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University Of Casablanca, BP 7955, travel-blocking operations, in the prevention of HIV/AIDS outbreaks, based on a

Sidi Othman, Casablanca, Morocco multi-domains SIR epidemic model. The model devised describes the
spatial-temporal spread of HIV/AIDS, in p neighboring domains, taking into account
the epidemiological diversity of their populations. For a first case of the study, we
focus on discussing the benefits of awareness campaigns that aim to raise public
consciousness among susceptible people, about the danger of HIV/AIDS. Thus, for
the reason that intra-domains interventions are not always sufficient to prevent
people belonging to a domain (neighborhood, town or city for example), from a rapid
expansion of HIV/AIDS, we propose the travel-blocking strategy, as a second
approach presenting inter-domains interventions that health-policy makers could
follow, by restricting the number of suspicious people that can participate in
spreading HIV/AIDS via travel, coming from domains at high-risk of infection to enter
domains with lower risk. The optimal control theory, based on Pontryagin's maximum
principle, is applied twice in this paper, for the characterizations of the awareness and
travel-blocking controls. The numerical results associated to the multi-points
boundary value problems are obtained based on the Forward-Backward Sweep
Method combined with progressive-regressive Runge-Kutta fourth-order schemes.
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1 Introduction

Human immunodeficiency virus infection and acquired immune deficiency syndrome
(HIV/AIDS) is among epidemics that affect people either living or working in extremely
poor regions of the entire terrestrial globe (25,800,000 people in sub-Saharan African
countries alone are living with HIV), while some important HIV/AIDS infection rates can
be observed also in the most affluent communities [1, 2]. Ayiro et al., in [3], aimed to ex-
plain the mutual relationship which exists between education and HIV/AIDS and how
they influence each other. Here we focus on the impact of education in HIV/AIDS based
on the organization of many educational workshops and by following different awareness

programs. Sometimes, in the case of the most-deadly diseases such as HIV/AIDS, it is
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in fact believed that awareness may represent the most effective social vaccine for con-
trolling this epidemic, in that it could help to increase the proportion of consciousness
amongst children and adults [4]. An awareness campaign can play a significant role to
influence young people for helping them to change their attitudes and sexual behaviors,
and for expanding their knowledge about HIV/AIDS infection and prevention. Educa-
tional workshops may also represent an occasion to explain to students the importance of
having regular blood sampling, and to present them treatment and care that are already
available if necessary. In short, educational workshops and awareness programs could rep-
resent powerful plans and strategic actions in the war against HIV/AIDS in many different
countries [5-10]. José Catalan et al. highlighted [11], the benefits of awareness programs
that can be advertised by the media, and led by some health associations and governmen-
tal institutions, to intervene as major players to promote the civil society in taking more
actions and making many efforts to decrease the HIV infection rate regionally and then
worldwide. The evolution of infectious diseases has been described and analyzed by many
mathematical modelers, while conventional mathematical modeling of the spread of the
disease has usually ignored or underestimated the importance of the spatial exposure of
an epidemic (see [12-16] and references therein). The importance of modeling the spatial
spread of an infectious disease can be highlighted by considering the Ebola outbreaks in
several sub-Saharan African countries [17]. Guinean infected people moved from one city
to another, and sometimes traveled to neighboring countries. After some infected cases
were reported in March 2014 in Liberia linked to some foreigners who entered the coun-
try, it took some time until the political decision was made of banning all movements
in Guinea in order to help contain the spread of the virus and prevent it from reaching
Liberia and other regions [18]. During that period, the infected cases had already been
divided among a large number of countries. The problem was exacerbated. Then, for con-
trolling the spatial spread of the disease, it is necessary to consider all parts that people
can visit. Thus, it is essential to integrate the spatial dynamics in models that attempt to
describe the spread of infectious diseases.

Optimal control theory has been applied to many diseases, mainly tuberculosis [19—
23], malaria [24, 25], HIV [26-33], hepatitis [34, 35], vector borne diseases [36], cancer
[37-42], and other diseases [43—-49]. The vaccination and treatment interventions in the
aforementioned studies, related to infectious diseases, were optimized for the case of a
particular domain (one city for instance), rather than talking about an optimal control
strategy in the case of more than one domain especially when a disease is transmitted
by people who travel from one domain to another. Hence, this work has a novel control
application in addition to providing a framework to analyze spatial control strategies.

The aim of this work is to consider an HIV/AIDS multi-domains SIR epidemic model
and to set up an optimal control approach for it. In order to show the effectiveness of
awareness strategies on reducing the number of HIV/AIDS infectives, a control function
is introduced into the model to represent the effectiveness rate of awareness programs on
susceptible population. Hence, the goal of the first optimal control (awareness program)
strategy is to minimize the infected and susceptible individuals, and to maximize the to-
tal number of recovered individuals in a specific domain (neighborhood, town or city) by
using the minimum possible cost of applying this control and simultaneously, to investi-
gate the sensitivity of the susceptible individuals by this control. We illustrate the numer-
ical results, obtained from the applied optimal control theory (i.e. Pontryagin’s maximum
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principle), and we show the effect of the percentage of the awareness variable (control) on
minimizing the number of susceptible and infected individuals and increasing the number
of the removed ones. Second, in order to show the importance of considering the spatial
spread of the epidemic, we show in the same section of simulations the influence of val-
ues of adequate contact proportions of domains at high-risk on a neighboring domain
that is characterized by less risk of infection. A second control variable that character-
izes the travel-blocking operation is added, and hereby it is attempted to block contacts
between susceptibles of the controlled domain (by awareness) and infected individuals
of domains at high-risk of infection with HIV/AIDS. After deriving the optimality sys-
tem associated to the multi-domains SIR model, we find two optimal control strategies.
The numerical results are simulated using the Forward-Backward Sweep Method with
integrated progressive-regressive Runge-Kutta fourth-order schemes associated to every
single domain.

In the following sections, we begin by describing the different components of the sug-
gested SIR epidemic model for HIV/AIDS, and afterward we choose to minimize two ob-
jective functionals. The sought solutions (optimal controls) related to the chosen mini-
mization criteria are simulated with their associated states in the numerical results sec-
tions. For the case when only the awareness control is used, the optimal control approach
is presented in Section 2. As regards the travel-blocking approach, the analysis of the opti-
mal control problem and numerical simulations are given in Section 3. Finally, we conclude
the paper in Section 4.

2 Presentation of the model with awareness control only

First of all, we should note that we suggested in [26] an SIR mathematical model with an
optimal control strategy that was aiming to show the impact of awareness programs in the
prevention of HIV/AIDS in only one domain (general case study that can be applied to only
one country, city, etc.). Here, we extend the study done in [26] by considering p domains
(neighborhoods, towns or cities) of the spread of the HIV/AIDS epidemic. The p domains
are characterized by different parameters of infection in order to show the influence of
domains at high risk of infection with HIV/AIDS, on a domain that is characterized by a
lower infection rate.

Consider an SIR model for HIV transmission in a population of individuals, and we as-
sume that there are p geographical sub-domains of the studied domain Q. Let 2 = Uﬁil Q.
According to the disease transmission mechanism, the host population of each domain €;
is grouped into three epidemiological compartments, S susceptible individuals, IY in-
fected individuals and RY individuals removed from the disease, i.e. people who are sexu-
ally inactive, or persons who have taken the necessary precautions to avoid infection. We
assume that the susceptible individuals are not yet infected with HIV but can be infected
through sexual contacts with infectives or become aware of the danger of the disease and
transfer to the removed class. In addition to the death and recruitment, there are pop-
ulation movements among those three epidemiological compartments. We assume that
the recruited individuals (by birth and immigration), in €;, are constant and enter the
susceptible compartment. In addition, we suppose that individuals who are out of their
domain do not give birth, and so birth occurs in the home domain at a per capita rate
I'; > 0. Further, it is assumed that death takes place anywhere and the number of people
removed from each class due to natural causes such as death (not HIV or AIDS related)
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is proportional to the number of individuals in the compartment, u,SQ/ Ty % and ujRQ/,
where ;> 0 will be called the natural death rate for historical reasons, which is constant.
Individuals in the infective compartment can remain infectives, or be transferred to the
removed compartment (they are no longer sexually infectives) at a rate y,I%%, where y; > 0
is the removal rate which is a constant, or die. In fact, individuals in the removed com-
partment never leave the compartment unless they die.

Infection transmission is assumed to occur between individuals present in a given do-
main €, and it is given by

p [Qk o
2P g S

where is the proportion of infected individuals to sexually active individuals in

%
1% +5%
Qx, and Bjx > 0 is the proportion of adequate contacts in domain £2; between a susceptible
from ; and an infective from another domain €2, which is a constant.

One of the prime objectives of this work is to study the spatial spread of HIV/AIDS in
several domains. Thus, in the case of three domains €2;, ©2;, and €, and where we need to
control €}, if we suppose for instance B > 0 and g; = 0, i.e. ; is not accessible from €,
there would be no reason to consider £2;, which is a case usually avoided in mathematical
modeling because if one parameter is zero, there is no need to add it since the first time.
Since all ©; are supposed to be interconnected by any kind of movements, it is assumed
that B > 0 for all j and k.

The simplest example we can give here is the case of two infected individuals X and
Y from a domain € and who would travel separately toward the two domains €; and
;. It is then obvious that X and Y can infect susceptibles from €2; and ; with different
proportions Bjx and By at the same time.

For the sake of readability, hereafter, we will use the following notations:

S > 9,
% > 7,
RY >R,

0% — 0/ (explained further below).

The following system of ODEs describes this multi-domains SIR model:

as ’ ) o
== > B oS — 1S — 05, )
k=1

ar & JL ) )

@ - LS vl -l @
k=1

AR R

% :)/jII—M]'R]‘Fe]S/, (3)

where ¢/ represents the effectiveness of the awareness program in €; it tries to increase
the number of removed people and decreases the susceptible ones.
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2.1 Optimal control problem
We are interested in controlling the population of domain €2;. Then the problem is to
minimize the objective functional given by
t,
J(0) = / ’ (Allf(t) — A;R(2) + g(@j(t))2> dt. (4)
0

The first terms represent the crucial goal of the awareness program, that is of reducing
the number of the infected people, and increasing the removed ones, in the domain ;.
The other term is the systemic cost of the awareness program. The positive constants A,
Ay, and K balance the values of the terms. Also the reason behind considering a finite time
horizon is that such a control program is usually restricted to a limited time window.

We seek an optimal control 6* such that

J(0*) =min{J (¢/) 16/ € ®},
where
®= {9’ measurable, 0™ < §/(¢) < 6™, ¢ € [0, tr] },

where (6™",0™*) €]0,1[2. The necessary conditions that an optimal control problem
must satisfy come from Pontryagin’s maximum principle [50]. This principle converts (4)-
(1)-(3) into a problem of minimizing point-wise a Hamiltonian H, with respect to ¢/,

H=AD(t) - A R(t) + Ig(@’(t))z

p k
, I , S
+)»]1|:Fj— E ﬁjkmy - S —9/S}:|
k=1

p k
. I . . .
+ )\,12 |:Z ﬂjkmsl - ]/111 — Mj[lj|
k=1
+ )»é [y,»[/ - ,u,Rj + Qij].

Here )‘];:’ i=1,...,3, represent the adjoint functions of the state variables S, U, and R/, to be
determined suitably. We can verify the existence of the optimal control &/* based on the
properties announced in the following theorem.

Theorem 1 There exist an optimal control /* and corresponding solution, S*, I, and R*
that minimize J(0V) over ©.

Proof Based on an existence result from Theorem II1.4.1 from [51], the following condi-
tions must be checked:
1. The set of control and corresponding state variables is non-empty.
2. The control © set is convex and closed.
3. The right hand side of the state system is bounded by a linear function in the state
and control variables.
4. The integrand of the objective functional is convex on ®.
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5. There exist constant c¢1,¢; > 0, and 8 > 1 such that the integrand L(V/, R/, &) of the
objective functional satisfies

L(I,R,0) = o (|0/])"* - e

In order to verify these properties, we use a result provided by Lukes [[52], Theo-
rem 9.2.1, p.182] to give the existence of solutions of ODEs (1)-(3) with bounded coef-
ficients, which gives condition 1, and we note the solutions are bounded.

The © set satisfies condition 2 by definition.

Since our state system is bilinear in 6/, the right hand-side of (1)-(3) satisfies condition 3,
using the boundedness of the solutions.

Finally, we can easily see that the integrand of our objective functional is convex and
that there exist a constant 8 > 1 and positive numbers ¢; and ¢; satisfying

L(I,R,0) = ¢ (|0']")"* - cn. O

By applying Pontryagin’s maximum principle [50] and assuming the existence result for
the optimal control from the previous Theorem 1, we obtain the following theorem.

Theorem 2 Given an optimal control &* and corresponding solutions, %, I'*, and R,
that minimize J(¢/) over ©, there exist adjoint functions, X,(t), Xy(t), and )5(t), such that

:j BiS I & A /BN, TN,

B\ @ sy - L g )02 e 005 ) | ®
)»]2 = —|:A1 + m ()\12 - )‘]1) - (]// + Mi))‘IZ + )/;)Lé ’ (®)
i =LA %

with transversality conditions
M) =0, i=1,23. ®)

The following characterization holds:

0/ (t) = max{min{ ()»/1 (t) - )»é(t)) Sl;(t) ,0m },Gmin}. 9)

Proof Applying Pontryagin’s maximum principle [50], we obtain

o 9H
Yods
A "~ I, J L ai(a) s j
- Gro9 - Zﬂjklk* i )= 2) — a0 (- m) | 2ay) =0,
k=1
. dH B:S*? . . . . .
K== = —[Al * (11;1757*)2()\12 —0) = (s + )’1')‘]3]’ M) =0,
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dH

M=o -
57 4R

R
evaluated at the optimal control #/* and the corresponding states §*, I’*, and R*, which
results in the stated adjoint system (5)-(7) and (8), [53]. By considering the optimality

conditions,

dH_O
doi

and solving for &/, we find

dH . . .
KO NS 1) =
o =Ko )\.IS +)\.3aS] 0.

Taking into account the bounds on #* in ©, we deduce that

0 () = max{min{ (A{(t) - xé(t)) ?{(t) Qmax}’emin}. _

2.2 Numerical results
We now present numerical simulations associated with our optimal system derived from

B™ and we simulate our re-

the previous mathematical model. We write a code in MATLA
sults using different data. We solve the optimality systems using an integrated progressive-
regressive Runge-Kutta fourth-order iterative scheme associated to every single domain.
Such numerical procedures are called forward-backward sweep methods, where the state
system with an initial guess is solved forward in time and then the adjoint system is solved
backward in time. First, starting with an initial guess for the adjoint variables A;, ), and
)Lé, we solve the state equations by forward Runge-Kutta fourth-order schemes in time
associated to every single domain €2;. Then those state values are used to solve the adjoint
equations by backward Runge-Kutta fourth-order schemes because of the transversality
conditions [19, 54]. Afterward, we updated the optimal control values using the values of
state and costate variables obtained in the previous steps. Finally, we execute the previous
steps till a tolerance criterion is reached.

In order to show the importance of our work, we choose the example when p =2, i.e.,
we consider two domains €2; and 2, with different parameters cited in Table 1. We try
to control ©; by the control 8** given by (9), which represents the effectiveness of the
awareness program in this domain.

In Figure 1, we can observe that in the absence of any awareness control and in the pres-
ence of an epidemic that spreads in two domains characterized by different parameters,
the number of infected individuals rises from I} = 200 and I? = 100 as initial conditions

Table 1 Parameters values of ', 8, i, and y utilized for the resolution of the SIR
multi-domains differential system (1)-(3), and then leading to simulations obtained from
Figure 1 to Figure 4, with the initial conditions Sy, lp, and Rg associated to the two regions £
and 2,

5(0) 10) R(O) T B n 4

Q4 10000 200 O 100 004 0012 0002
Q) 9,000 100 O 180 005 0013 0.001
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Figure 1 States of system (1)-(3) without controls. (a) Domain €2;. (b) Domain €2,.
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Figure 2 States of system (1)-(3) with the control '* given by (9). (a) Domain 1. (b) Domain £2,.
() The control 8'* as a function of time.

to 6,200 and 10,000 in the two domains, respectively. Once an awareness control is intro-
duced in the system (1)-(3), particularly in the equations that describe the dynamics of S,
I', and R! functions associated to the first domain, we can deduce its effect on decreasing
the number of infected people in Figure 2, from 6,190 when there was yet no awareness
control strategy, to 3,800 when there is the control 61. One of the major benefits of that
control is to increase the number of the removed people, and this can be observed in
case (a) of Figure 2, where the number of the removed people becomes approximately
equal to 6,500, and then begins to decrease to a value close to 5,000, which shows the
proportionality between the effectiveness of the awareness program and the number of
removed individuals. That can obviously prove the effectiveness of this awareness strat-
egy in the first domain with a rate that varies in Figure 2(c), from a value equal to 0.14
toward a value equal to 0.01, and this also proves that by a control taking only a nonzero
value close to 0, we can reach our goal with a significant number of the removed people.
We observe in Figure 3, as the control severity weight K is small, the control 6! is im-
portant, and then there is a decrease of the number of the infected people. Similarly, in
Figure 4, as the control ! is important, the number of removed people increases. In fact,
this is due to the fact that K has an impact on the values of the control §! from the control
characterization (9). Finally, these results reinforce the idea that the most important role

of the awareness control A1 is to increase the number of the removed people R'.
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Figure 3 Impact of the control severity weight K on the number of the infected people I'(t) of the
controlled domain ;.
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Figure 4 Impact of the control severity weight K on the number of the removed people R'(t) of the
controlled domain 2.

3 Model with awareness and travel-blocking controls

3.1 Presentation of the model

Let I ={1,...,p}, and denote by Iy C I the set of indices of domains at high-risk. This
can be a population of homosexuals or prostitutes in a domain or any other population
whose behaviors make it high risk to spread HIV. We introduce a control ¥** (or just
vk, for simplicity) that characterizes the travel-blocking operation, in order to block all
movements from domains Q, k € Iy to the controlled domain ;, given by

vk 20, Vkelyk#j,

, (10)
vk =0, elsewhere.
Then the multi-domains SIR model will be given as follows:
L I* -
=T - Z (1-v%) By 7 Sks ws -0’3, 11)
k=1
ar ¢ ¥ ,
— =2 (=S =l -l (12)
k=1
dr , S
— =yl - R +¢'. (13)

dt
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3.2 Optimal control problem
The problem here is to minimize the objective functional given by

1(0,v) - /0 tf(z‘hlj(t) RO+ S O]+ Y

kely

— (V) ) (14)

where v/ = (V¥)cy,,. The first terms represent the crucial goal of the awareness program,
that is, reducing the number of the infected people, and increasing the removed ones, in
the controlled domain &2;. The other terms are systemic costs of the awareness program
and travel-blocking operation, respectively. The positive constants A;, A, K and K} for
k € I, balance the values of the terms. Also the reason behind considering a finite time
horizon is that such control program is usually restricted to a limited time window.

We seek optimal controls #* and ¥* such that

J(*,v*) = min{J (¢/,V)16/ € ©,V € V},

where
®= {9/ measurable, 0™ < ¢/(£) < 0™ ¢ € [0, #] }, (15)
V= {Vmeasurable, v < K () < Mk g e [0,¢],k € IH}, @16)

where (9™in, gmax, ymink ymaxk) €10, 1[%, for k € I;;. The necessary conditions that an opti-
mal control problem must satisfy come from Pontryagin’s maximum principle [50]. This
principle converts (14)-(11)-(13) into a problem of minimizing point-wise a Hamiltonian
H, with respect to 6/ and v for k € Iy, given by

4 LK, Ke | 4
H=A1]}—A2R1+ 5(91) +k§ 5 (V’ )
H

p k
; I .
+x’1[r, > (- ,3,k S - S - 9151}
k=1
k

p
+ ) [Z (1-v*) ,B,k
k=1

+ X[yl - R +6'S).

S vl - ,L,-ﬂ}

By applying Pontryagin’s maximum principle [50], and assuming the existence result for
the optimal control from Theorem 1, we obtain the following.

Theorem 3 There exist optimal controls /* and (V¥)ie,, and corresponding solutions S,
I*, and R*, which minimize J(&/,(V¥)ier,,) over ®. Furthermore, there exist adjoint func-
tions, X,(t), X, (t), and X5(t), such that

:j B ¢ 1~ i o pi(ad A
A o=- 0+ 5 E ,B;klk* Sk (A =2) —widy + 0/ (5 - 21) |, (17)
k=1

. ﬁ..g/‘*Z . . . .
W = —[Al - (11*’1751*)2 (W = X)) = (v + )Xy + vAy |, (18)
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i = —[-As — ), (19)
with transversality conditions
W(t)=0, i=1,2,3. (20)

The following characterization holds:

0 (t) = max{min{ (k{(t) - )»é(t)) Sj;(t) ,0m }, gmin }, (21)

and forl € Iy

(22)

V() = max{min{ Bul"S" Gy(6) — 4(0) max; }, ymin }

Ky(I™ + S%) ’

Proof By using the same proof of Theorem 1, we show the existence of optimal controls.
Applying Pontryagin’s maximum principle and (10) we obtain

i

das

<-4 -k | o
=G0 = s G2 ) - i), =0,
=T s npd] Aw)=0,

evaluated at the optimal controls 6/* and v**, for k € I;;, and corresponding states §*, I'*,
and R*, which results in the stated adjoint system (17)-(19) and (20), [53]. By considering
the optimality conditions,

dH dH

EZO and W:O, fOI'kGIH,

and solving for ¢/, for example, we find

dH .
2 KO-+ 1 =
5 = KO =15 + 359 =0,

Taking into account the bounds on the controls in (15) and (16), we deduce that

0 (t) = max{min{ ()Ji(t) - )»é(t)) Sj;(t) ,max }’ emin}

and for [/ € Iy

Bul™ S* (W) (£) — X, (8)) ymax; }, min; }

jl% .
V() = max{mm{ K" +57)
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Table 2 Parameters values of T', 8, u, and y utilized for the resolution of the SIR
multi-domains differential system (11)-(13), and then leading to simulations obtained from
Figure 5 to Figure 7, with the initial conditions S, lp, and Rg associated to the three regions

Q1, 92, and 93
s© 10 RO T B g y
Q 10,000 200 0 100 0.04 0.012 0.002
195} 9,000 100 0 180 0.05 0.013 0.001
Qs 9,500 50 0 80 0.001 0.0144  0.002
@
10000 -
D A A
8000 - ’\," === L e iy g o i e iy
6000

Function I

4000

2000

0 | | | | I |
0 10 20 30 40 50 60 70 80 90 100
time (in days)
(b)
10000 -
8000
= L e DSt TL T
i 6000 - e ’,—"' T e 1
E S P
£ 4000 Wyl e
N \/ -’ 332=0.05
L = = =[(3=0.1
2000 == Bp=015
C Br=0.2
0 - 1 1 1 1 I ]
0 10 20 30 40 50 60 70 80 90 100

time (in days)

Figure 5 Impact of adequate contacts proportions 8, and 3, of the second domain on the others.
(a) Number of infectives in €21. (b) Number of infectives in 3.

3.3 Numerical simulation

Here, a third domain is added, as shown in Table 2. I = {1,2, 3}, and we are interested in
controlling €2; by assuming that 2, is at a high risk of infection Iy = {2}. We introduce
a second control v!? given by (22), in order to reduce the entry of infected people from
domain €2,. The same data associated to ©2; and €2, in Table 1 are used here to compare
between the case when there was no travel-blocking yet and when v!? is added.

We should note that in the case of HIV/AIDS, the spatial dynamics of infection occur in
close regions. Thus, the epidemic often spreads in very close domains such as neighbor-
hoods, neighboring towns or neighboring cities. By assuming that 2;, 25, and Q3 are very
close domains, 811 = B21 = 31, which means that € is accessible from €2, and Q23 with the
same proportion, and similarly for the other two domains.

Figure 5 is added here to show the importance of another control associated to travel-
blocking operations, instead of following only an awareness strategy. In fact, the number
of infected people in ; and € is increased by hosting people coming from Q,, and we
can see the impact of adequate contacts proportions 1, and B3, on the behavior of states
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of (17)-(13) in ©2; and 23, and we deduce that the higher S;, or B3, the higher the number
of infected people in the other domains, becoming huge.

Because of the impact of the adequate contacts proportion associated to only one do-
main on neighbor domains, by increasing the number of its infected people via travel, as
shown in Figure 5, and in order to show the advantage of the travel-blocking control, v2, in
decreasing the number of infected people who travel to the first domain from the second,
we deduce from Figure 7 that the number of infected people in the first domain decreases
from 6,190 when there was no control yet in Figure 6, and from 3,800 when the control §*
is introduced alone in Figure 2, toward a smaller number close to 2,000 when the control
12 is added, and which proves that the travel-blocking operation was successful to pre-
vent the disease from spreading. We should note that the higher v'2, the more we obtain
good results regarding the evolution of the proportion of adequate contacts. In fact, it is
easy to deduce from the control system (11)-(13) that, when v'2 is closer to 1, the term
‘1=v2)Bra 121+252 SY” converges to 0 and when v'? is far from 1, the term ‘(1 — v'2) 8, 12{; SV
participates in an increase of the I' function. In contrast, the higher 6! and far from 0,

the more we can obtain satisfactory results regarding the evolution of the number of the
removed people.

Figure 8 presents the simulation of #! and v'2, and we can see that 6! varies from 0.19
to 0.08 and v'? varies from 0.9 to 0.05, which proves that with this small 2 close to 0,
the decrease of the number of infected people in Figure 7 is more important than the case
when there was no travel-blocking yet. This proves the effectiveness of our approach in a
political sense, where with a negligible blocking of the population of the second domain,
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the global goal is reached. As shown in Figure 8, the travel-blocker control can be noticed
only about 10 days before it takes a small value close to zero.

In addition, the effect of the lacking amount of the function #' in Figure 2 compared
to the simulation in Figure 7, could be replaced by the effect of the control +!2, and by
introducing both controls 8! and v'2, we would obtain better results, which prove the im-
portance of the travel-blocking control. In general, there does not occur a very big change
of the control function 8%, from the case when there is no control term v'? yet, to the case
when v!2 is introduced into (11)-(13) as we can see in Figure 8.

Figure 9 shows the impact of the proportion of adequate contacts 1, on the shapes of
the controls 6! and v!2. In fact, we can see from this figure that as By, is small, v is small
and #! is important. This could be explained by the fact that the awareness strategy is more
effective when there is less contact between S' and I?, and then also the travel-blocking
strategy becomes less important to follow.

4 Conclusion

A recent study has explained that education and awareness programs based on social me-
dia could play a major role in HIV/AIDS prevention [55]. In another study [56], the au-
thors have explained that more efforts and educational plans are essentially needed to fight
against the HIV/AIDS epidemic, and those plans have to be conducted not only by par-
ents, but also by other parties of the civil society such as pediatric nurses, professionals,
and parent associations. Here, a mathematical model for studying the impact of awareness
programs on HIV/AIDS outbreak was therefore proposed in a multi-domains SIR model
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form. A control function was introduced to this multi-domains SIR model to represent the

effectiveness of awareness programs. We have identified optimal control strategies for sev-

eral values of the control severity weights to show the importance and the effectiveness of

our approach in controlling the infection spread. Numerical results, associated to this first



Zakary et al. Advances in Difference Equations (2016) 2016:169 Page 16 of 17

part, showed the effectiveness of this awareness strategy while the targeted region, aim-
ing to control, was still sensitive to the adequate contacts proportion of domains at high
risk. The awareness programs alone are not always sufficient to change sexual practices,
as concluded by Hoehn et al. in [57], but a comprehensive strategy is needed to decrease
the transmission of the epidemic. Therefore, we extended the first part to a second part by
adding a travel-blocking control, wherein we controlled contacts between susceptibles of
the controlled domain (by awareness) and infectives of domains at high risk of infection
with HIV/AIDS. Optimal control strategies were identified. We showed the advantage of
each case studied with a comparison between the numerical simulations they provided.
Control programs that follow these strategies can effectively reduce the number of infected
cases and increase the number of removed individuals in a desired domain.
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