past states we usually call such a

delay a distributed delay. There are in fact several types of delays. The importance of

delays has been pointed out by many researchers and we are now witnessing a grow-

ing interest in such problems. An important class of delayed differential equations

(or functional differential equations) is the class of neutral differential equations. In

this type of problems the delayed argument occurs in the derivative of the state vari-

able. This is the case, for instance, when a growing population consumes more (or

less) food than matured one or when this term appears in the constitutive relation-

ship between the stress and the strain. In fact, neutral differential equations arise

naturally in biology, ecology, electronics, economics, epidemiology, control theory

and mechanics [11-18]. More precisely, they appear in the study of oscillatory sys-

tems, electrical networks containing lossless transmission line (high-speed compu-

ters, distributed non-lumped transmission line, lossless transmission line terminated

by a tunnel diode and lumped parallel capacitor) [11,13,15,18], vibrating masses

attached to an elastic bar [11,12], automatic control, neuro-mechanical systems and

some variational problems (Euler equations) [14,16,17]. For the sake of simplicity

and since the case where time delay exists in the function “g“ has been already stu-

died before (at least for some types of delays) we shall focus on the distributed delay

present in the nonlinearity “f “.

We consider the case (g ≢ 0) and prove existence of mild solutions under different

conditions on the different data. In particular, this work may be viewed as an extension

of the work in [6] to the fractional order case. Indeed, the work in [6] is concerned

with the first-order derivatives whereas here we treat the fractional order case where

some difficulties arise because of the non-local nature of the fractional derivatives. In

addition to that, to the best of the author’s knowledge, fractional derivatives are intro-

duced here for such problems for the first time.

The next section of this paper contains some notation and preliminary results

needed in our proofs. Section 3 treats the existence of a mild solution in the space

of continuously differentiable functions. An example is provided to illustrate our

finding.

2 Preliminaries
In this section, we present some notation, assumptions and preliminary results needed

in our proofs later.

Definition 1. The integral

(Iαa+h)(x) =
1

�(α)

x∫
a

h(t)dt

(x − t)1−α
, x > a

is called the Riemann-Liouville fractional integral of h of order a >0 when the right

side exists.
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Here, Γ is the usual Gamma function

�(z) :=
∞∫
0
e−ssz−1ds, z > 0.

Definition 2. The fractional derivative of h of order a >0 in the sense of Caputo is

given by

(CDα
a h) (x) =

1
�(n − α)

x∫
a

h(n)(t)dt

(x − t)α−n+1 , x > a, n = [α] + 1.

In particular

(CDβ
a h)(x) =

1
�(1 − β)

x∫
a

h′(t)dt
(x − t)β

, x > a, 0 < β < 1.

See [19-22] for more on fractional derivatives and fractional integrals.

We will assume that (H1) A is the infinitesimal generator of a strongly continuous

cosine family C(t), t Î R, of bounded linear operators in the Banach space X.

The associated sine family S(t), t Î R is defined by

S(t)x :=
t∫
0
C(s)xds, t ∈ R, x ∈ X.

It is known (see [7,8,10]) that there exist constants M ≥ 1 and ω ≥ 0 such that

∣∣C(t)∣∣ ≤ Meω|t|, t ∈ R and
∣∣S(t) − S(t0)

∣∣ ≤ M

∣∣∣∣∣∣
t∫

t0

eω|s|ds

∣∣∣∣∣∣ , t, t0 ∈ R.

For simplicity, we will designate by M̃ and Ñ bounds for C(t) and S(t) on I = [0, T],

respectively.

If we define

E := {x ∈ X : C(t)x is once continuously differentiable onR}

then we have

Lemma 1. (see [7,8,10])

Assume that (H1) is satisfied . Then

(i) S(t)X ⊂ E, t Î R,

(ii) S(t)E ⊂ D(A), t Î R,

(iii)
d
dt

C(t)x = AS(t)x, x ∈ E, t ∈ R,

(iv) d2

dt2
C(t)x = AC(t)x = C(t)Ax, x ∈ D(A), t ∈ R.

Lemma 2. (see [7,8,10])

Suppose that (H1) holds, v : R ® X a continuously differentiable function and

q(t) =
∫ t

0
S(t − s)v(s)ds. Then, q(t) Î D(A), q′(t) =

∫ t

0
C(t − s)v(s)dsand

q′′(t) =
∫ t

0
C(t − s)v′(s)ds + C(t)v(0) = Aq(t) + v(t).
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Definition 3. A continuously differentiable function u satisfying the integro-differen-

tial equation

u(t) =C(t)
[
u0 + p(u,CDβu(t))

]
+ S(t)

[
u1 + q

(
u,CDγ u (t)

) − g
(
0, u0 + p(u,CDβu(t)), u1 + q

(
u,CDγ u (t)

))]

−
t∫

0

C(t − s)g
(
s, u (s) , u′ (s)

)
ds +

t∫
0

S(t − s)f
(
s, u (s) ,CDαu (s)

)
ds, t ∈ I

(2)

is called a mild solution of problem (1).

This definition follows directly from the definition of the cosine family and (1),

see [6,7].

3 Existence of mild solutions
In this section, we prove existence of a mild solution in the space C1(I; X). Before we

proceed with the assumptions on the different data we recall that E is a Banach space

when endowed with the norm ||x||E = ||x|| + sup0≤t≤1 ||AS(t)x||, x Î E (see [23]). It is

also well-known that AS(t) : E ® X is a bounded linear operator. By Br(x, X) we will

denote the closed ball in X centered at x and of radius r.

The assumptions on f, g, p and q are (H2) (i) f(t,.,.) : X × X ® X is continuous for a.

e. t Î I.

(ii) For every (x, y) Î X × X, the function f(.,x, y) : I ® X is strongly measurable.

(iii) There exist a nonnegative continuous function Kf (t) and a continuous nonde-

creasing positive function Ωf such that

||f (t, x, y)|| ≤ Kf (t)�f
(||x|| + ||y||)

for (t, x, y) Î I × X × X.

(iv) For each r >0, the set f(I × Br (0, X
2)) is relatively compact in X.

(H3) (i) The function g takes its values in E and g : I × X × X ® X is continuous.

(ii) There exist a nonnegative continuous function Kg(t), a continuous non-decreas-

ing positive function Ωg and two positive constants C1, C2 such that

||g(t, x, y)||E ≤ Kg(t)�g
(||x|| + ||y||)

and

||g(t, x, y)|| ≤ C1
(||x|| + ||y||) + C2

for (t, x, y) Î I × X × X.

(iii) The family of functions {t ® g(t, u, v); u, v Î Br(0, C(I; X))} is equicontinuous

on I.

(iv) For each r >0, the set g(I × Br(0, X
2)) is relatively compact in E.
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(H4) u0+p : [C(I; X)]2 ® E (takes its values in E) and q : [C(I; X)]2 ® X are comple-

tely continuous.

The positive constants Np and Nq will denote bounds for ||u0 + p(u, v)||E and ||q(u,

v)||, respectively. To lighten the statement of our result we denote by

l := 1 − C1 max
{
1,

T1−α

�(2 − α)

}
,

A1 = M̃Np + Ñ
[||u1|| +Nq + C1

(||u1|| +Np +Nq
)
+ C2

]
,

A2 = Np + M̃
[||u1|| +Nq + C1

(||u1|| +Np +Nq
)
+ C2

]
+ C2,

δ = A3 = l−1
(
A1 + A2 max

{
1,

T1−α

�(2 − α)

})
,

A4 = l−1
(
M̃ + max

{
1,

T1−α

�(2 − α)

})
,

and

A5 = l−1
(
Ñ + M̃max

{
1,

T1−α

�(2 − α)

})
.

We are now ready to state and prove our result.

Theorem 1. Assume that (H1)-(H4) hold. If l >0 and

t∫
0
max

{
A4Kg(s),A5Kf (s)

}
ds <

∞∫
δ

ds
�f (s) + �g(s)

, (3)

then problem (1) admits a mild solution u Î C1([0, T]).

Proof. Note that by our assumptions and for u, v Î C([0, T]); the maps

	(u, v)(t) :=C(t)
[
u0 + p(u, I1−βv(t))

]
+ S(t)

[
u1 + q

(
u, I1−γ v (t)

) − g
(
0, u0 + p(u, I1−βv(t)), u1 + q

(
u, I1−γ v (t)

))]

−
t∫

0

C(t − s)g (s, u (s) , v (s))ds +

t∫
0

S(t − s)f
(
s, u (s) , I1−αv (s)

)
ds, t ∈ I

and


(u, v)(t) :=AS(t)
[
u0 + p(u, I1−βv(t))

]
+ C(t)

[
u1 + q

(
u, I1−γ v (t)

) − g
(
0, u0 + p(u, I1−βv(t)), u1 + q

(
u, I1−γ v (t)

))]

− g (t, u (t) , v (t)) −
t∫

0

AS(t − s)g (s, u (s) , v (s))ds

+

t∫
0

C(t − s)f
(
s, u (s) , I1−αv (s)

)
ds, t ∈ I

(5)

are well defined, and map [C([0, T])]2 into C([0, T]). These maps are nothing but the

right hand side of (2) and its derivative. We would like to apply the Leray-Schauder

alternative [which states that either the set of solutions of (6) (below) is unbounded or

we have a fixed point in D (containing zero) a convex subset of X provided that the

mappings F and Ψ are completely continuous]. To this end, we first prove that the set

of solutions (ul , vl) of

(uλ, vλ) = λ(	(uλ, vλ),
(uλ, vλ)), 0 < λ < 1 (6)
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is bounded. Then, we prove that this map is completely continuous. Therefore, there

remains the alternative which is the existence of a fixed point. We have from (4)

||uλ(t)|| ≤M̃Np + Ñ
[||u1|| +Nq + C1

(||u1|| +Np +Nq
)
+ C2

]

+ M̃

t∫
0

Kg(s)�g
(||uλ(s)|| + ||vλ(s)||

)
ds

+ Ñ

t∫
0

Kf (s)�f

(
||uλ(s)|| + s1−α

�(2 − α)
sup
0≤z≤s

||vλ(z)||
)
ds, t ∈ I

and from (5)

||vλ(t)|| ≤Np + M̃
[||u1|| +Nq + C1

(||u1|| +Np +Nq
)
+ C2

]

+ C1
(||uλ(t)|| + ||vλ(t)||

)
+ C2 +

t∫
0

Kg(s)�g
(||uλ(s)|| + ||vλ(s)||

)
ds

+ M̃

t∫
0

Kf (s)�f

(
||uλ(s)|| + s1−α

�(2 − α)
sup
0≤z≤s

||vλ(z)||
)
ds, t ∈ I.

Then

||uλ(t)|| ≤ A1

+ M̃

t∫
0

Kg(s)�g

(
||uλ(s)|| + max

{
1,

T1−α

�(2 − α)

}
sup
0≤z≤s

||vλ(z)||
)
ds

+ Ñ

t∫
0

Kf (s)�f

(
||uλ(s)|| + max

{
1,

T1−α

�(2 − α)
%

}
sup
0≤z≤s

||vλ(z)||
)
ds, t ∈ I

(7)

and

(1 − C1)||vλ(t)|| ≤A2 + C1||uλ(t)||

+

t∫
0

Kg(s)�g

(
||uλ(s)|| + max

{
1,

T1−α

�(2 − α)

}
sup
0≤z≤s

||vλ(z)||
)
ds

+ M̃

t∫
0

Kf (s)�f

(
||uλ(s)|| + max

{
1,

T1−α

�(2 − α)

}
sup
0≤z≤s

||vλ(z)||
)
ds, t ∈ I

where

A1 = M̃Np + Ñ[||u1|| +Nq + C1(||u1|| +Np +Nq) + C2]

and

A2 = Np + M̃[||u1|| +Nq + C1(||u1|| +Np +Nq) + C2] + C2.

Taking the sup in the relation (7) and max
{
1,

T1−α

�(2 − α)

}
sup in the relation (8) and

adding the resulting expressions we end up with

sup
0≤z≤t

�(z) ≤A1 + M̃
∫ t

0
Kg(s)�g

(

λ(s)

)
ds + Ñ

t∫
0

Kf (s)�f
(

λ(s)

)
ds

+ max
{
1,

T1−α

�(2 − α)

} ⎧⎨
⎩A2 +

t∫
0

Kg(s)�g
(

λ(s)

)
ds + M̃

t∫
0

Kf (s)�f
(

λ(s)

)
ds

⎫⎬
⎭
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where Λ(z) is equal to the expression
{(

1 − C1 max
{
1, T1−α

�(2−α)

})
||uλ(z)|| + (1 − C1)max

{
1, T1−α

�(2−α)

}
||vλ(z)||

}

and


λ(s) = sup
0≤z≤s

{
||uλ(z)|| + max

{
1,

T1−α

�(2 − α)

}
||vλ(z)||

}

or simply


λ(t) ≤ A3 + A4

t∫
0
Kg(s)�g

(

λ(s)

)
ds + A5

t∫
0
Kf (s)�f

(

λ(s)

)
ds, t ∈ I (9)

With

A3 = l−1

(
A1 + A2 max

{
1,

T1−α

�(2 − α)

})
,

A4 = l−1

(
M̃ + max

{
1,

T1−α

�(2 − α)

})

and

A5 = l−1

(
Ñ + M̃max

{
1,

T1−α

�(2 − α)

})

provided that

l := 1 − C1 max
{
1,

T1−α

�(2 − α)

}
> 0.

If we designate by �l(t) the right hand side of (9), then

ϕλ(0) = A3(T) =: δ,

Θl (t) ≤ �l(t), t Î I and

ϕ′
λ(t) ≤ A4Kg(t)�g

(
ϕλ(t)

)
+ A5Kf (t)�f

(
ϕλ(t)

)
≤ max

{
A4Kg(t),A5Kf (t)

} [
�f

(
ϕλ(t)

)
+ �g

(
ϕλ(t)

)]
, t ∈ I.

We infer that

ϕλ(t)∫
δ

ds
�f (s) + �g(s)

≤
t∫
0
max

{
A4Kg(s),A5Kf (s)

}
ds, t ∈ I.

This (with (3)) shows that Θl(t) and thereafter the set of solutions of (6) is bounded

in [C(I; X)]2 :

It remains to show that the maps F and Ψ are completely continuous. From our

hypotheses it is immediate that

	1(u, v)(t) :=C(t)
[
u0 + p(u, I1−βv(t))

]
+ S(t)

[
u1 + q

(
u, I1−γ v(t)

) − g
(
0, u0 + p(u, I1−βv(t), u1 + q

(
u, I1−γ v (t)

))]

is completely continuous. To apply Ascoli-Arzela theorem we need to check that

(	 − 	1)(B2
r ) := {(	 − 	1)(u, v) : (u, v) ∈ B2

r }
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is equicontinuous on I. Let us observe that

||(	 − 	1)(u, v)(t + h) − (	 − 	1)(u, v)(t)||

≤
t∫

0

|| (C(t + h − s) − C(t − s)
)
g (s, u (s) , v (s)) || ds

+

t+h∫
t

||C(t − s)g (s, u (s) , v (s)) || ds

+

t∫
0

|| (S(t + h − s) − S(t − s)
)
f
(
s, u (s) , I1−αv (s)

) || ds

+

t+h∫
t

||S(t − s)f
(
s, u (s) , I1−αv (s)

) || ds

for t Î I and h such that t + h Î I. In virtue of (H1) and (H3), for t Î I and ε >0

given, there exists δ >0 such that

||(C(s + h) − C(s))g(t − s, u(t − s), v(t − s))|| < ε

for s Î [0, t] and (u, v) ∈ B2
r , when |h| < δ. This together with (H2), (H3) and the fact

that S(t) is Lipschitzian imply that

||(	 − 	1)(u, v)(t + h) − (	 − 	1)(u, v)(t)||

≤ εt + M̃�g (2r)

t+h∫
t

Kg(s)ds +Nlh�f

(
r +

rT1−α

�(2 − α)

) t∫
0

Kf (s)ds

+Ñ�f

(
r +

rT1−α

�(2 − α)

) t+h∫
t

Kf (s)ds

for some positive constant Nl: The equicontinuity is therefore established.

On the other hand, for t Î I, as (s,ξ) ® C(t - s)ξ is continuous from [0, t] × g(I × X2)

to X and [0, t] × g(I × X2) is relatively compact,
⎧⎨
⎩	2(u, v)(t) :=

t∫
0

C(t − s)g(s, u(s), v(s))ds, (u, v) ∈ B2
r (0,X)

⎫⎬
⎭

is relatively compact as well in X. As for F3 := F - F1 + F2 we decompose it as

follows

	3(u, v)(t) =
k−1∑
i=1

si+1∫
si

(S(s) − S(si))f
(
t − s, u (t − s) , I1−αv (t − s)

)
ds

+
k−1∑
i=1

si+1∫
si

S(si)f
(
t − s, u(t − s), I1−αv(t − s)

)
ds

and select the partition {si}ki=1 of [0, t] in such a manner that, for a given ε > 0

||(S(s) − S(s′))f
(
t − s, u (t − s) , I1−αv(t − s)

) || < ε,
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for (u, v) ∈ B2
r (0,X), when s, s’ Î [si, si+1] for some i = 1,..., k - 1: This is possible in

as much as

{f (
t − s, u (t − s), I1−αv(t − s)

)
, s ∈ [0, t], (u, v) ∈ B2

r (0,X)}

is bounded (by (H2)(iii)) and the operator S is uniformly Lipschitz on I. This leads to

	3(u, v)(t) ∈ εBT(0,X) +
k−1∑
i=1

(si+1 − si)co(U(t, si, r))

where

U(t, si, r)

:= {S(si)f (t − s, u (t − s), I1−αv(t − s)), s ∈ [0, t], (u, v) ∈ B2
r (0,X)}

and co(U(t, si, r)) designates its convex hull. Therefore, 	3(B2
r )(t) is relatively compact

in X. By Ascoli-Arzela Theorem,	3(B2
r ) is relatively compact in C(I; X) and consequently

F3 is completely continuous. Similarly, we may prove that Ψ is completely continuous.

We conclude that (F, Ψ) admits a fixed point in [C([0, T])]2 .

Remark 1. In the same way we may treat the more general case
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d
dt

[
u′(t) + g(t, u(t), u′(t))

]
= Au(t) + f

(
t, u(t),CDα1u(t), . . . ,CDαnu(t)

)
,

u (0) = u0 + p
(
u,CDβ1u(t), . . . ,CDβmu(t)

)
,

u′ (0) = u1 + q
(
u,CDγ1u(t), . . . ,CDγr u(t)

)

where 0 ≤ ai, bj, gk ≤ 1, i = 1,..., n, j = 1,..., m, k = 1,...,r.

Remark 2. If g does not depend on u’(t), that is for g(t, u(t)), we may avoid the condi-

tion that g must be an E-valued function. We require instead that g be continuously dif-

ferentiable and apply Lemma 2 to

t∫
0

C(t − s)g(s, u(s))ds

to obtain

t∫
0
C(t − s)g′(s, u(s))ds + C(t)g(0, u(0))

instead of

t∫
0

AS(t − s)g(s, u(s))ds + g(t, u(t))

in (5).

Example As an example we may consider the following problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[
ut(t, x) + G(t, x, u(t, x), ut(t, x))

]
= uxx(t, x)

+F(t, x, u(t, x),CDαu(t, x)), t ∈ I = [0,T], x ∈ [0,π]
u(t, 0) = u(t,π) = 0, t ∈ I

u(0, x) = u0(x) +
T∫
0
P(u(s),CDβu(s)) (x)ds, x ∈ [0,π]

ut(0, x) = u1(x) +
T∫
0
Q(u(s),CDγ u(s)) (x)ds, x ∈ [0,π]

(10)
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in the space X = L2([0, π]). This problem can be reformulated in the abstract setting

(1). To this end, we define the operator Ay = y” with domain

D(A) := {y ∈ H2([0,π]) : y(0) = y(π) = 0}.

The operator A has a discrete spectrum with -n2, n = 1, 2,... as eigenvalues and

zn(s) =
√
2/π sin(ns), n = 1, 2,... as their corresponding normalized eigenvectors. So we

may write

Ay = −
∞∑
n=1

n2(y, zn)zn, y ∈ D(A).

Since -A is positive and self-adjoint in L2([0, π]), the operator A is the infinitesimal

generator of a strongly continuous cosine family C(t), t Î R which has the form

C(t)y =
∞∑
n=1

cos(nt)(y, zn)zn, y ∈ X.

The associated sine family is found to be

C(t)y =
∞∑
n=1

sin(nt)
n

(y, zn)zn, y ∈ X.

One can also consider more general non-local conditions by allowing the Lebesgue

measure ds to be of the form dμ(s) and dh(s) (Lebesgue-Stieltjes measures) for non-

decreasing functions μ and h (or even more general: μ and h of bounded variation),

that is

u (0, x) = u0(x) +

T∫
0

P (u(s),CDβu(s))(x)dμ(s),

ut (0, x) = u1(x) +

T∫
0

Q (u(s),CDγ u(s))(x)dη(s).

These (continuous) non-local conditions cover, of course, the discrete cases

u(0, x) = u0(x) +
n∑
i=1

αiu(ti, x) +
m∑
i=1

βi
CDβu(ti, x),

ut(0, x) = u1(x) +
r∑
i=1

γiu(ti, x) +
k∑
i=1

λC
i D

γ u (ti, x)

which have been extensively studied by several authors in the integer order case.

For u, v Î C([0, T]; X) and x Î [0, π], defining the operators

p(u, v)(x) :=

T∫
0

P(u(s), v(s)) (x)ds,

q(u, v)(x) :=

T∫
0

Q(u(s), v(s)) (x)ds,

g(t,u,v)(x) : = G(t,x,u(t,x),v(t,x)),

f (t,u,v)(x) : = F(t,x,u(t,x),v(t,x)),

(11)
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allows us to write (10) abstractly as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d
dt

[
u′(t) + g(t, u(t), u′(t))

]
= Au(t) + f (t, u(t),CDαu(t)),

u(0) = u0 + p(u,CDβu(t)),

u′(0) = u1 + q(u,CDγ u(t)).

Under appropriate conditions on F, G, P and Q which make (H2)-(H4) hold for the

corresponding f, g, p and q, Theorem 1 ensures the existence of a mild solution to pro-

blem (10).

Some special cases of this problem may be found in [24-28]. They model some phe-

nomena with hereditary properties. See also [29-33] for some problems with fractional

boundary conditions.
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