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Abstract

This paper deals with the global existence and blow-up of the solution for a class of
nonlinear reaction diffusion problems. The purpose of this paper is to establish
conditions on the data to guarantee the blow-up of the solution at some finite time,
and conditions to ensure that the solution remains global. In addition, an upper
bound for the ‘blow-up time, an upper estimate of the ‘blow-up rate; and an upper
estimate of the global solution are also specified. Finally, as applications of the
obtained results, some examples are presented.
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1 Introduction
The global existence and blow-up for nonlinear reaction diffusion equations have been
widely studied in recent years (see, for instance, [1-8]). In this paper, we consider the fol-

lowing problem:

(glx, ) =V - (a(u)b(x)Vu) + f(u) inD x (0,T),

-0 on dD x (0,7T), (L1)
u(x,0) = uy(x) >0 in D,

where D C RN (N > 2) is a bounded domain with smooth boundary D, D is the closure of
D, 3/9n is the outward normal derivative on 9D, T is the maximal existence time of u. Set
R* := (0, +00). We assume, throughout this paper, that a(s) is a positive C*(R*) function,
b(x) is a positive C}(D) function, f(s) is a positive C?(R*) function, g(x,s) is a C*(D x R*)
function, g(x,s) > 0 for any (x,s) € D x R*, and u(x) is a positive C*(D) function. Under
the above assumptions, it is well known from the classical parabolic equation theory [5]
and maximum principle [9] that there exists a unique local positive solution for problem
(1.1). Moreover, by the regularity theorem [10], u(x, £) € C*(D x (0, T)) N C*(D x [0, T)).
Many authors discussed the global existence and blow-up for nonlinear reaction dif-
fusion equations with Neumann boundary conditions and obtained a lot of interesting
results [11-24]. Some special cases of (1.1) have been studied already. Lair and Oxley [25]
© 2014 Ding; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
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investigated the following problem:

ur=V-(aw)Vu) + f(u) inD x (0,T),

™=0 on 0D x (0, 7),
u(x,0) = up(x) >0 in D,

where D C RN (N > 2) is a bounded domain with smooth boundary dD. The necessary
and sufficient conditions characterized by functions a and f were given for the global ex-
istence and blow-up solution. Zhang [26] dealt with the following problem:

(ew)=Au+f(u) inDx(0,T),
g—g=0 on dD x (0,7),

u(x,0) = up(x) >0 inD,
where D C RN (N > 2) is a bounded domain with smooth boundary dD. The sufficient

conditions were obtained there for the existence of global and blow-up solutions. Gao et
al. [27] considered the following problem:

(gw):=V - (a()Vu) +f(u) inDx(0,T),

™=0 on dD x (0, 7),
u(x,0) = up(x) >0 in D,

where D c RN (N > 2) is a bounded domain with smooth boundary 0D. The sufficient
conditions were developed for the existence of global and blow-up solutions. Meanwhile,
the upper estimate of the global solution, the upper bound of the ‘blow-up time, and the
upper estimate of the ‘blow-up rate’ were also given.

In this paper, we study reaction diffusion problem (1.1). Note that f(«), g(x,u) and
a(u)b(x) are nonlinear reaction, nonlinear diffusion and nonlinear convection, respec-
tively. Since the diffusion function g(x, #) depends not only on the concentration variable
u but also on the space variable x, it seems that the methods of [26, 27] are not appli-
cable for the problem (1.1). In this paper, by constructing completely different auxiliary
functions from those in [26, 27] and technically using maximum principles, we obtain the
conditions on the data to guarantee the blow-up of the solution at some finite time, and
conditions to ensure that the solution remains global. In addition, an upper bound for the
‘blow-up time, an upper estimate of the ‘blow-up rate; and an upper estimate of the global
solution are also given. Our results extend and supplement those obtained in [26, 27].

We proceed as follows. In Section 2 we study the blow-up solution of (1.1). Section 3 is
devoted to the global solution of (1.1). A few examples are given in Section 4 to illustrate
the applications of the obtained results.

2 Blow-up solution

In this section we establish sufficient conditions on the data of the problem (1.1) to produce
a blow-up of the solution u(x, ) at some finite time 7" and under these conditions we derive
an explicit upper bound for T and an explicit upper estimate of the ‘blow-up rate’ The main
result of this section is formulated in the following theorem.
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Theorem 2.1 Let u(x,t) be a solution of the problem (1.1). Assume that the data of the
problem (1.1) satisfies the following conditions:
(i) forany (s,t) € D x R*,

a'(s)—a(s) <0, (gS(x’ S)> <0,

a(s)
/ 2.1)
a(s)f(s) = (aB)f(©)" ) _ als)f(s) - (als)f(s)" _ o
a(s) a(s) -
(ii) the constant
- (40 b(0) Vi) + 1) 22)
a=ming —— |V - (a(ug)b(x)Vuy) + f(u > 0; 2.2
D {f(uo)gu(x,uo)[ (ato o) +f 0]}
(ili) the integration
Bl ds < +00, My = max ugy(x). (2.3)
My S(s) P
Then u(x,t) must blow up in a finite time T and
1 +00 eS
T<-— ds (2.4)
O J My f(S)
as well as
ux,t) < @7 (a(T - 1)), (2.5)
where
®(2) /m ® 4, 250 (2.6)
= —ds, >0, .
. fs)
and ®71 is the inverse function of ®.
Proof Consider the auxiliary function
Qx,t) = e"u; — af (u). (2.7)
Now we have
VQ=e"u;Vu +e*Vu, —af'Vu, (2.8)
AQ =e“u;|Vul* +2e"Vu - Vu, + “u;Au + e Au; — af | Vul* — af Au, (2.9)

and

Q= e"(”t)z +e"(u), - af,ut

ab a'b a
=e*(u,)* + e”(—Au +—|Vul>+ =Vb-Vu+ i) —of u;
t

u 8u 8u &u
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'b abg,. b "b  a'bg,,
=e"(u,)* + (a_ _ 2% )e”utAu + ﬂ—e”Aut + (ﬂ _2 f )e“uLIVuI2
i 4

u 3 u gM u
a'b a  agu a
+ Zg—e”(Vu Vu)+ | — - — e“u,(Vb-Vu) + —e*(Vb - Vu,)
u u u u
[(f S )e” - af’i| 4. (2.10)
gu gu

It follows from (2.9) and (2.10) that

b 'bg,, a'b ab b 'b
P NQ-0Q, = (“ 22,7 )e w | Vul® + (2“— —2“—)e”(w.wt)
gll g,, gu gu u u
bg,, ab ab bf" bf’
+(zz g2 ——+a—)e usAu — aaf |Vz¢|2—ozﬂAu—e“(ut)2
8y 8u  8u u Gu
+ (ﬂggu - a—)e u; (Vb -Vu) - —e “(Vb - Vuy)
gu gM gu
[(fg”” —L>e” + af/:| s, 2.11)
gu gu
By the first equation of (1.1), we have
J (2.12)

Au==>>u,

Su a 5 1
S VuP - =Vb-Vu- L.
P L “Tab

Substitute (2.12) into (2.11) to obtain

@AQ_Qt

u

@)?b dab da'b ab ab _ab\ ,
= +— e u, | Vul* + [ 2= - 2=— )e*(Vu - Vu,)

agdu - g_u - 8 8u 8u u

+ i(&) e”(ut)z—ﬁe“ut(VlmVu)H)zi Vb-Vu)+ (af L —L>e”ut

u

gu\a u
/b ! b 1 '/
+ (au 2 )|v 2% (b Vi) + o (2.13)
&u &u &u 8u
It follows from (2.8) that
(2.14)

Vu, =e*VQ-u,Vu+ae™f'Vu.

Substituting (2.14) into (2.13), we get

u

N2 / 7"
= ((a) b+ub__b_a_b>e w,|Vul? + (Za

ab b a
—AQ+ <2g—(a/ —a)Vu + —Vb) -VQ-Q,

8u

YL

agu 8u 8u &u 8u u u
/ ! U
+i(&) e“(u,)* + (ﬂ_i_i)euuﬁoﬂi' (2.15)
g \a)/, agu  &u  8u u
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With (2.7), we have
ur=e"Q+ae™f. (2.16)

Substitute (2.16) into (2.15) to get

ab b, a
g—AQ+ 2—(:1 —oz)Vu+—Vh -VQ

ooy -5 21 o

_ aﬂ_b[(af— <af)/>’ - (af)/]lvmz
a

8u a
2
+ 2 (‘Q) e“(u)? + af— (a/ - a). (2.17)
gu a u agu

The assumptions (2.1) ensure that the right-hand side of (2.17) is nonpositive; that is,

ab b, a
g—AQ+ 2—(:1 —oz)Vu+—Vh -VQ

ASL(E) o] £[(2) <2 }o-e
8u a a Su a a
<0 inDx(0,7). (2.18)

Now, by (1.1), we have

0 ad 0 ad d
Q —en M +e”ut—u —af’—u —e (%) 20 onaDx 0, T). (2.19)
on on on on on/,

Furthermore, it follows from (2.2) that

mDinQ(x,O):m{ [V (almo)b() Vo) +f(uo>]—af<uo>}

D | & uo)

- {f(uo) (L[v - (al)b(x) Vo) + f (1) —a“

in
D 10)gy (%, o)
0

(2.20)

Combining (2.18)-(2.20) and applying the maximum principle [9], we find that the mini-

mum of Q in D x [0, T) is zero. Hence,
Q>0 inDx][0,T);

that is,

eLt
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At the point x € D, where ug(xy) = My, integrating (2.21) over [0, t], we get

t o uxot) s
—u,dt = f ds > at.
fof W My S

By the assumption (2.3), we know that u(x, ) must blow up in finite time ¢ = T, moreover,

1 +00 es
T <

— ds.
Tadu, f)

For each fixed x, integrating the inequality (2.21) over [¢t,s] (0 < £ < s < T), we obtain

d)(u(x,t)) Zq)(u(x,t))—¢(u(x,s)):/‘+oo es ds_/-+oo e’ &

u(wt) S () u(ws) S ()
(%.5)
= /M;t: f((e:) ds = /:J%:)ut dt > a(s —t).

Letting s — T, we have

CD(u(x, t)) > (T -t),
which implies

ulx,t) < d>_1(oz(T - t)).
The proof is complete. d

3 Global solution

In this section we establish sufficient conditions on the data of the problem (1.1) in order to
ensure that the solution has global existence. Under these conditions, we derive an explicit
upper estimate of the global solution. The main results of this section are the following

theorem.

Theorem 3.1 Let u(x,t) be a solution of the problem (1.1). Assume that the data of the
problem (1.1) satisfies the following conditions:
(i) forany (s,t) € D x R,

a'(s)—a(s) > 0, (gS(x’ S)> >0,
a(s) /,

<ﬂ(5)f(8) - (ﬂ(S)f(S))’)/ _as)f(s) — (als)f (s))’

(3.1)

a(s) a(s) z0;

(ii) the constant

eko
B = mgx{m [V . (a(uo)b(x)Vuo) +f(u0)]} > 0; (3.2)
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(ili) the integration

+00 S

€

mo S (8)

ds < +00, mpg := minug(x). (3.3)
D

Then u(x, t) must be a global solution and

ulx,t) < W (Bt + W (uo(x))), (3.4)
where
W(2) :/ J%ds, 2> m, (3.5)

and W7\ is the inverse function of W.
Proof Consider an auxiliary function
P(x,t) = e"u; — Bf (u). (3.6)

In (2.17), by replacing Q and « by P and B, respectively, we have

ab b, a
—AP+(2—(a' —a)Vu+—Vb)-VP
8u 8u 8u

SR E RN O

:ﬁﬂ_b[(“f—(ﬂf)/)/_ ﬂf—(ﬂf)’]wu'z
8u a a
+ 2 (‘ﬁ) e*(u,)? + ,Bﬁ(a’ - a). (3.7)
Su\a u agu

It follows from (3.1) that the right-hand side of (3.7) is nonnegative; that is,

@AP+ (23(4' —a)Vu + iVb) -VP
gu gM gu

. {a_b[<ﬂ_/>'_ a +1},W|z+ ﬁ[<£>/+£“p_[)tzo inDx (0,7). (3.8)
Gu a a 8u a a

With (1.1), we have

P, w2 g () Lo onapx (0,T) (3.9)
— =—ef— ey, — — — =¢ — = on X , . .
on on “on on on/,

It follows from (3.2) that

ma P 0) = max €S9 (a1 00] - )

D | gulx, uo)
eto
= mgx{f(uo)[/m [V : (a(uo)b(x)Vuo) +f(”0)] - ,31| }

=0. (3.10)
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Combining (3.8)-(3.10) and applying the maximum principle, we know that the maximum
of Pin D x [0, T) is zero; that is,

P(x,t)<0 inD x [0,T). (3.11)

From (3.11), we get

u

For each fixed x € D, by integrating (3.12) over [0, t], we have

1 t e u(x,t) e
- e (3.13)
B /o S () / w S
It follows from (3.13) and (3.3) that u(x, £) must be a global solution. Furthermore, by (3.13),
we have
u(x,t) e ug(x) e u(x,t) e’
W (u(x, t)) — W(ug(x) =/ ds—/ ds:f ds < Bt.
(122) = ¥ (10 (o) mo SO Sy & Juw f6)
Hence,

ux,t) < Wt (,Bt + \If(uo(x))).
The proof is complete. 0

4 Applications
When g(x, u) = g(u), a(u) =1, and b(x) =1 or g(x, u) = g(u) and b(x) = 1, the conclusions
of Theorems 2.1 and 3.1 are valid. In this sense, our results extend and supplement the
results of [26, 27].

In what follows, we present several examples to demonstrate the applications of the ob-

tained results.

Example 4.1 Let u(x, £) be a solution of the following problem:

= Au+ |Vl + 2 YL xiit + 355 inDx (0,T),
=0 on dD x (0,T),
u(x,0)=2-(1-|x*)? in D,

where D = {x = (1, %), %3)||%? = &7 + 43 + x5 < 1} is the unit ball of R3. The above problem

may be turned into the following problem:

e+ |x?), =V - (e“(1 + |%*>)Vu) + 3¢** inD x (0,7T),
-0 on 3D x (0, T),

u(x,0)=2-1-|x*)? in D.

Page 8 of 11


http://www.boundaryvalueproblems.com/content/2014/1/168

Ding Boundary Value Problems 2014, 2014:168
http://www.boundaryvalueproblems.com/content/2014/1/168

Now

a(u)=e“,  bx)=1+x>,  f(u)=3e",

glx,u) =e“(1+ |x%), uo(x) =2 - (1- |x|2)2.
By setting
§= |x|2:

we have 0 <s <1and

. e
o= mﬁm {W [V . (a(uo)h(x)Vuo) +f(u0)]}

. { 12 +16|x|? — 44|x|* — 16]x|® + 16]x|® + 3exp[2 — (1 — |x]?)?] }
n

~'D 3(L+ &) expl2 — (1 - [x[2)?]
o [12 + 165 — 44s% — 1653 + 165* + 3exp[2 — (1 —5)?]
= min
0<s<1 3(1+s)exp[2 - (1-1s)?]

= 0.1391.

It is easy to check that (2.1)-(2.3) hold. By Theorem 2.1, u(x, ) must blow up in a finite

time T and
1 +00 es 1 +0Q0 1
T<Z> N —ds =0.3243
a Sy, f(5) 0.1391 J, 3e*
as well as
u(x,t) < dJ_l(oz(T - t)) =1In ;
= 0.4173(T - t)

Example 4.2 Let u(x, t) be a solution of the following problem:

2
3 S L
utzAu+2|Vu|2+ﬁZi:1xig—Z+ze— inD x (0, T),

(L+1x?)
g—Z:O on dD x (0,T),
u(x,0)=1+1-|x*)? in D,

where D = {x = (1, %2, %3)||%|? = 2 + 43 + x5 < 1} is the unit ball of R3. The above problem
can be transformed into the following problem:

€1+ |x); = V- (2e*(1 + |x*)Vu) +e2  inD x (0,7),

g—ﬁ:O on dD x (0,T),
u(x,0) =1+ 01— |x*)? inD.

Now we have

a(u) = 2e*, bx)=1+x*  f(u)=e?,

gl u) = (1+ |x%), uo(x) =1+ (1- |x|2)2.

Page 9 of 11
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In order to determine the constant 3, we assume

§= |x|2’

then0 <s<1and

Again, it is easy to check that (3.1)-(3.3) hold. By Theorem 3.1, u(x, t) must be a global

eto

ﬂ = mgx{m [V . (d(u())b(x)vu()) +f(l/l0)]}
(e + 0
X [—24 + 64|x|2 - 8|x|4 - 64|x|6 + 64|x|8 + exp(—i - ;(1 - |x|2)2):|>

/ (1+ |x|2)}

{exp[% +2(1-5)][-24 + 64s — 85> — 64> + 64s° + exp(-3 — 2(1-5)%)] }
= max
0<s<1 1+s

26.5635.

solution and

ulx,t) < Wt (/St + \If(uo(x))) = 21n[13.2818t + exp(%udx))]

1 1
= 21n[13.2818t + exp(i t3 (1- IxI2)2>]'
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