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Abstract
In this paper, we introduce a perturbed composite implicit iterative process with
errors for a finite family of asymptotically nonexpansive mappings. Under Opial’s
condition, semicompact and lim infn→∞ d(xn, F(T )) = 0 conditions, respectively, we
prove that this iterative scheme converges weakly or strongly to a common fixed
point of a finite family of asymptotically nonexpansive mappings in uniformly convex
Banach spaces. The results presented in this paper generalize and improve the
corresponding results of Sun (J. Math. Anal. Appl. 286:351-358, 2003), Chang (J. Math.
Anal. Appl. 313:273-283, 2006), Gu (J. Math. Anal. Appl. 329:766-776, 2007), Thakur
(Appl. Math. Comput. 190:965-973, 2007), Rafiq (Rostock. Math. Kolloqu. 62:21-39,
2007) and some others.
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1 Introduction
Let E be a real Banach space, K be a nonempty convex subset of E. Let {T,T, . . . ,TN }
be a finite family of mappings from K into itself, and F(Ti) be the set of fixed points of Ti

(i ∈ I = {, , . . . ,N}). F(T) denotes the set of common fixed points of {T,T, . . . ,TN }.
Recently, Xu and Ori [] have introduced an implicit iteration process for a finite family

of nonexpansive mappings as follows:

xn = αnxn– + ( – αn)Tnxn, ∀n≥ , ()

where Tn = Tn(modN) (here the modN function takes values in I), {αn} be a real sequence
in [, ], x be an initial point in K .
Sun [] have extended this iterative process defined by Xu and Ori to a new iterative

process for a finite family of asymptotically nonexpansive mappings, which is defined as
follows:

xn = αnxn– + ( – αn)Tk
i xn, n≥ , ()

where n = (k – )N + i, i ∈ I .
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Chang [] have discussed the convergence of the implicit iteration process with errors
for a finite family of asymptotically nonexpansive mappings as follows:

xn = αnxn– + ( – αn)Tk(n)
i(n) xn + un, n≥ , ()

where n = (k(n) – )N + i(n), i(n) ∈ I , and k(n) ≥  with k(n) → ∞ as n → ∞. Under the
hypotheses

∑∞
n= ‖un‖ < ∞ and some appropriate conditions, they proved some results of

weak and strong convergence for {xn} defined by (). However, the condition
∑∞

n= ‖un‖ <
∞ is not too reasonable, because this implies that {un} are very small for n sufficiently big.
Gu [] has extended the above implicit iteration processes. A composite implicit itera-

tion process with random errors was introduced as follows:

⎧⎨
⎩xn = ( – αn – γn)xn– + αnTnyn + γnun, n≥ ;

yn = ( – βn – δn)xn + βnTnxn + δnvn, n≥ ,
()

where {αn}, {βn}, {γn}, {δn} are four real sequences in [, ] satisfying αn + γn ≤  and βn +
δn ≤  for all n ≥ , {un}, {vn} are two sequences in K and x is an initial point. Some
theorems were established on the strong convergence of the composite implicit iteration
process defined by () for a finite family of mappings in real Banach spaces.
Thakur [] has improved the composite implicit iteration process defined by () as fol-

lows:
⎧⎨
⎩xn = ( – αn)xn– + αnTk(n)

i(n) yn, n≥ ;

yn = ( – βn)xn + βnTk(n)
i(n) xn, n≥ .

()

Some theorems were proved on the weak and strong convergence of the composite im-
plicit iteration process defined by () for a finite family of mappings in real uniformly con-
vex Banach spaces.
Rafiq [] have improved the implicit iterative process. The Mann type implicit iteration

process was introduced in Hilbert spaces as follows:

xn = αnxn– + ( – αn)Tvn, n≥ , ()

where vn is a perturbation of xn, and satisfy
∑

n≥ ‖xn – vn‖ < ∞. Moreover, Ciric [] also
did some work in this respect.
Inspired and motivated by the above works, in this paper we will extend and improve

the above iterative process to a perturbed composite implicit iterative process for a finite
family of asymptotically nonexpansive mappings as follows:

⎧⎨
⎩xn = ( – αn – γn)xn– + αnTk(n)

i(n) yn + γnun, n≥ ;

yn = ( – βn – δn)xn– + βnTk(n)
i(n) x̃n + δnvn, n ≥ ,

()

where n = (k(n) – )N + i(n), i(n) ∈ I , Tn = Tn(modN), {αn}, {βn}, {γn}, {δn} are four real
sequences in [, ] satisfying αn + γn ≤  and βn + δn ≤  for all n ≥ , {un}, {vn} are two
sequences inK and x is an initial point. {x̃n} be a sequence inK satisfying

∑
n≥ ‖xn– x̃n‖ <
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∞, which implies that ‖xn – x̃n‖ →  (n→ ∞). Therefore, x̃n is known as the perturbation
of xn, and {x̃n} is known as the perturbed sequence of {xn}. This sequence {xn} defined by
() is said to be the perturbed composite implicit iterative sequence with random errors.
Especially, (I) in the iterative process defined by (), when βn = , δn =  for all n≥ , we

have

xn = ( – αn – γn)xn– + αnTk(n)
i(n) xn– + γnun, n≥ . ()

At this time, the perturbed composite implicit iterative sequence generated by () becomes
a Mann-type iterative sequence with random errors.
(II) In the iterative process defined by (), when βn = , δn =  for all n ≥ , we have

xn = ( – αn – γn)xn– + αnTk(n)
i(n) x̃n + γnun, n≥ . ()

At this time, the perturbed composite implicit iterative sequence generated by () becomes
a perturbed implicit iterative sequence with random errors.
(III) In the iterative process defined by (), when xn– = x̃n for all n≥ , we have

⎧⎨
⎩xn = ( – αn – γn)xn– + αnTk(n)

i(n) yn + γnun, n≥ ;

yn = ( – βn – δn)xn– + βnTk(n)
i(n) xn– + δnvn, n≥ .

()

At this time, the perturbed composite implicit iterative sequence generated by () becomes
an Ishikawa-type iterative sequence with random errors for a finite family of asymptoti-
cally nonexpansive mappings {Ti, i ∈ I}.
From the above iterative processes defined by ()-() and ()-(), we know that the it-

erative process () improves and extends some iterative process introduced by the recent
literature. Moreover, we point out that the iterative process, defined by (), in which it is
not necessary to compute the value of the given operator at xn, but compute an approxi-
mate point of xn, are particularly useful in the numerical analysis. Therefore, the iterative
sequence generated by () is better than some implicit iterative sequences at the existent
aspect.
The main purpose of this paper is to study the convergence of the perturbed composite

implicit iterative sequence {xn} defined by () for a finite family of asymptotically nonex-
pansive mappings under Opial’s condition, semicompact and lim infn→∞ d(xn,F(T)) = 
conditions, respectively. The results presented in this paper generalized and improve the
corresponding results of Sun [], Chang [], Gu [], Thakur [], Rafiq [], and some others
[, –].

2 Preliminaries
For the sake of convenience, we first recall some definitions and conclusions.

Definition . Let K be a closed subset of the real Banach space E and T : K → K be a
mapping.
. T is said to be semicompact, if for any bounded sequence {xn} in K such that

‖Txn – xn‖ →  (n→ ∞), then there exists a subsequence {xni} of {xn} such that
xni → x∗ ∈ E;

http://www.fixedpointtheoryandapplications.com/content/2013/1/97
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. T is said to be demiclosed at the origin, if for each sequence {xn} in K , the
conditions xn ⇀ x weakly and Txn →  strongly imply Tx = ;

. T is said to be asymptotically nonexpansive, if there exists a sequence hn ∈ [, +∞)
with limn→∞ hn =  such that

∥∥Tnx – Tny
∥∥ ≤ hn‖x – y‖, ∀x, y ∈ K ,n ≥ . ()

. Let T is said to be uniformly L-Lipschitizian if there exists a constant L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀x, y ∈ E,n≥ .

Definition . [] A Banach space X is said to satisfy Opial’s condition if xn ⇀ x weakly
as n→ ∞ and x 
= y imply that lim supn→∞ ‖xn – x‖ < lim supn→∞ ‖xn – y‖.

Lemma . Let K be a nonempty subset of E, T,T, . . . ,TN : K → K be N asymptotically
nonexpansive mappings. Then

(i) there exists a sequence {hn} ⊂ [, +∞) with limn→∞ hn =  such that

∥∥Tn
i x – Tn

i y
∥∥ ≤ hn‖x – y‖, ∀x, y ∈ K , i ∈ I,n≥ ; ()

(ii) {T,T, . . . ,TN } is uniformly Lipschitzian, i.e., there exists a constant L such that

∥∥Tn
i x – Tn

i y
∥∥ ≤ L‖x – y‖, ∀x, y ∈ K , i ∈ I,n≥ . ()

Proof SinceT,T, . . . ,TN : K → K areN asymptotically nonexpansivemappings, then for
every i ∈ I and n ∈N , there exists h(i)n ∈ [, +∞) with limn→∞ h(i)n =  such that

∥∥Tn
i x – Tn

i y
∥∥ ≤ h(i)n ‖x – y‖, ∀x, y ∈ E.

Taking hn =max{h()n ,h()n , . . . ,h(N)
n }, then hn ⊂ [, +∞), limn→∞ hn =  and () holds.

An asymptotically nonexpansive mapping must is a uniformly Lipschitzian mapping.
Hence, for every i ∈ I and n ∈N , there exists Li such that

∥∥Tn
i x – Tn

i y
∥∥ ≤ Li‖x – y‖, ∀x, y ∈ E.

Taking L =max{L,L, . . . ,LN }, it is obvious that () holds. �

Lemma . [] Let E be a uniformly convex Banach space, K be a nonempty, closed and
convex subset of E and T : K → K be an asymptotically nonexpansive mapping. Then I –T
is demi-closed at zero, i.e., for each sequence {xn} in K , if {xn} convergence weakly to q ∈ E
and {(I – T)xn} converges strongly to , then (I – T)q = .

Lemma . [] Let E be a Banach space satisfying Opial’s condition, {xn} be a sequence
in E. Let u, v ∈ E be such that limn→∞ ‖xn –u‖ and limn→∞ ‖xn – v‖ exist. If {xnk } and {xnl }
are two subsequences of {xn} which converge weakly to u and v, respectively, then u = v.

http://www.fixedpointtheoryandapplications.com/content/2013/1/97
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Lemma . [] Let E be a uniformly convex Banach space, b, c be two constants with  <
b < c < . Suppose that {tn} is a sequence in [b, c] and {xn}, {yn} are two sequences in E. Then
the conditions limn→∞ ‖tnxn + ( – tn)yn‖ = d, lim supn→∞ ‖xn‖ ≤ d, lim supn→∞ ‖yn‖ ≤ d
imply that limn→∞ ‖xn – yn‖ = , where d is a nonnegative constant.

Lemma . [] Let {an}, {bn}, {δn} are three sequences of nonnegative real numbers, if
there exists n such that

an+ ≤ ( + δn)an + bn, ∀n > n,

where
∑∞

n= δn < ∞ and
∑∞

n= bn <∞. Then
(i) limn→∞ an exists;
(ii) limn→∞ an =  whenever lim infn→∞ an = .

Lemma . Let E be a real Banach space and K be a nonempty closed convex sub-
set of E. Let T,T, . . . ,TN : K → K be N asymptotically nonexpansive mappings with
F(T) =

⋂N
i= F(Ti) 
= ∅. Let {un} and {vn} are two bounded sequences in K . If {αn}, {βn},

{γn}, {δn} be four real sequences in [, ] satisfying the following conditions:
(i) αn + γn ≤  and βn + δn ≤  for all n≥ ;
(ii) lim supn→∞ αn = α <  or lim supn→∞ βn = β < ;
(iii)

∑∞
n= γn < ∞,

∑∞
n= δn < ∞,

∑∞
n=(hn – ) < ∞;

(iv)
∑∞

n= ‖x̃n – xn‖ < ∞.
Let {xn} be the perturbed composite implicit iterative sequence defined by (), then
limn→∞ ‖xn – p‖ exists for all p ∈ F(T).

Proof Take p ∈ F(T), it follows from () and Lemma . that

‖xn – p‖ ≤ ∥∥( – αn – γn)xn– + αnTk(n)
i(n) yn + γnun – p

∥∥
≤ ( – αn – γn)‖xn– – p‖ + αnhn‖yn – p‖ + γn‖un – p‖ ()

and

‖yn – p‖ ≤ ∥∥( – βn – δn)xn– + βnTk(n)
i(n) x̃n + δnvn – p

∥∥
≤ ( – βn – δn)‖xn– – p‖ + βnhn‖x̃n – p‖ + δn‖vn – p‖
≤ ( – βn – δn)‖xn– – p‖ + βnhn‖x̃n – xn‖ + βnhn‖xn – p‖ + δn‖vn – p‖. ()

Substituting () into () and simplifying, we obtain

(
 – αnβnhn

)‖xn – p‖ ≤ [
 – αn – γn + αnhn( – βn – δn)

]‖xn– – p‖
+ αnβnhn‖x̃n – xn‖ + αnδnhn‖vn – p‖ + γn‖un – p‖. ()

We notice the hypotheses on {αn}, {βn} and {hn}, by lim supn→∞ αn = α < , there exists
n ∈N such that

 – αnβnhn ≥  – αnhn ≥ 

( – α) > , n≥ n.

http://www.fixedpointtheoryandapplications.com/content/2013/1/97
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It follows from () that for n≥ n

‖xn – p‖ ≤  – αn – γn + αnhn( – βn – δn)
 – αnβnhn

‖xn– – p‖

+


 – αnβnhn

(
αnβnhn‖x̃n – xn‖ + αnδnhn‖vn – p‖ + γn‖un – p‖)

≤
[
 +

αnβnhn – αn + αnhn( – βn)
 – αnβnhn

]
‖xn– – p‖

+


 – α

(
αnβnhn‖x̃n – xn‖ + αnδnhn‖vn – p‖ + γn‖un – p‖)

≤
{
 +


 – α

[
αnβnhn(hn – ) + αn(hn – )

]}‖xn– – p‖

+


 – α

(
αnβnhn‖x̃n – xn‖ + αnδnhn‖vn – p‖ + γn‖un – p‖).

Hence, we have

‖xn – p‖ ≤ ( + θn)‖xn– – p‖ + ηn, n≥ n, ()

where

θn =


 – α

[
αnβnhn(hn – ) + αn(hn – )

]
, n≥ n

and

ηn =


 – α

(
αnβnhn‖x̃n – xn‖ + αnδnhn‖vn – p‖ + γn‖un – p‖), n ≥ n.

From condition (iii), it is obvious that
∑∞

n= θn < ∞. In addition, since {‖un‖}, {‖vn‖} are
all bounded, we deduce that

∑∞
n= ηn < ∞ form (iii)-(iv). By virtue of () and Lemma .,

we obtain that limn→∞ ‖xn – p‖ exists. This completes the proof of Lemma .. �

3 Main results and proofs
Theorem. Let E be a real Banach space and K be a nonempty, closed and convex subset
of E. Let T,T, . . . ,TN : K → K be N asymptotically nonexpansive mappings with F(T) =⋂N

i= F(Ti) 
=∅. Let {un} and {vn} are two bounded sequences in K . If {αn}, {βn}, {γn}, {δn}
be four real sequences in [, ] satisfying the following conditions:

(i) αn + γn ≤  and βn + δn ≤  for all n≥ ;
(ii) lim supn→∞ αn <  or lim supn→∞ βn < ;
(iii)

∑∞
n= γn < ∞,

∑∞
n= δn < ∞,

∑∞
n=(hn – ) < ∞;

(iv)
∑∞

n= ‖x̃n – xn‖ < ∞.
Then the perturbed composite implicit iterative sequence {xn} defined by () converges
strongly to a common fixed point of {T,T, . . . ,TN } if and only if lim infn→∞ d(xn,F(T)) = .

Proof The necessity of Theorem . is obvious. Now we prove the sufficiency of Theo-
rem ..

http://www.fixedpointtheoryandapplications.com/content/2013/1/97
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For arbitrary p ∈ F(T), it follows from () in Lemma . that

‖xn – p‖ ≤ ( + θn)‖xn– – p‖ + ηn, ∀n≥ n,

where
∑∞

n= θn <∞ and
∑∞

n= ηn <∞. Hence, we have

d
(
xn,F(T)

) ≤ ( + θn)d
(
xn–,F(T)

)
+ ηn, ∀n≥ n. ()

It follows from () andLemma. that limit limn→∞ d(xn,F(T)) exists. By the assumption,
we have limn→∞ d(xn,F(T)) = . Consequently, for any given ε > , there exists a positive
integer N (N > n) such that

d
(
xn,F(T)

)
<

ε


,

∞∑
k=n

ηk <
ε


,

∞∑
k=n

θk < , ∀n≥ N,

and there exists p ∈ F(T) such that ‖xn – p‖ < ε/, ∀n ≥ N. By () and the inequality
 + x ≤ ex (x≥ ), for any n≥ N and allm ≥ , we have

‖xn+m – xn‖ ≤ exp{θn+m–}‖xn+m– – p‖ + ηn+m– + ‖xn – p‖
≤ exp{θn+m– + θn+m–}‖xn+m– – p‖ + exp{θn+m–}ηn+m–

+ ηn+m– + ‖xn – p‖ ≤ · · ·

≤
[
exp

{n+m–∑
k=n

θk

}
+ 

]
‖xn – p‖ + exp

{n+m–∑
k=n

θk

} n+m–∑
k=n

ηk < ε.

Hence, {xn} is a Cauchy sequence in E. By the completeness of E, we can assume that
xn → x∗ ∈ K . Next we prove that F(T) is a close subset of K . Let {pn} is a sequence in F(T)
which converges strongly to some p, then we have for any i ∈ I

‖p – Tip‖ ≤ ‖p – pn‖ + ‖pn – Tip‖ ≤ ( + L)‖p – pn‖ →  (n→ ∞).

Thus, p ∈ F(T), and F(T) is closed. Since limn→∞ d(xn,F(T)) = , then x∗ ∈ F(T). Conse-
quently, {xn} defined by () converges strongly to a common fixed point of {T,T, . . . ,TN }
in K . This completes the proof of Theorem .. �

Theorem . Let E be a real uniformly convex Banach space satisfying Opial’s condition
and K be a nonempty closed convex subset of E. Let T,T, . . . ,TN : K → K be N asymp-
totically nonexpansive mappings with F(T) =

⋂N
i= F(Ti) 
= ∅. Let {un} and {vn} are two

bounded sequences in K . If {αn}, {βn}, {γn}, {δn} be four real sequences in [, ] satisfying
the following conditions:

(i) αn + γn ≤  and βn + δn ≤  for all n≥ ;
(ii)  < lim infn→∞ αn ≤ lim supn→∞ αn < , lim supn→∞ βn < ;
(iii)

∑∞
n= γn < ∞,

∑∞
n= δn < ∞,

∑∞
n=(hn – ) < ∞;

(iv)
∑∞

n= ‖x̃n – xn‖ < ∞.
Then the perturbed composite implicit iterative sequence {xn} defined by () converges
weakly to a common fixed point of {T,T, . . . ,TN } in K .

http://www.fixedpointtheoryandapplications.com/content/2013/1/97
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Proof First, we prove that limn→∞ ‖xn – Tjxn‖ =  for all j ∈ I .
For any p ∈ F(T), it follows from Lemma . that limn→∞ ‖xn – p‖ exists. Suppose that

limn→∞ ‖xn – p‖ = d, we have from ()

lim
n→∞‖xn – p‖ = lim

n→∞
∥∥( – αn)

[
xn– – p + γn(un – xn–)

]
+ αn

[
Tk(n)
i(n) yn – p + γn(un – xn–)

]∥∥ = d. ()

Since limn→∞ ‖xn – p‖ = d, then {xn} be a bounded sequence. By virtue of the condition
(iii) and the boundedness of sequences {xn} and {un}, we have

lim sup
n→∞

∥∥xn– – p + γn(un – xn–)
∥∥

≤ lim sup
n→∞

‖xn– – p‖ + lim sup
n→∞

γn‖un – xn–‖ = d. ()

It follows from
∑∞

n= ‖x̃n – xn‖ < ∞ that limn→∞ ‖x̃n – p‖ = limn→∞ ‖xn – p‖ = d. We have

lim sup
n→∞

∥∥Tk(n)
i(n) yn – p + γn(un – xn–)

∥∥
≤ lim sup

n→∞
hn‖yn – p‖ + lim sup

n→∞
γn‖un – xn–‖

≤ lim sup
n→∞

[
( – βn – δn)‖xn– – p‖ + βnhn‖x̃n – p‖ + δn‖vn – p‖] = d. ()

Therefore, by (), (), (), (ii) and Lemma ., we obtain that

lim
n→∞

∥∥Tk(n)
i(n) yn – xn–

∥∥ = .

Hence,

lim
n→∞‖xn – xn–‖ ≤ lim

n→∞
[
αn

∥∥Tk(n)
i(n) yn – xn–

∥∥ + γn‖un – xn–‖
]
= , ()

which implies that limn→∞ ‖xn – xn+j‖ =  for all j ∈ I . On the other hand, we also have

lim
n→∞

∥∥Tk(n)
i(n) xn – xn

∥∥ ≤ lim
n→∞

[‖xn – xn–‖ +
∥∥xn– – Tk(n)

i(n) yn
∥∥ +

∥∥Tk(n)
i(n) yn – Tk(n)

i(n) xn
∥∥]

≤ lim
n→∞hn‖yn – xn‖ ≤ lim

n→∞‖yn – xn–‖ + lim
n→∞‖xn – xn–‖

≤ lim
n→∞

[
βn

∥∥Tk(n)
i(n) x̃n – xn–

∥∥ + δn‖vn – xn–‖
]

≤ lim
n→∞

[
βn

∥∥Tk(n)
i(n) x̃n – Tk(n)

i(n) xn
∥∥ + βn

∥∥Tk(n)
i(n) xn – xn–

∥∥]
≤ lim

n→∞
[
βnhn‖x̃n – xn‖ + βn

∥∥Tk(n)
i(n) xn – xn

∥∥ + βn‖xn– – xn‖
]
. ()

It follows from (), (), conditions (ii) and (iv) that

lim
n→∞

∥∥Tk(n)
i(n) xn – xn

∥∥ = . ()
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Since for each n > N , n = (n –N)(modN), n = (k(n) – )N + i(n), hence n –N = [(k(n) –
) – ]N + i(n –N), i.e. k(n –N) = k(n) –  and i(n –N) = i(n). Therefore, we have

∥∥Tk(n)–
n xn – Tk(n)–

n–N xn–N
∥∥ =

∥∥Tk(n)–
n xn – Tk(n)–

n xn–N
∥∥ ≤ L‖xn – xn–N‖ ()

and

∥∥Tk(n)–
n–N xn–N – xn–N

∥∥ =
∥∥Tk(n–N)

n–N xn–N – xn–N
∥∥. ()

In view of () and (), we have

‖xn– – Tnxn‖ ≤ ∥∥xn– – Tk(n)
n xn

∥∥ +
∥∥Tnxn – Tk(n)

n xn
∥∥

≤ ‖xn – xn–‖ +
∥∥xn – Tk(n)

n xn
∥∥ + L

∥∥xn – Tk(n)–
n xn

∥∥
≤ ‖xn – xn–‖ +

∥∥xn – Tk(n)
n xn

∥∥
+ L

(∥∥Tk(n)–
n xn – Tk(n)–

n–N xn–N
∥∥ +

∥∥Tk(n)–
n–N xn–N – xn

∥∥)
≤ ‖xn – xn–‖ +

∥∥xn – Tk(n)
n xn

∥∥
+

(
L + L

)‖xn – xn–N‖ + L
∥∥Tk(n–N)

n–N xn–N – xn–N
∥∥. ()

From () and (), it is obviously that limn→∞ ‖xn– – Tnxn‖ = , which implies that

lim
n→∞‖xn – Tnxn‖ ≤ lim

n→∞
(‖xn– – Tnxn‖ + ‖xn – xn–‖

)
= .

Consequently, we obtain that for all i ∈ I

‖xn – Tn+ixn‖ ≤ ‖xn – xn+i‖ + ‖xn+i – Tn+ixn+i‖ + ‖Tn+ixn+i – Tn+ixn‖
≤ ( + L)‖xn – xn+i‖ + ‖xn+i – Tn+ixn+i‖ →  (n→ ∞). ()

By virtue of (), we have limn→∞ ‖xn – Tixn‖ =  for all i ∈ I .
Since E is uniformly convex, every bounded subset of E is weakly compact. Again since

{xn} is a bounded subset in K , there exists a subsequence {xnk } of {xn} such that {xnk }
converges weakly to q in K , and limnk→∞ ‖xnk – Tixnk‖ =  for all i ∈ I . By Lemma ., we
have that (I – Ti)q = . Hence, q ∈ F(Ti) for all i ∈ I . Therefore, q ∈ F(T).
Next, we prove that {xn} converges weakly to q. Suppose that contrary, then there exists

a subsequence {xnj} of {xn} such that {xnj} converges weakly to q ∈ K and q 
= q. Using
the same method, we can prove that q ∈ F(T) and limit limn→∞ ‖xn – q‖ exists. Without
loss generality, we assume that limn→∞ ‖xn – q‖ = d, limn→∞ ‖xn – q‖ = d, where d, d
are two nonnegative constants. By virtue of the Opial’s condition of E, we have

d = lim sup
nk→∞

‖xnk – q‖ < lim sup
nk→∞

‖xnk – q‖ = lim sup
n→∞

‖xn – q‖

= lim sup
nj→∞

‖xnj – q‖ < lim sup
nj→∞

‖xnj – q‖ = d.

This is contradictory. Hence, q = q, which implies that {xn} converges weakly to q. The
proof of Theorem . is completed. �
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Theorem . Let E be a real uniformly convex Banach space and K be a nonempty, closed
and convex subset of E. Let T,T, . . . ,TN : K → K be N asymptotically nonexpansive map-
pings with F(T) =

⋂n
i= F(Ti) 
=∅ and at least there exists Ti (i ∈ I), it is semicompact. Let

{un} and {vn} are two bounded sequences in K . If {αn}, {βn}, {γn}, {δn} be four real sequences
in [, ] satisfying the following conditions:

(i) αn + γn ≤  and βn + δn ≤  for all n≥ ;
(ii)  < lim infn→∞ αn ≤ lim supn→∞ αn < , lim supn→∞ βn < ;
(iii)

∑∞
n= γn < ∞,

∑∞
n= δn < ∞,

∑∞
n=(hn – ) < ∞;

(iv)
∑∞

n= ‖x̃n – xn‖ < ∞.
Then the perturbed composite implicit iterative sequence {xn} defined by () converges
strongly to a common fixed point of {T,T, . . . ,TN } in K .

Proof Without loss of generality, we assume that T is semicompact. By Theorem ., we
have limn→∞ ‖xn – Txn‖ = . Hence, there exists a subsequence {xnj} of {xn} such that
{xnj} → x∗ as j → ∞. Therefore, we have for all i ∈ I

∥∥Tix∗ – x∗∥∥ ≤ ∥∥Tix∗ – Tixnj
∥∥ + ‖Tixnj – xnj‖ +

∥∥xnj – x∗∥∥. ()

It follows from () that ‖Tix∗–x∗‖ =  for all i ∈ I . This implies that x∗ ∈ F(T). Therefore,
x∗ be a common fixed point of {Ti, i ∈ I}. By virtue of Lemma ., limn→∞ ‖xn – x∗‖ exists.
It follows from xnj → x∗ ∈ E that limn→∞ ‖xn – x∗‖ = . Hence, the perturbed composites
implicit iterative sequence {xn} generated by () strongly converges to a common fixed
point of {Ti, i ∈ I}. This completes the proof of Theorem .. �

Corollary . Let E be a real Banach space and K be a nonempty closed convex subset
of E. Let T,T, . . . ,TN : K → K be N asymptotically nonexpansive mappings with F(T) =⋂N

i= F(Ti) 
=∅ and let {un} is a bounded sequence in K . If {αn}, {γn} be two real sequences
in [, ] satisfying the following conditions:

(i) αn + γn ≤  for all n≥ ;
(ii) lim supn→∞ αn < ;
(iii)

∑∞
n= γn < ∞,

∑∞
n=(hn – ) < ∞;

(iv)
∑∞

n= ‖x̃n – xn‖ < ∞.
Then the perturbed implicit iterative sequence {xn} defined by () converges strongly to a
common fixed point of {T,T, . . . ,TN } if and only if lim infn→∞ d(xn,F(T)) = .

Proof It is enough to take βn = , δn =  for all n ∈N in Theorem .. �

Corollary . Let E be a real uniformly convex Banach space satisfying Opial’s condition
and K be a nonempty closed convex subset of E. Let T,T, . . . ,TN : K → K be N asymp-
totically nonexpansive mappings with F(T) =

⋂N
i= F(Ti) 
=∅ and let {un} is a bounded se-

quence in K . If {αn}, {γn} be two real sequences in [, ] satisfying the following conditions:
(i) αn + γn ≤  for all n≥ ;
(ii)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iii)

∑∞
n= γn < ∞,

∑∞
n=(hn – ) < ∞.

Then the Mann type iterative sequence {xn} defined by () converges weakly to a common
fixed point of {T,T, . . . ,TN } in K .
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Proof It is sufficient to take βn = δn =  for all n ∈ N in Theorem .. �

Corollary . Let E be a real uniformly convex Banach space and K be a nonempty closed
convex subset of E. Let T,T, . . . ,TN : K → K be N asymptotically nonexpansive mappings
with F(T) =

⋂n
i= F(Ti) 
=∅ and at least there exists Ti (i ∈ I), it is semicompact. Let {un} is

a bounded sequence in K . If {αn}, {γn} be two real sequences in [, ] satisfying the following
conditions:

(i) αn + γn ≤  for all n≥ ;
(ii)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iii)

∑∞
n= γn < ∞,

∑∞
n=(hn – ) < ∞.

Then the Mann type iterative sequence {xn} defined by () converges strongly to a common
fixed point of {T,T, . . . ,TN } in K .

Proof It is enough to take βn = δn =  for all n ∈N in Theorem .. �
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