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1 Introduction
In this paper, we consider the existence of sign-changing solutions to the following discrete
nonlinear fourth-order boundary value problem (BVP):

�u(t – ) – α�u(t – ) + βu(t) = f
(
t,u(t)

)
, t ∈ [,T]Z, (.)

�u() = �u(T) = �u() = �u(T – ) = , (.)

where � denotes the forward difference operator defined by �u(t) = u(t + ) – u(t), T > 
is an integer, f : [,T]Z ×R →R is continuous, and α, β are real parameters and satisfy

α ≥ β , and α –
√

α – β > – sin
π

(T – )
.

Let a, b be two integers with a < b. We employ [a,b]Z to denote the discrete interval given
by {a,a + , . . . ,b}.
The theory of nonlinear difference equations has been widely used to study discrete

models in many fields such as computer science, economics, neural network, ecology, cy-
bernetics, etc. In recent years, a great deal of work has been done in the study of the ex-
istence and multiplicity of solutions for a discrete boundary value problem. For the back-
ground and recent results, we refer the reader to [–] and the references therein.
We may think of BVP (.), (.) as a discrete analogue of the fourth-order boundary

value problem

u()(t) – αu()(t) + βu(t) = λf
(
t,u(t)

)
, t ∈ (, ), (.)

u′() = u′() = u() = u() = . (.)
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The special case of BVP (.), (.) has been studied by many authors using various ap-
proaches; for example, see [, ].
However, it seems that there is no similar result in the literature on the existence of

sign-changing solutions, positive solutions, and negative solutions for BVP (.), (.).Mo-
tivated by [], our purpose is to apply some basic theorems in topological degree theory
and fixed point index theory to establish some conditions for the nonlinear function f ,
which are able to guarantee the existence of sign-changing solutions, positive solutions,
and negative solutions for the above discrete boundary value problem.
The organization of this paper is as follows. In Section , we state some notations and

preliminary knowledge about the topological degree theory and fixed point index theory.
In Section , we present the spectrum of second-order eigenvalue problems. In Section ,
we give the expression of Green’s function of second-order Neumann problems and con-
sider the eigenvalue problem of fourth-order BVPs. In Section , by computing the topo-
logical degree and the fixed point index, we discuss the existence ofmultiple sign-changing
solutions to BVP (.), (.).

2 Preliminaries
As we have mentioned, we will use the theory of the Leray-Schauder degree and the fixed
point index in a cone to prove our main existence results. Let us collect some results that
will be used below. One can refer to [–] for more details.

Lemma . (see [, ]) Let E be a Banach space and X ⊂ E be a cone in E. Assume that
� is a bounded open subset of E. Suppose that A : X ∩ � → X is a completely continuous
operator. If there exists x ∈ X\{θ} such that

x –Ax �= μx, ∀x ∈ X ∩ ∂�,μ ≥ , (.)

then the fixed point index i(A,X ∩ �,X) = .

Lemma . (see [, ]) Let E be a Banach space and let X ⊂ E be a cone in E. Assume
that � is a bounded open subset of E, θ ∈ �. Suppose that A : X ∩ � → X is a completely
continuous operator. If

Ax �= μx, ∀x ∈ X ∩ ∂�,μ ≥ , (.)

then the fixed point index i(A,X ∩ �,X) = .

Lemma . (see []) Let E be a Banach space, let � be a bounded open subset of E, θ ∈ �,
and A :� → E be completely continuous. Suppose that

‖Ax‖ ≤ ‖x‖, Ax �= x,∀x ∈ ∂�. (.)

Then deg(I –A,�, θ ) = .

Lemma . (see []) Let A be a completely continuous operator which is defined on a
Banach space E. Let x ∈ E be a fixed point of A and assume that A is defined in a neigh-
borhood of x and Fréchet differentiable at x. If  is not an eigenvalue of the linear operator
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A′(x), then x is an isolated singular point of the completely continuous vector field I –A,
and for small enough r > ,

deg
(
I –A,B(x, r), θ

)
= (–)k , (.)

where k is the sum of algebraic multiplicities of real eigenvalues of A′(x) in (, +∞).

Lemma . (see []) Let A be a completely continuous operator which is defined on a
Banach space E. Assume that  is not an eigenvalue of the asymptotic derivative. Then the
completely continuous vector field I – A is nonsingular on spheres Sρ = {x ∈ E : ‖x‖ = ρ} of
sufficiently large radius ρ and

deg
(
I –A,B(θ ,ρ), θ

)
= (–)k , (.)

where k is the sum of algebraic multiplicities of real eigenvalues of A′(∞) in (, +∞).

Lemma . (see []) Let X be a solid cone of a Banach space E (X◦ is nonempty), let �

be a relatively bounded open subset of X, and let A : X → X be a completely continuous
operator. If any fixed point of A in � is an interior point of X, there exists an open subset O
of E(O⊂ �) such that

deg(I –A,O, θ ) = i(A,�,X). (.)

Now, we will consider the space

E =
{
u : [,T]Z →R,�u() = �u(T) = �u() = �u(T – ) = 

}
(.)

equippedwith the norm ‖u‖ =maxt∈[,T]Z |u(t)|. Clearly, E is a (T –)-dimensional Banach
space. Choose the cone P ⊂ E defined by

P =
{
u ∈ E | u(t) ≥ , t ∈ [,T]Z

}
. (.)

Obviously, the interior of P is P◦ = {u ∈ E | u(t) > , t ∈ [,T]Z}. For each u, v ∈ E, we
write u ≥ v if u(t) ≥ v(t) for t ∈ [,T]Z. A solution u of BVP (.), (.) is said to be a
positive solution (a negative solution, resp.) if u ∈ P\{θ} (u ∈ (–P)\{θ}, resp.). A solution
u of BVP (.), (.) is said to be a sign-changing solution if u /∈ P ∪ (–P).

3 Spectrum of second-order eigenvalue problems
Consider the second-order discrete linear eigenvalue problems

–�y(t – ) + λy(t) = , t ∈ [,T]Z, (.)

�y() = �y(T) = . (.)

Lemma . (see [] Theorem ) The eigenvalues of (.), (.) can be given by

λk =  cos
kπ
T + 

– ,
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and the corresponding eigenfunction is if k = , then ϕ(t) = . If k ∈ {, , . . . ,T – }, we
have

(i) if k �= T–
 , then ϕk(t) = 

cos kπ
(T–)

cos kπ
(T–) (t – ),

(ii) if k = T–
 , then ϕk(t) = sin π t

 .

4 Green’s function and eigenvalue problems to fourth-order BVPs
In this section, we construct Green’s function associated with BVP (.), (.).
Let r, r be roots of the polynomial P(r) = r – αr + β , namely,

r =
α +

√
α – β


, r =

α –
√

α – β


.

Then we have

�u(t – ) – α�u(t – ) + βu(t) =
(
–�L + r

)(
–�L + r

)
u(t)

=
(
–�L + r

)(
–�L + r

)
u(t),

where u = (u(),u(), . . . ,u(T + )), Lu = u(t – ), t ∈ [,T]Z. Under the basic assumption
on α, β , it is easy to see that r ≥ r > – sin π

(T–) .
Consider the two initial value problems:

{
–�u(t – ) + riu(t) = , t ∈ [,T]Z,
�u() = , u() = ,

(.)

{
–�v(t – ) + riv(t) = , t ∈ [,T]Z,
�v(T) = , v(T) = .

(.)

By the direct computing, we get (.) has a unique solution

u(t) =
r – 

r(r – r)
rt +

 – r
r(r – r)

rt,

and (.) has a unique solution

v(t) =
r – 

rT (r – r)
rt +

 – r
rT (r – r)

rt.

Let

ρ :=
(r – )(r – )(rT– – rT– )

rT– rT–
.

Lemma . Let h : [,T]Z →R and i ∈ {, } be fixed. Then the problem
{
–�u(t – ) + riu(t) = h(t), t ∈ [,T]Z,
�u() = �u(T) = 

(.)

has a unique solution

u(t) =
T∑
s=

Gi(t, s)h(s), t ∈ [,T + ]Z,
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where Gi(t, s) is given by

Gi(t, s) =

ρ

{
u(t)v(s),  ≤ s ≤ t ≤ T + ,
u(s)v(t),  ≤ t ≤ s ≤ T + .

Remark . Green’s functionGi(t, s) defined by Lemma . is positive on [,T]Z × [,T]Z.

Define operators K , f ,A : E → E, respectively, by

(Ku)(t) =
T∑
s=

T∑
k=

G(t,k)G(k, s)u(s), u ∈ E, t ∈ [,T]Z; (.)

(fu)(t) = f
(
t,u(t)

)
, u ∈ E, t ∈ [,T]Z;

A = Kf . (.)

Now, from Lemma ., it is easy to see that BVP (.), (.) has a solution u = u(t) if and
only if u is a fixed point of the operatorA. It follows from the continuity of f thatA : E → E
is completely continuous.

Lemma . Let h : [,T]Z → R. Then the linear discrete fourth-order boundary value
problem

{
�u(t – ) – α�u(t – ) + βu(t) = h(t), t ∈ [,T]Z,
�u() = �u(T) = �u() =�u(T – ) = 

(.)

has a unique solution

u(t) =
T∑
s=

( T∑
k=

G(t,k)G(k, s)h(s)

)

=
T∑
s=

( T∑
k=

G(t,k)G(k, s)h(s)

)
, t ∈ [,T]Z,

and

u() = u(), u() = u(), u(T) = u(T + ), u(T – ) = u(T + ).

Proof The conclusion is obvious, so we omit it. �

We will use the following assumptions.
(H) α, β are real parameters and satisfy

α ≥ β , and α –
√

α – β > – sin
π

(T – )
.

(H) f : [,T]Z ×R →R is continuous, for any t ∈ [,T]Z, f (t, ) = ; for any t ∈ [,T]Z
and x ∈R, xf (t,x)≥ .

http://www.advancesindifferenceequations.com/content/2013/1/10
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(H) There exists an even number k ∈ [,T – ]Z such that


λ
k

< β <


λ
k+

, (.)

where limx→
f (t,x)
x = β uniformly for t ∈ [,T]Z, λk is defined in Lemma . and

λT– � ∞.
(H) There exists an even number k ∈ [,T – ]Z such that


λ
k

< β∞ <


λ
k+

, (.)

where limx→∞ f (t,x)
x = β∞ uniformly for t ∈ [,T]Z, and λ,λ, . . . ,λT– are given in

the condition (H).
(H) There exists a constantM >  such that for any (t,x) ∈ [,T]Z × [–M,M],

∣∣f (t,x)∣∣ < ω–M, (.)

where ω =maxt∈[,T]Z
∑T

s=
∑T

k=G(t,k)G(k, s).

Lemma . Suppose that (H) holds and u ∈ P\{θ} is a solution of BVP (.), (.). Then
u ∈ P◦.

Proof According to (H) and the positivity of Green’s function defined in Lemma ., we
can easily get the desired conclusion. �

Remark . Similarly to Lemma ., we also know that if (H) holds and u ∈ (–P)\{θ} is
a solution of BVP (.), (.), then u ∈ (–P)◦.

Lemma . Suppose that (H)-(H) hold. Then the operator A is Fréchet differentiable
at θ and ∞, where the operator A is defined by (.). Moreover, A′(θ ) = βK and A′(∞) =
β∞K .

Proof By (H), for any ε > , there exists δ >  such that |f (t,x) – βx| < ε|x| for any  <
|x| < δ, t ∈ [,T]Z. Hence, noticing that f (t, ) =  for any t ∈ [,T]Z, we have

‖Au –Aθ – βKu‖ = ∥∥K(fu – βu)
∥∥

≤ ‖K‖ max
t∈[,T]Z

∣∣f (t,u(t)) – βu(t)
∣∣ < ε‖K‖‖u‖ (.)

for any u ∈ E with  < |u| < δ, where ‖K‖ =maxt∈[,T]Z
∑T

s=
∑T

k= |G(t,k)||G(k, s)|. Con-
sequently,

lim‖u‖→

‖Au –Aθ – βKu‖
‖u‖ = . (.)

This means that the nonlinear operator A is Fréchet differentiable at θ and A′(θ ) = βK .
By (H), for any ε > , there exists W >  such that |f (t,x) – β∞x| < ε|x| for any |x| >

W , t ∈ [,T]Z. Let c =max(t,x)∈[,T]Z×[–W ,W ] |f (t,x) – β∞x|. By the continuity of f (t,x) with

http://www.advancesindifferenceequations.com/content/2013/1/10
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respect to x, we have c < +∞. Then, for any (t,x) ∈ [,T]Z × R, |f (t,x) – β∞x| < ε|x| + c.
Thus

‖Au – β∞Ku‖ ≤ ‖K‖ · max
t∈[,T]Z

∣∣f (t,u) – β∞u(t)
∣∣ < ‖K‖(ε‖u‖ + c

)
(.)

for any u ∈ E. Consequently,

lim‖u‖→∞
‖Au –Aθ – β∞Ku‖

‖u‖ = , (.)

which implies that operator A is Fréchet differentiable at ∞ and A′(∞) = β∞K . The proof
is completed. �

Lemma . Let M be given in the condition (H). Suppose that (H)-(H) hold. Then
A(P) ⊂ P, A(–P) ⊂ (–P).Moreover, one has the following.

(i) There exists an r ∈ (,M) such that for any  < r ≤ r,

i
(
A,P ∩ B(θ , r),P

)
= , i

(
A, (–P)∩ B(θ , r), –P

)
= . (.)

(ii) There exists an R >M such that for any R ≥ R,

i
(
A,P ∩ B(θ ,R),P

)
= , i

(
A, (–P)∩ B(θ ,R), –P

)
= . (.)

Proof By (H) and the fact that Gi(t, s) is positive on [,T]Z × [,T]Z, we get that for
any t ∈ [,T]Z, f (t,P) ⊂ P, f (t, –P) ⊂ –P, and K(P) ⊂ P, K(–P) ⊂ –P. Then A(P) ⊂ P and
A(–P) ⊂ –P.
We only need to prove conclusion (i). The proof of conclusion (ii) is similar and will

be omitted here. Let γ = inf‖u‖= ‖u – βKu‖. The condition (H) yields γ > . It follows
from (.) that there exists r ∈ [,M] such that

‖Au – β∞Ku‖ < 

γ‖u‖, (.)

where  < u ≤ r. Setting H(s,u) = sAu+ ( – s)βKu, then H : [, ]×E → E is completely
continuous. For any s ∈ [, ] and  < u≤ r, we obtain that

∥∥u –H(s,u)
∥∥ ≥ ‖u – βKu‖ – s‖Au – βKu‖ ≥ γ‖u‖ – 


γ‖u‖ > . (.)

According to the homotopy invariance of the fixed point index, for any  < r ≤ r, we have

i
(
A,P ∩ B(θ , r),P

)
= i

(
βK ,P ∩ B(θ , r),P

)
, (.)

i
(
A, –P ∩ B(θ , r), –P

)
= i

(
βK , –P ∩ B(θ , r), –P

)
. (.)

Let ϕ(t) = . Then Kϕ = λ
ϕ and ϕ ∈ P (see Lemma . and the proof of Lemma .).

We claim

u – βKu �= σϕ, ∀u ∈ P ∩ ∂B(θ , r),σ ≥ . (.)

http://www.advancesindifferenceequations.com/content/2013/1/10
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Indeed, we assume that there exist u ∈ P∩∂B(θ , r) and σ ≥  such that u –βKu = σϕ.
Obviously, u = βKu + σϕ ≥ σϕ. Since β �= λ–

k , k = , , . . . ,T – , then σ > . Set
σmax = sup{σ : u ≥ σϕ}. It is clear that σ ≤ σmax <∞ and u ≥ σmaxϕ. Then

u = βKu + σϕ ≥ βKσmaxϕ + ϕσ =
(
βλ


σmax + σ

)
ϕ. (.)

Since βλ

 > , then βλ


σmax + σ > σmax, which contradicts the definition of σmax. This

proves (.).
It follows from Lemma . and (.) that

i
(
βK ,P ∩ B(θ , r),P

)
= . (.)

Similarly to (.), we know also that

i
(
βK , –P ∩ B(θ , r), –P

)
= . (.)

By (.), (.), (.), and (.), we conclude

i
(
A,P ∩ B(θ , r),P

)
= , i

(
A, –P ∩ B(θ , r), –P

)
= . (.)

�

5 Main results
Now, with the aid of the lemmas in Section , we are in a position to state and prove our
main results.

Theorem. Assume that the conditions (H)-(H) hold.Then BVP (.), (.) has at least
two sign-changing solutions. Moreover, BVP (.), (.) has at least two positive solutions
and two negative solutions.

Proof Since G(t, s) is positive on [,T]Z × [,T]Z, by (H), we have for any u ∈ E with
‖u‖ =M,

∣∣Au(t)∣∣ =
∣∣∣∣∣

T∑
s=

T∑
k=

G(t,k)G(k, s)f
(
t,u(t)

)∣∣∣∣∣ ≤
T∑
s=

T∑
k=

G(t,k)G(k, s)
∣∣f (t,u(t))∣∣

< ω–M ·
T∑
s=

T∑
k=

G(t,k)G(k, s)≤ M, ∀t ∈ [,T]Z. (.)

This gives

‖Au‖ <M = ‖u‖. (.)

By (.) and Lemmas . and ., we have

deg
(
I –A,B(θ ,M), θ

)
= , (.)

i
(
A,P ∩ B(θ ,M),P

)
= , (.)

i
(
A, –P ∩ B(θ ,M),P

)
= . (.)

http://www.advancesindifferenceequations.com/content/2013/1/10


Yang Advances in Difference Equations 2013, 2013:10 Page 9 of 11
http://www.advancesindifferenceequations.com/content/2013/1/10

From (H) and Lemma ., one has that the eigenvalues of the operatorA′(θ ) = βK which
are larger than  are

βλ

,βλ


 , . . . ,βλ


k . (.)

From (H) and Lemma ., one has that the eigenvalues of the operator A′(∞) = β∞K
which are larger than  are

β∞λ
,β∞λ

 , . . . ,β∞λ
k . (.)

It follows from Lemmas . and . that there exist  < r < r and R > R such that

deg
(
I –A,B(θ , r), θ

)
= (–)k = , (.)

deg
(
I –A,B(θ ,R), θ

)
= (–)k = , (.)

where r and R are given in Lemma .. Owing to Lemma ., one has

i
(
A,P ∩ B(θ , r),P

)
= , (.)

i
(
A, –P ∩ B(θ , r), –P

)
= , (.)

i
(
A,P ∩ B(θ ,R),P

)
= , (.)

i
(
A, –P ∩ B(θ ,R), –P

)
= . (.)

According to the additivity of the fixed point index, by (.), (.), and (.), we have

i
(
A,P ∩ (

B(θ ,M)\B(θ , r)
)
,P

)
= i

(
A,P ∩ B(θ ,M),P

)
– i

(
A,P ∩ B(θ , r),P

)
=  –  = , (.)

i
(
A,P ∩ (

B(θ ,R)\B(θ ,M)
)
,P

)
= i

(
A,P ∩ B(θ ,R),P

)
– i

(
A,P ∩ B(θ ,M),P

)
=  –  = –. (.)

Hence, the nonlinear operator A has at least two fixed points u ∈ P ∩ (B(θ ,M)\B(θ , r))
and u ∈ P∩ (B(θ ,R)\B(θ ,M)), respectively. Then, u and u are positive solutions of BVP
(.), (.). Using again the additivity of the fixed point index, by (.), (.), and (.),
we get

i
(
A, –P ∩ (

B(θ ,M)\B(θ , r)
)
, –P

)
=  –  = , (.)

i
(
A, –P ∩ (

B(θ ,R)\B(θ ,M)
)
, –P

)
=  –  = –. (.)

Hence, the nonlinear operator A has at least two fixed points u ∈ –P ∩ (B(θ ,M)\B(θ , r))
and u ∈ –P ∩ (B(θ ,R)\B(θ ,M)), respectively. Then, u and u are negative solutions of
BVP (.), (.).
Let

� =
{
u ∈ P ∩ (

B(θ ,M)\B(θ , r)
)
: Au = u

}
,

� =
{
u ∈ P ∩ (

B(θ ,R)\B(θ ,M)
)
: Au = u

}
,
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� =
{
u ∈ –P ∩ (

B(θ ,M)\B(θ , r)
)
: Au = u

}
,

� =
{
u ∈ –P ∩ (

B(θ ,R)\B(θ ,M)
)
: Au = u

}
.

It follows fromLemmas ., ., Remark ., and (.)-(.) that there exist open subsets
O, O, O, and O of E such that

� ⊂O ⊂ P ∩ (
B(θ ,M)\B(θ , r)

)
, � ⊂O ⊂ P ∩ (

B(θ ,R)\B(θ ,M)
)
, (.)

� ⊂O ⊂ –P ∩ (
B(θ ,M)\B(θ , r)

)
, � ⊂O ⊂ –P ∩ (

B(θ ,R)\B(θ ,M)
)
, (.)

deg(I –A,O, θ ) = , (.)

deg(I –A,O, θ ) = –, (.)

deg(I –A,O, θ ) = , (.)

deg(I –A,O, θ ) = –. (.)

By (.), (.), (.), (.), and the additivity of the Leray-Schauder degree, we get

deg
(
I –A,B(θ ,M)\(O ∪O ∪ B(θ , r)

)
, θ

)
=  –  –  –  = –, (.)

which implies that the nonlinear operatorA has at least one fixed point u ∈ B(θ ,M)\(O∪
O ∪ B(θ , r)).
Similarly, by (.), (.), (.), and (.), we get

deg
(
I –A,B(θ ,R)\

(
O ∪O ∪ B(θ ,M)

)
, θ

)
=  +  +  –  = , (.)

which implies that the nonlinear operatorA has at least one fixed point u ∈ B(θ ,R)\(O∪
O ∪B(θ ,M)). Then, u and u are two distinct sign-changing solutions of BVP (.), (.).
Thus, the proof of Theorem . is finished. �

Theorem. Assume that the conditions (H)-(H)hold,and that f (t,x) = –f (t, –x) for t ∈
[,T]Z and x ∈R. Then BVP (.), (.) has at least four sign-changing solutions.Moreover,
BVP (.), (.) has at least two positive solutions and two negative solutions.

Proof It follows from the proof of Theorem . that BVP (.), (.) has at least six different
nontrivial solutions ui (i = , , . . . , ) satisfying

u,u ∈ P◦, u,u ∈ –P◦, u,u /∈ P ∪ (–P),

r < ‖u‖ < |M| < ‖u‖ < R.
(.)

By the condition that f (t,x) = –f (t, –x) for t ∈ [,T]Z and x ∈ R, we know that –u and
–u are also solutions of BVP (.), (.). Let u = –u, u = –u, then ui (i = , , . . . , ) are
different nontrivial solutions of BVP (.), (.). The proof is completed. �

By the method used in the proof of Theorems . and ., we can prove the following
corollaries.
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Corollary . Assume that the conditions (H)-(H) and (H) or (H), (H), (H), and
(H) hold. Then BVP (.), (.) has at least one sign-changing solution. Moreover, BVP
(.), (.) has at least one positive solution and one negative solution.

Corollary . Assume that the conditions (H)-(H) and (H) or (H), (H), (H), and
(H) hold, and that f (t,x) = –f (t, –x) for t ∈ [,T]Z and x ∈ R. Then BVP (.), (.) has
at least two sign-changing solutions. Moreover, BVP (.), (.) has at least one positive
solution and one negative solution.
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