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Abstract
In this paper, the existence of Aubry-Mather sets and quasi-periodic solutions of the
oscillator x′′ + αx+3 – βx–3 + f (x)q(x′) +ψ (x) = p(t) are established, where f , q, and ψ
belong to the class C1(R), p is a continuous 2π -periodic function. Under some
assumptions on the parities of f , ψ , and p, we prove that there are infinitely many
generalized quasi-periodic solutions by a result of Shuinee Chow and Mingliang Pei
from the Aubry-Mather theorem of reversible mappings.
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1 Introduction and main result
In this paper, we are concerned with the existence of Aubry-Mather sets and quasi-
periodic solutions to the following second order differential equation with superlinear
asymmetric nonlinearities and nonlinear damping term:

x′′ + αx+ – βx– + f (x)q
(
x′) + ψ(x) = p(t), (.)

where x± = max{±x, }, α and β are strictly positive real numbers. We assume the func-
tions f , q, and ψ belong to the class C(R) and p(t) ∈ C(S) is a π-periodic continuous
function, where S = R/πZ.

In the last two decades, there has been an increasing interest in obtaining sufficient con-
ditions for the existence of Aubry-Mather sets and quasi-periodic solutions due to such
solutions providing a rather complete qualitative description of the dynamics, for different
classes of nonlinear second order differential equations independent of a damping term,
or with a damping term. We refer to [–], and references therein. For example, in [],
Liu and Wang have studied the following nonlinear Liénard equations:

x′′ + f (x)x′ + nx + ψ(x) = p(t), (.)
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where f (x) and ψ(x) are C smooth in x, p ∈ C(S) is a π-periodic function and n is
a positive integer. They obtained the existence of Aubry-Mather sets and quasi-periodic
solutions based on the well-known Aubry-Mather theorem for reversible systems due to
Chow and Pei [], who gave some sufficient conditions for the existence of Aubry-Mather
sets for some planar reversible maps with a linear damping term as well.

However, to the best of our knowledge, the existence of Aubry-Mather sets and quasi-
periodic solutions, when the damping term comprises a nonlinear function of x′, have
been relatively little researched. In [], Capietto et al. considered the equation with semi-
linear asymmetric term and a nonlinear damping term of the form

x′′ + αx+ – βx– + ψ(x) + h
(
t, x′, x

)
= p(t), (.)

where ψ , p belong to the class C(R) and h ∈ C(R). Moreover, p and h are π-periodic in
the time variable. Under some symmetry assumptions on ψ , p and h, the differential equa-
tion (.) has a reversible structure. By an Aubry-Mather theorem for reversible mapping,
due to Chow and Pei [], one obtained the existence of Aubry-Mather sets and quasi-
periodic solutions of (.) in the resonant case

√
α

+
√
β

=

n

,

where n is a positive integer.
In this paper, replacing the semilinear asymmetric term αx+ – βx– in (.) by a super-

linear asymmetric term αx+ – βx–, and as h(t, x′, x) = f (x)q(x′) + ψ(x) in (.), we will
investigate the existence of Aubry-Mather sets and quasi-periodic solutions for (.). This
equation models the motion of a particle subject to an asymmetric restoring force (see e.g.
[]) and a damping force. In the present paper, we also assume that the system (.) is a
reversible system. By proposing a new estimate approach and borrowing a new analytical
trick from the recent papers [, , ] by the present author, we will show that under
some reasonable assumptions, (.) has quasi-periodic solutions in generalized sense, that
is, the Poincaré map of (.) has Aubry-Mather sets. Especially, the smoothness assump-
tion on functions f , q, ψ only belong to C(R) and p(t) only belongs to C(S). The results
of this paper are new and they complement previously known results.

In what follows, we tacitly assume that

(H) f (x), q(x),ψ(x) ∈ C(R), p(t) ∈ C(S);
(H) f (–x) = –f (x), ψ(–x) = –ψ(x), p(–t) = –p(t);
(H) there exists a constant μ > , such that

∣∣xψ ′(x)
∣∣ ≤ μ, ∀x ∈R;

(H) lim|x|→+∞ sup | xf ′(x)
xγ | < +∞, where γ ∈ (, );

(H) there exists a constant σ ∈ (, 
 ), such that

lim|x|→+∞ sup

∣
∣∣
∣
xq′(x)

xσ

∣
∣∣
∣ < +∞, where σ further satisfies σ + γ < .
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Remark . By (H)and the rule of L’Hospital, we have

lim|x|→+∞ψ ′(x) =  and lim|x|→+∞
ψ(x)

x
= .

Remark . Hypothesis (H) implies there exists a >  such that

∣
∣xf ′(x)

∣
∣ ≤ a

(
 + |x|γ )

,
∣
∣f (x)

∣
∣ ≤ a

(
 + |x|γ )

, for all x ∈ R.

Remark . From (H), it is easy to see that there exists b >  such that

∣
∣xq′(x)

∣
∣ ≤ b

(
 + |x|σ )

,
∣
∣q(x)

∣
∣ ≤ b

(
 + |x|σ )

, for all x ∈R.

The main result of this work is the following.

Theorem . Suppose (H)-(H) and ψ ′() = f ′() = q′() =  hold. Then there exists
λ > , such that for any λ ∈ (λ, +∞), (.) possesses a solution zλ(t) = (xλ(t), x′

λ(t)) of
Mather type with rotation number λ, that is,

(i) if λ = n
m is rational, and (n, m) = , the solutions zi

λ(t) = zλ(t + π i),  ≤ i ≤ m – , are
mutually unlinked periodic solutions of period πm;

(ii) if λ is irrational, the solution zλ(t) is either a usual quasi-periodic solution or a
generalized one.

Remark . A solution is called generalized quasi-periodic if the closed set

Mλ ≡ {
zλ(π i), i ∈ Z

}

is a Denjoy minimal set.

Remark . In this work, we remark that our estimate methods of the Poincaré map as-
sociated to the planar system equivalent to (.) are different from those used in [] and
[] to some degree.

Remark . Theorem . in [] can be regarded as a direct generalization in the present
paper when f (x) = .

Example . The conclusions of Theorem . hold if we let f (x) = x



+x



∈ C(R), q(x) =

x

 arctan x ∈ C(R), ψ(x) = arctan x ∈ C(R), and ∀p(t) ∈ C(S), and we take the constants

μ = , σ = 
 , γ = 

 , a = 
 , b =  in (H)-(H).

The rest of paper is organized as follows. In Section , we introduce the action-angle
variables to transform the system (.) into a perturbation of an integrable system, and then
give some growth estimates on the corresponding action and angle variables functions. In
Section , we give some crucial estimates by some lemmas which say that the Poincaré
mapping of the new system is close to the so-called twist map around infinity. Then the
Aubry-Mather theorem for reversible systems developed by Chow and Pei [] guarantees
the existence of Aubry-Mather sets and quasi-periodic solutions for (.).
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2 Action-angle variables and some properties
In this section, we will transform (.) into another system expressed in action-angle vari-
ables.

Let x′ = y. Then (.) is equivalent to the following system:

x′ = y, y′ = –f (x)q(y) – αx+ + βx– – ψ(x) + p(t). (.)

From assumption (H), we know that (.) is reversible under the involution (x, y) 
→
(–x, y). For the definition of reversible system and further properties of reversible system,
see Appendix A of [].

In order to make an action-angle transformation, we consider the auxiliary system

x′ = y, y′ = –αx+ + βx– (.)

with the Hamiltonian

H(x, y) =



y +
α


x+ +

β


x–.

Clearly, H >  on R
 except at the only equilibrium point (x, y) = (, ) where H = .

Let (C(t), S(t)) be the solution of (.) satisfying the initial condition (C(), S()) = (, )
and let T >  be its minimal period. From (.), we can find that C(t) and S(t) satisfy the
following properties.

Lemma .
(i) C′(t) = S(t), S′(t) = –αC+(t) + βC–(t);

(ii) S(t) + αC+(t) + βC–(t) ≡ α;
(iii) C(–t) = C(t), S(–t) = –S(t);
(iv) |C(t)| ≤ max{, 

√
α
β
} := C∞, |S(t)| ≤ √

α
 := S∞.

The action and angle variables are now defined by the mapping 	 : R+ × S →R
 \ {},

(x, y) = 	(I, θ ) being defined by the formula

x = λ

 I


 C

(
θ

ω

)
, y = λ


 I


 S

(
θ

ω

)
, (.)

where ω = π
T , λ = ω

αT are constants. By some simple calculations, it is easy to see that
∂x
∂I = x

I , ∂x
∂θ

= y

ωλ

 I




, ∂y
∂I = y

I , ∂y
∂θ

= –αx++βx–

ωλ

 I




. We claim that 	 is a symplectic diffeomor-

phism from R
+ × S onto R

\{}. Indeed, the Jacobian determinant of 	 is , so 	 is mea-
sure preserving. Moreover, since (C(t), S(t)) is a solution of (.) and has T as its minimal
period, one concludes that 	 is one to one and onto. This finishes the claim.

Under 	 , the system (.) is transformed into

θ̇ = 
(t, θ , I), İ = 
(t, θ , I), (.)

where


(t, θ , I) =


λ


 αI


 +

x(θ , I)(f (x(θ , I))q(y(θ , I)) + ψ(x(θ , I)) – p(t))
I

,
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(t, θ , I) = –
y(θ , I)(f (x(θ , I))q(y(θ , I)) + ψ(x(θ , I)) – p(t))

ωλ

 I 


.

According to our symmetry assumptions and the definition of reversible system, we note
that system (.) and its Poincaré map are reversible in θ with respect to the involution
(θ , I) 
→ (–θ , I).

We observe that the relation between (.) and (.) is that if θ (t) = θ (t; θ, I), I(t) =
I(t; θ, I) are the solution of (.) with the initial value condition θ () = θ, I() = I, then

x(t; θ, I) = x
(
θ (t; θ, I), I(t; θ, I)

)
= λ


 I


 (t; θ, I)C

(
θ (t; θ, I)

ω

)

and

y(t; θ, I) = y
(
θ (t; θ, I), I(t; θ, I)

)
= λ


 I


 (t; θ, I)S

(
θ (t; θ, I)

ω

)

are the solutions of (.) with initial data x() = x(; θ, I), y() = y(; θ, I).
For the sake of convenience, in later discussions we will replace θ (t; θ, I), I(t; θ, I),

x(θ (t; θ, I), I(t; θ, I)), y(θ (t; θ, I), I(t; θ, I)) by θ , I , x, y, respectively.
Now we will provide some information on the growth behavior of I(t; θ, I) and

θ (t; θ, I) in the following two lemmas.

Lemma . The limit

lim
I→+∞ I(t; θ, I) = +∞

holds uniformly on t ∈ [, π ].

Proof From (H)-(H) and (.), there exist constants r > , r > , such that

∣
∣İ(t)

∣
∣ =

∣∣
∣∣–

y(f (x)q(y) + ψ(x) – p(t))
ωλ


 I 



∣∣
∣∣ ≤ rI(t) + r, I �= .

Then, by the Gronwall inequality, we have

e–πr I –
r

r

(
 – e–πr

) ≤ I(t) ≤ eπr I +
r

r

(
eπr – 

)
(.)

for all t ∈ [, π ].
So, by (.), I(t; θ, I) → +∞ as I → +∞ uniformly for t ∈ [, π ]. �

Lemma . There exist constants k > k >  and Ī > , such that for any I ≥ Ī , we have
(i) kI ≤ I(t; θ, I) ≤ kI, for ∀ θ ∈R and ∀t ∈ [, π ].

(ii) θ ′(t; θ, I) > , for ∀θ ∈R and ∀t ∈ [, π ].

Proof (i) By the inequality (.), we can easily find constants k > k >  and Ī > , such
that

kI ≤ I(t) ≤ kI

for any I ≥ Ī and ∀t ∈ [, π ].
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(ii) From Remark ., we know lim|x|→+∞ ψ(x)
x = , then for every ε > , there exists M =

M(ε) ≥ , such that

∣
∣ψ(x)

∣
∣ ≤ ε|x|

if |x| ≥ M and ∀t ∈ [, π ]. Hence, from Remark . and Remark ., we have

dθ

dt
=



λ


 αI


 +

x(f (x)q(y) + ψ(x) – p(t))
I

≥ 

λ


 αI


 –

|xf (x)q(y)|
I

–
|xψ(x)| + |p(t)x|

I

≥ 

λ


 αI


 –

ab|x|( + |x|γ )( + |y|σ )
I

–
εx + p∞|x|

I

≥ 

λ


 αI


 –

(p∞ + ab)λ 
 C∞

I 


–
abλ

+γ
 C+γ

∞
I

–γ


–
abλ

+σ
 C∞Sσ∞

I –σ


–
abλ

σ++γ
 C+γ

∞ Sσ∞
I

–σ–γ


–
λ


 C∞ε

I 


,

where p∞ = maxt∈[,π ] |p(t)|. Thus, in view of  < σ < 
 ,  < γ < , and σ + γ < ,

Lemma ., and (i), there exists Ī >  such that dθ
dt >  if I ≥ Ī.

In the case |x| ≤ M, we may assume that f∞ = max|x|≤M |f (x)|, ψ∞ = max|x|≤M |ψ(x)|, then
by Remark ., we get

dθ

dt
=



λ


 αI


 +

x(f (x)q(y) + ψ(x) – p(t))
I

≥ 

λ


 αI


 –

Mf∞q(y)
I

–
(ψ∞ + p∞)M

I

≥ 

λ


 αI


 –

Mbf∞λ
σ


I–σ
–

(bf∞ + ψ∞ + p∞)M
I

.

So, by  < σ < 
 , (.), and Lemma ., there exists a constant Ī > , such that dθ

dt >  if
I ≥ Ī.

If we take Ī = max{Ī, Ī}, then I ≥ Ī implies dθ
dt > . �

3 Twist property and proof of Theorem 1.1
In this section, we will prove the existence of Aubry-Mather sets and quasi-periodic solu-
tions of (.) via the Aubry-Mather theory for reversible systems developed by Chow and
Pei [].

In order to fit into the framework of Aubry-Mather theory for reversible systems, we
only need to show that the Poincaré map P has the monotone twist property around in-
finity, i.e. ∂θ (π ;θ,I)

∂I
<  if I 
 .

In the following, we will investigate the behavior of ∂θ (π ;θ,I)
∂I

when I 
  by some
lemmas.

Similarly, for the sake of convenience in later discussions we write x, y, θ , I instead of
x(θ (t; θ, I), I(t; θ, I)), y(θ (t; θ, I), I(t; θ, I)), θ (t; θ, I), I(t; θ, I), respectively.

Lemma . The following limits exist uniformly on t ∈ [, π ]:
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(i) xψ(x)

I



→ ; xψ(x)

I



→ ; xψ ′(x)

I



→ , as I → +∞;

(ii) yψ(x)

I



→ ; yxψ ′(x)

I



→ ; yψ ′(x)

I



→ , as I → +∞.

Proof From Remark ., we note that lim|x|→+∞ ψ ′(x) =  and lim|x|→+∞ ψ(x)
x = . So, given

any ε > , there is a positive number M = M(ε) > , such that |x| ≥ M imply

∣∣ψ ′(x)
∣∣ ≤ ε

and

∣∣ψ(x)
∣∣ ≤ ε|x|

for ∀t ∈ [, π ].
Let K(ε) = max|x|≤M |ψ(x)|, K(ε) = max|x|≤M |ψ ′(x)|.
(i) According to (.) and Lemma .(iv), one has

∣
∣∣
∣
xψ(x)

I 


∣
∣∣
∣ ≤ MK(ε)

I 


+
εx

I 


≤ MK(ε)
I 


+

ε(λI) 
 C∞

I 


≤ MK(ε)
I 


+

ελ



I 


;

∣∣
∣∣
xψ(x)

I 


∣∣
∣∣ ≤ MK(ε)

I 


+
εx

I 


≤ MK(ε)
I 


+

ε(λI) 
 C∞

I 


≤ MK(ε)
I 


+ εC

∞λ

 ;

∣
∣∣∣
xψ ′(x)

I 


∣
∣∣∣ ≤ MK(ε)

I 


+
εx

I 


≤ MK(ε)
I 


+

ε(λI) 
 C∞

I 


≤ MK(ε)
I 


+

εC∞λ



I 


.

Then, by using Lemma .(i), given Ī > , choose I so that I ≥ Ī , provided

I(t)

 > max

{
MK(ε)

ε
;

MK(ε)
ε

;
MK(ε)

ε
; 

}
,

we have
∣
∣∣∣
xψ(x)

I 


∣
∣∣∣ < ε + λ


 ε;

∣
∣∣∣
xψ(x)

I 


∣
∣∣∣ < ε + λ


 C

∞ε;
∣
∣∣∣
xψ ′(x)

I 


∣
∣∣∣ < ε + λ


 C

∞ε.

Since ε >  is arbitrary the proof of (i) is complete.
(ii) By (.), (H), Lemma .(iv), and ψ ′() = , it follows that

∣
∣∣
∣
yψ(x)

I 


∣
∣∣
∣ ≤ |y|K(ε)

I 


+
ε|y||x|

I 


≤ (λI) 
 S∞K(ε)

I 


+
ελIC∞S∞

I 


≤ λ

 S∞K(ε)

I 


+
λC∞S∞ε

I 


;
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∣∣
∣∣
yxψ ′(x)

I 


∣∣
∣∣ ≤ μ|y|

I 


≤ μ(λI) 
 S∞

I 


≤ μλ

 S∞

I 


;

∣
∣∣
∣
yψ ′(x)

I 


∣
∣∣
∣ ≤

∣
∣∣
∣
yψ ′()

I 


∣
∣∣
∣ +

y|xψ ′(x)|
|x|I 


≤ y|xψ ′(x)|

|x|I 


,

so we have

∣
∣∣∣
yψ ′(x)

I 


∣
∣∣∣ ≤ y|xψ ′(x)|

I 
 (λI) 

 C∞
≤ (λI) 

 S∞μ

I 
 (λI) 

 C∞
=

λS∞μ

I 
 C∞

≤ λS∞μ

I 
 C∞

.

Consequently, by using Lemma .(i), given Ī > , choose I so that I ≥ Ī , provided

I(t)

 > max

{
λ


 S∞K(ε)

ε
;
μλ


 S∞
ε

;
(

λS∞μ

C∞ε

)

; 
}

,

we have

∣∣∣
∣
yψ(x)

I 


∣∣∣
∣ < ( + λC∞S∞)ε;

∣∣∣
∣
yxψ ′(x)

I 


∣∣∣
∣ < ε;

∣∣∣
∣
yψ ′(x)

I 


∣∣∣
∣ < ε.

Since ε >  is arbitrary, (ii) is proved. �

Lemma . The following limits hold uniformly over t ∈ [, π ]:
(i) yq′(y)xf (x)

I



→ ; yq(y)f (x)

I



→ ; q(y)f (x)x

I



→ , as I → +∞;

(ii) yq(y)xf ′(x)

I



→ ; q(y)xf ′(x)

I



→ ; yq(y)f ′(x)

I



→ ; q′(y)f (x)x

I



→ , as I → +∞.

Proof (i) By Remark ., Remark ., (.), and Lemma .(iv), we know that

∣
∣∣
∣
yq′(y)xf (x)

I 


∣
∣∣
∣ ≤ ab( + |y|σ )( + |x|γ )

I 


≤ ab
I 


+

abλ
γ
 Cγ

∞
I

–γ


+
abλ

σ
 Sσ∞

I –σ


+
abλ

σ+γ
 Cγ

∞Sσ∞
I

–σ–γ


;

∣
∣∣
∣
yq(y)f (x)

I 


∣
∣∣
∣ ≤ ab|y|( + |y|σ )( + |x|γ )

I 


≤ abλ

 S∞

I 


+
abλ

+γ
 S∞Cγ

∞
I

–γ


+
abλ

+σ
 Sσ+∞

I –σ


+
abλ

+σ+γ
 Cγ

∞Sσ+∞
I

–σ–γ


;

∣
∣∣
∣
q(y)f (x)x

I 


∣
∣∣
∣ ≤ ab( + |y|σ )( + |x|γ )|x|

I 


≤ abλC∞
I 


+

abλ
σ+

 Sσ∞C∞
I

–γ


+
abλ

+γ
 C+γ

∞
I –σ


+

abλ
σ+γ +

 Cγ +
∞ Sσ∞

I
–σ–γ


.

Noting that  < γ < ,  < σ < 
 , and σ + γ < , it follows that the conclusions of (i) are

established by virtue of Lemma . and Lemma .(i) as I 
 .
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(ii) From f ′() = q′() = , Remark ., Remark ., (.), and Lemma .(iv), we get

∣∣
∣∣
yq(y)xf ′(x)

I 


∣∣
∣∣ ≤ ab|y|( + |y|σ )( + |x|γ )

I 


≤ abλ

 S∞

I 


+
abλ

+γ
 S∞Cγ

∞
I

–γ


+
abλ

+σ
 Sσ+∞

I –σ


+
abλ

+σ+γ
 Cγ

∞Sσ+∞
I

–σ–γ


;

∣∣
∣∣
q(y)xf ′(x)

I 


∣∣
∣∣ ≤ ab( + |y|σ )( + |x|γ )|x|

I 


≤ abλ

 C∞
I

+
abλ

+γ
 C+γ

∞
I

–γ


+
abλ

+σ
 C∞Sσ∞

I –σ


+
abλ

σ++γ
 C+γ

∞ Sσ∞
I

–σ–γ


;

∣∣
∣∣
yq(y)f ′(x)

I 


∣∣
∣∣ ≤ |yq(y) · f ′()|

I 


+
|yq(y)xf ′(x)|

|x|I 


≤ ab( + |y|σ )|y|( + |x|γ )
|x|I 


;

∣
∣∣
∣
q′(y)f (x)x

I 


∣
∣∣
∣ ≤

∣
∣∣
∣
q′()f (x)x

I 


∣
∣∣
∣ +

|yq′(y)f (x)x|
|y|I 



≤ ab( + |y|σ )( + |x|γ )|x|
|y|I 


,

then we further obtain

∣
∣∣
∣
yq(y)f ′(x)

I 


∣
∣∣
∣ ≤ ab( + |y|σ )|y|( + |x|γ )

λ

 I 

 C∞

≤ abλC–∞S∞
I 


+

abλ
+γ

 Cγ –
∞ S∞

I
–γ


+

abλ
+σ

 C–∞S+σ∞
I –σ



+
abλ

+σ+γ
 Cγ –

∞ S+σ∞
I

–σ–γ


;

∣∣
∣∣
q′(y)f (x)x

I 


∣∣
∣∣ ≤ ab( + |y|σ )( + |x|γ )|x|

I 
 λ


 I 

 S∞

≤ abλ

 C∞S–∞
I 


+

abλ
+γ

 C+γ
∞ S–∞

I
–γ


+

abλ
+σ

 C∞Sσ–∞
I –σ



+
abλ

σ++γ
 C+γ

∞ Sσ–∞
I

–σ–γ


.

In the same way, by the facts  < γ < ,  < σ < 
 , and σ + γ < , we can draw the conclu-

sions of (ii) in view of Lemma . and Lemma .(i) as I 
 . �

For any t ∈ [, π ], we put

a(t) =
∂


∂I

=


αλ


 I– 

 –
x((ψ(x) – p(t)) – xψ ′(x))

I +
xf ′(x)q(y)

I +
xf (x)(yq′(y) – q(y))

I ;
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a(t) =
∂


∂θ

=
y(xψ ′(x) + ψ(x) – p(t))

ωλ

 I 


+

yq(y)(f (x) + xf ′(x))
ωλ


 I 


+

q′(y)f (x)(αx+ + βx–)
ωλ


 I 


;

a(t) =
∂


∂I

= –
y(xψ ′(x) + ψ(x) – p(t))

ωλ

 I 


–

yq(y)(f (x) + xf ′(x)) + yq′(y)f (x)
ωλ


 I 


;

a(t) =
∂


∂θ

=
(βx– – αx+)(ψ(x) – p(t) + f (x)q(y) + yf (x)q′(y))

ω(λI) 


+
y(ψ ′(x) + f ′(x)q(y))

ω(λI) 


.

As a consequence of Lemma .(i), Lemma ., and Lemma ., we have the following.

Lemma . For I large enough and ∀t, s ∈ [, π ], the following conclusions hold:
(i) a(t) = o( 

I





);

(ii) a(t) = o(), a(t) = o();
(iii) a(t) · a(s) = o().
For ∀t ∈ [, π ], consider the variational equation of (.) with respect to the initial

value I, we have

θ̇I = a(t)
∂I
∂I

+ a(t)
∂θ

∂I
, İI = a(t)

∂I
∂I

+ a(t)
∂θ

∂I
. (.)

Combining the previous estimates, we have the following.

Lemma . For all t ∈ (, π ], I → +∞, the following conclusions hold true:
(i) θI (t; θ, I) → ;

(ii) II (t; θ, I) =  + o();
(iii) θθ (t; θ, I) =  + o().

Proof From the variational equations (.) and Lemma ., one has

θI (t) = e
∫ t

 a(s) ds
∫ t


e–

∫ s
 a(t) dta(s)II (s) ds

=
(
 + o()

)∫ t


a(s)II (s) ds;

II (t) = e
∫ t

 a(s) ds
(

 +
∫ t


e–

∫ s
 a(t) dta(s)θI (s) ds

)

=  + o() +
(
 + o()

)∫ t


a(s)

(∫ s


a(t)II (t) dt

)
ds

=  + o() + o()
∫ t



∫ s


II (t) dt ds.

Hence, for all t ∈ (, π ], as I → +∞, we have II (t) =  + o() and θI (t) = ( +
o())

∫ t
 a(s) ds → . Thus, (i) and (ii) are proved.
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To verify (iii), considering the variational equation of (.) about θ, one obtains

θ̇θ = a(t)
∂I
∂θ

+ a(t)
∂θ

∂θ
, İθ = a(t)

∂I
∂θ

+ a(t)
∂θ

∂θ
. (.)

Using similar arguments in (ii), we deduce that θθ (t; θ, I) =  + o() for ∀t ∈ (, π ], as
I → +∞. This completes the proof of Lemma .. �

The following lemma gives an estimate of lower bound for a(t).

Lemma . For all t ∈ [, π ] and I large enough, there exists a constant Ld > , such that

∣∣a(t)
∣∣ ≥ Ld

I 
 (t)

.

Moreover,

a(t) > .

Proof According to condition (H), we can assume

∣∣ψ(x)
∣∣ ≤ μ|x| + c,

where c >  is a constant. Then, by (H) and (.), we have

∣∣
∣∣
x((ψ(x) – p(t)) – xψ ′(x))

I

∣∣
∣∣ ≤

∣∣
∣∣
μλ


 C∞

I 


+
(c + p∞ + μ)λ 

 C∞
I 



∣∣
∣∣ := a(I).

Similar to the proof of Lemma ., we have

∣∣
∣∣
xf ′(x)q(y)

I

∣∣
∣∣ ≤

∣∣
∣∣
abλ


 C∞

I 


+
abλ

+γ
 C+γ

∞
I

–γ


+
abλ

+σ
 C∞Sσ∞

I –σ


+
abλ

σ++γ
 C+γ

∞ Sσ∞
I

–σ–γ


∣∣
∣∣

:= a(I);
∣
∣∣
∣
xf (x)(yq′(y) – q(y))

I

∣
∣∣
∣ ≤

∣
∣∣
∣
ab
I +

abλ
γ
 Cγ

∞
I

–γ


+
abλ

σ
 Sσ∞

I –σ


+
abλ

σ+γ
 Cγ

∞Sσ∞
I

–σ–γ


∣
∣∣
∣

:= a(I).

By  < γ < ,  < σ < 
 , σ + γ < , and Lemma .(i), we can choose I large enough so

that

αλ



I 


– a(I) – a(I) – a(I) ≥ .

Hence

a(t) > .
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Further,

∣
∣a(t)

∣
∣ =

∣∣
∣∣



αλ


 I– 

 –
x((ψ(x) – p(t)) – xψ ′(x))

I

+
xf ′(x)q(y)

I +
xf (x)(yq′(y) – q(y))

I

∣∣
∣∣

≥ αλ



I 


+
αλ




I 


– a(I) – a(I) – a(I)

≥ λ

 α

I 
 (t)

.

Thus, if we take Ld = λ

 α
 , we see |a(t)| ≥ Ld

I

 (t)

. �

Therefore, combining the above discussions and Lemma .(i), we see that

θI (π ) =
(
 + o()

)∫ π


a(s) ds ≥ (

 + o()
) πLd

(kI) 


> 

if I large enough.
Hence, the Poincaré map has the monotone twist property for all I large enough. This

completes the proof of Theorem ..
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