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1. Introduction
Let H be a real Hilbert space with the inner product (--) and the norm || - ||, respec-
tively. Let C be nonempty closed subset of H.

Recall that a mapping T : C — H is said to be k-strict pseudo-contraction if there
exists a constant k € [0, 1) such that

ITx — TP < lx =yl + kIl = T)x— (I = T)I* VayeC. (1.1)

These mappings are extensions of nonexpansive mappings which satisfy the inequal-
ity (1.1) with k = 0. That is, 7: C — H is nonexpansive if

ITx— Tl < llk—yll, VxyeC
We denote by F(T) the set of fixed points of the mapping 7, that is
F(T)={xe H:Tx=x}.

We assume that F(T) = @ it is well known that F(7T) is closed convex.
Let F: C — H be a nonlinear operator, we consider the problem of finding a point
x* € C such that

(Fx*,x —x*) >0 VxeC.

We denote by V I(F, C) the set of solutions of this variational inequality problem.
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Takahashi [1] introduced a classical CQ algorithm as follows:

xo € C is arbitrarily,

Yn = 0nXn + (1 — o) Ty,
Co={zeC: llyn—zll = llxn—2ll},
Qn={ze€ C: (xy —2z,x0 —x) = 0},

Xn+1 = Pc,ng, %0, n=0,1,2...

where T is nonexpansive mapping, and {a,} € [0, a] for some a € [0, 1). Then they
showed that {x,} converged strongly to Pr(xo) by the hybrid method in the mathe-
matical programming. But it is hard to compute by this algorithm, because projection
has to be used in every process.

The hybrid steepest descent method of Yamada [2] conquered this deficiency and
proposed the following algorithm for solving the variational inequality.

Take xy € H arbitrarily and define {x,} by

Xns1 = Ty — ppAnF(Txy). (1.2)

where T is a nonexpansive mapping on H, F is L-Lipschitzian and n-strongly mono-
tone with k >0, 1 >0, 0 < u <2n/L> If {4} is a sequence in (0, 1) satisfying the follow-
ing conditions:

(i) lim,, ,. A, = O;

(i) Y p2gAn =00

(iii) either Yo%) [Ans1 — Anl < 00 or limyoo™y"t = 1,

then the sequence {x,} converged strongly to the unique solution of the variational
inequality

(Fx,x —X) >0 Vx e F(T).
Besides, he also proposed cyclic algorithm:

Xn+1 = T}\"xn =(I- M}\nF)T[n]xn/

where T7,,; = T, moa n» he also got strong convergence theorems.
On the other hand, Marino and Xu [3] considered the following general iterative

method: an initial x, is selected in H arbitrarily
Xni1 = oY [ (%n) + (I — otnA) T, (1.3)

where T is a nonexpansive mapping on H, fis a contraction, A is a linear bounded
strongly positive operator, and {¢,,} is a sequence in (0, 1) satisfying the following con-

ditions:

(C1) lim,,_,.. o, = 0;
o0
(C2) )~ on=00;

(C3) either Y52 | aps1 — at| < 00 or limyeo ! = 1.

They proved that the sequence {x,} converged strongly to a fixed point ¥ of T which

solves the variational inequality
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((yf —A)x,x—X%) <0 VxeF(T).

Very recently, Tian [4] combined the iterative method (1.3) with the Yamada’s
method (1.2) and considered the following general iterative method

Xni1 = oy f(xn) + (I — poyF)Txy, (1.4)

where T is a nonexpansive mapping on H, fis a contraction, and F is k- Lipschitzian
and 1-strongly monotone with k >0, 7 >0, 0 < y <2n/k*.

He proved that if the sequence {o,,} of parameters satisfies (C1)-(C3), then the
sequence {x,} generated by (1.4) converged strongly to a fixed point x of 7" which
solves the variational inequality

(yf — uF)i,x—%) <0 Vx e F(T). (1.5)

In this paper we designed two algorithms for finding a common fixed point x* of
finite strict pseudo-contractions which also solves the variational inequality

N
(vf— nG)x*,x—x*) <0 Vxe(|F(T), (1.6)
i=1

where N > 1 is a positive integer and {T;}}¥, are N strict pseudo-contractions.
Let T be defined by

N
T= ZAiTi,
i=1

Where A4; >0 such that ZZ 1 A = 1. We will show that the sequence {x,} generated by
the algorithm:

N
TP = Bl + (1= ) ) ATy
Xne1 = AV f(%n) + (I — i G)TPrx,,

1.7)

will converge strongly to a solution to the problem (1.6).
Another approach to the problem (1.6) is the cyclic algorithm. For each i = 1,..., N,
let

Ai=Bil + (1 - Bi)T;,
where the constant f; satisfies k; < ; <1. Beginning with xy € H, we define the
sequence {x,,} cyclically by
X1 = Oto)/f(JCo) + (I — ()to,lLG)(Ale),
Xy = alyf(xl) + (I — al,uG)(Ale),

xn = an-1Yf(xn-1) + (I — an-14G) (ANXN-1),
xns1 = anyf(an) + (I — anpnG)(Arxn),



Tian and Di Fixed Point Theory and Applications 2011, 2011:21 Page 4 of 14
http://www fixedpointtheoryandapplications.com/content/2011/1/21

Indeed, the algorithm above can be written as

Apn) = Bl + (1 = Bn)) Ty

(1.8)
Xn+1 = anyf(xn) + (I - a"MG)A["*'l]x"’

where T(,) = T;, with i = n(modN ), 1 < i < N. We will show that this cyclic algo-
rithm (1.8) is also strongly convergent if the sequences {¢,,} and {3,} are appropriately
chosen.

We will use the notations:

1. — for weak convergence and — for strong convergence.

2. wy(xn) = {x : 3%, — x} denotes the weak !-limit set of {x,,}.

2. Preliminaries
We need some facts and tools which are listed as below.

Definition 1 A mapping F : C — H is called 1-strongly monotone if there exists a
positive constant 17 >0 such that

(Fx—Fy,x—y) > nllx—yII>, VxyeC.

Definition 2 B is called to be strongly positive bounded linear operator on
H, if there is a constant y > O with property

(Bx,x) > 7|x||>, VxeH.

Lemma 2.1. (see [5]) Let C be a nonempty closed convex subset of a real Hilbert
space H and T : C! C is a nonexpansive mapping. If a sequence {x,} in C such that x,
—~zand (I - T)x, —> 0, then z = Tz.

Lemma 2.2. (see [6]) Let C be a nonempty closed convex subset of a real Hilbert
space H. If T : C — C is a k-strict pseudo-contraction, then the mapping I - T is demi-
closed at 0. That is, if {x,} is a sequence in C such that x, — Xand (I - T)x,, — 0, then
(I-T)x=0.

Lemma 2.3. (see [7]) Assume {a,} is a sequence of nonnegative real numbers such
that

aps1 =< (1 - Vn)an +6y, n>=0,

where {y,} is a sequence in (0, 1) and {0,} is a sequence in R such that:

(i) lim,, 5o %, = 0 and Y021 vn = 05

(ii) limy, yeo 0,/ < 0 0r Y oo 8n] < o0

Then lim,,_,., a,, = 0.

Lemma 2.4. (see [4]) Let H be a real Hilbert space, f: H — H a contraction with
coefficient 0 < o <1, and F : H — H a k-Lipschitzian continuous operator and 1n-
strongly monotone operator with k >0, n >0. Then for 0 < y < un/a,

(x—y, (uF — yf)x — (uF — yf)y) = (un — y)llx —yII>, VxyeH.

That is, uF - of is strongly monotone with coefficient un - yo.

Lemma 2.5. (see [8]) Suppose S : C — H is a k-strict pseudo-contraction. Define T : C
— Hby Tx = Ax + (1 - A)Sx for each x € C. Then, as A € [k, 1), T is a nonexpansive
mapping such that F(T) = F(S).
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Lemma 2.6. (see [6]) Assume C is a closed convex subset of a Hilbert space H. Given

an integer N > 1, assume for each 1 <i < N, T;: C — C is a k;-strict pseudo-contrac-

tion for some 0 < k; < 1. Assume {y;}}is a positive sequence such that Zf\:} 1 Yi =1 Sup-

pose that m:\—]1 F(T;) # (then

N
F(T) = () F(Ty).

i=1

Lemma 2.7. (see [9]) Assume T;: H — H is a k;i-strict pseudo-contraction for some 0
N

<k;<1(1<i<N): Let Ty, =il + (1 —0;)T; k; <o; < 1 (1 < i < N), ifﬂ BT 79
i

then

N
F(To, T, - - Tay) = ﬂF(Tai)'
i=1

Lemma 2.8. Let F : H — H be a n-strongly monotone and L-Lipschitzian operator
with L >0, 1 >0. Assume that 0 < p <21/L% © = u(n — "Y' )and 0 < t < 1. Then ||(I -
utF)x - (I - wtb)y|| < (1 - &) || - yl].

Proof. Put g = I utF, then

llgx — gyII* = (gx — gy, 8x — 8y)
= (x —y — pt(Fx — Fy), x —y — ut(Fx — Fy))
= |lx =yl = 2utix —y, Fx — Fy) + p*¢%||Fx — Fy||?
< llx—yII> = 2unllx = yII? + L2 lx — yII?
= (1 = 2utn + P2 L%)||x — y|I%.

Therefore,

nl?

llgx — gyll < \/1 —2ut(n — 5 )lx =yl
< (1 —=zo)llx—yll,

that is,

(I = tF)x — (I = ptF)yll < (1 — t7)llx = yll.

3. Synchronal algorithm
Theorem 3.1. Let H be a real Hilbert space and let T; : H — H be a k;-strict pseudo-

N
contraction for some k; € (0, 1) (i = 1,..., N ) such that m 1F(Ti) ), f be a contrac-
i=
tion with coefficient B € (0, 1) and A; be a positive constant such that Zﬁl Ai=1 Let
G : H —> H be a n-strongly monotone and L-Lipschitzian operator with L >0, n >0.
Assume that 0 < y <2n/L2, 0<y <u(n-— “2LZ )/B = t/B- Given the initial guess xq €
H chosen arbitrarily and given sequences {a,} and {B,} in (0, 1), satisfying the following

conditions:

(3.12) limy, . 0y = 0, Yy = 00
-
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(3.1b) Zfzil | @1 — oy| < 00, Zzil | Bre1 — Bl < 00
(31c) 0 < max; k; < B, <a < 1 for all n > 0;
let {x,} be the sequences define d by the composite process (1.7), i.e.

N
TP = Bul+ (1= B) ) MTi,
Xne1 = AV f(%n) + (I — i G)TPrx,

Then {x,} converges strongly to a common fixed point of {T;} which solves the varia-
tional inequality (1.6).

Proof. Put T = Zﬁ 1 AT then by Lemma 2.6, we conclude that T is a k-strict pseudo-
contraction with k = max {k; : 1 <i < N} and F(T) = ﬂf\il F(Ty)-

We can rewrite the algorithm (1.7) as

TP = Bl + (1 — Bo)T,
Kns1 = AV f(%n) + (I — ot,,/,LG)Tﬁ“xn

Furthermore, by Lemma 2.5, we conclude that T#: is a nonexpansive mapping and
F(T%) = F(T).

Step 1. {x,,} is bounded.

Take v ﬂﬁl F(T;), from (1.7) and Lemma 2.9 we have

[|Xne1 — V|| = ||aan(xn) + (I - O‘n.UvG)Tﬂ,,xn — v
= o (vf (xn) — nGv) + (I — anpuG)Tp,xn — (I — ctat G|
< (1= ant)llxn — Vil + anlly (f(xa) — f(v)) + vf(v) — nGul|
< (1 —ant)llan — vl + anyBllxn — vI| + anllyf(v) — nG||
= (1 —an(t = yB))lxn — vl + anllyf(v) — uGul|

’ llyf(v) —MGUH}

smax{nxn—vu g

By simple induction, we have

lxn —vl| = InaX{leo =,

lyf (v) — nGul| }
T—vB

Hence {x,,} is bounded.

From v € ﬂﬁl F(T;), we have v e F (T ), hence

[T — vl1* < [lxn — > + KII(I = T)x, — (I = T)v]|?
= [|xn — vl1* + Kll(xy — Tx)|I?
= b = vII? + ll(x2 — v) + (v — Txa) |17
= (1 +R)||xn — V|| + k|| Txy — v||* + 2k(xy — v, v — Tx,)
< (1 + )1y — v||* + K| | Ty — ][> + 2k, — v]] | Tx, — v]].
It follows that

(1 — k)| Txn — v||* — 2kl|xn — | [|Txp — v|| — (1 +K)||xy — v||* < O.
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So, we have
1+k
WTxn —vll = Tl — V.

Therefore, {Tx,} is bounded.
G is L-Lipschitzian, so

[1GTxy — GTv|| < L||Txy — Tvl|
{Tx,} is bounded, so {GT?x,} is bounded.

fis a contraction, so f{x,) is bounded.
Step 2.

JHim [lxn — x|l = 0. (3.1)
Observing that

Xne1 = AV f(x0) + (I — Oln//LG)Tﬂ"xn,
Xn = O51171)’]((3%71) + (I - anfllLG)Tﬂnilxnflr

we have

Xns1 — %n = oy (f (n) — f(xn-1)) + (otn — otn—1) ¥ f (%n-1)
+ [(I = anuG) TPy — (I — apuuG)TP 15, 1]
+ (o1 — an)uGTﬂ"*lxn_l.

This in turn implies that

||xn+1 - xn” < Oan/ﬁHxn - xn—l“ + (1 - ant)“Tﬂ"xn - Tﬂn_lxn—ll‘
+lon — o1 (Y If (nm1) 1] + I GTP=" 1)
< anyBllxn — xn_1l] + (1 — o) TPx0 — TP 1201

+ oy —ap_1|M1,

where M; is an appropriate constant such that M; > sup,.{{y||f (xx)I| + | |GTPrx, |}
On the other hand, we note that

TPy — TP x|l < 11T — TP a ||+ 1T 1 — TP 1 ]

[1Bnxn—1+ (1 — Bn)Txn—1 — Pn-1%n-1 — (1 = Bn—1)Ton_1l|

+ 1% — X1 (3.3)
llxn — Xn—111 + 1Bn — Ba—1l [IXn—1 — Txpn—_1]|

[1%n — Xn—1ll + [Bn — Bn—11M2,

IATA

IAIA

where M, is an appropriate constant such that M, > sup,1 {||*, - Tx,||}. Substitut-
ing (3.3) into (3.2) yields
Xns1 — Xnll < anyBllxn — xu—1ll + (1 - anf)”xn — Xn—1ll + loty — op—1IMy
+1Bn — Bn-1IM2
=< (1 - an(t - Vﬂ))”xn — Xp—1 +M3(|an — 1|+ |Bn — ﬂn—lDz

where M3 is an appropriate constant such that M3 > max{M;, M,}. By conditions
(3.1a) and (3.1b) and Lemma 2.3, we obtain that lim,, ,.. ||x,,1 - .|| = 0.

Page 7 of 14



Tian and Di Fixed Point Theory and Applications 2011, 2011:21 Page 8 of 14
http://www.fixedpointtheoryandapplications.com/content/2011/1/21

From (1.7), we observe that

s = TPl = anllyf () + LGTPr |
< an(Ilf () = )] + [If (v) + GTPv]] + ||GTP"x, — GTP0]]).

It follows from the condition (3.1a) and the boundedness of {f(x,)} and {GT#x,} that

lim ||xp.1 — TPrx,|| = 0. (3.4)

n—o00
On the other hand,

201 — TProxy |

[%ne1 — [,ann + (1 - ,Bn)Txn]“
= ||(xn+1 - xn) + (1 - ,Bn)(xn - Txn)”
> (1 = Bu)llxn — Txnll — 1 (xne1 — x0)11.

Hence, by condition (3.1c), we have

[lxn — Txall < [1xn41 _Tﬂ"xn||+||(xn+1_xn)||]

1
N l_ﬂn

1
_ a[||xn+1 - T'ann“ + ||(xn+1 _xn)||]~

IA

1
From (3.1) and (3.4), we obtain

lim |[|x, — Tx,|| = 0. (3.5)
n—oo

From the boundedness of {x,}, we deduced that {x,} converges weakly. Assume x,, —
p, by Lemma 2.2 and (3.5), we obtain p = Tp. So, we have

ww(xa) C F(T). (3.6)

Notice by Lemma 2.4, uG - y f is strongly monotone, so the variational inequality
(1.6) has a unique solution x* € F(T).
Step 3.

lim sup((yf — uG)x*, x, — x*) < 0. (3.7)

Indeed, there exists a subsequence {xn;} C {xn} such that
lim sup((yf — HG)x", x, — x*) = lim ((yf — uG)x*, x, — x*).
n—00 J—o0
Without loss of generality, we may further assume that ¥» — X. It follows from (3.6)
that x € F(T). Since x* is the unique solution of (1.6), we obtain
lim sup((yf — uG)x", x, — x*) = im ((yf — nG)x™, xp — x*)
n—00 J—00
= ((yf — nG)x*, x —x") < 0.
Step 4.

lim ||x, — || = 0. (3.8)
n—oo
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From Lemma 2.9, we have

Ixns1 — 1% = o (Yf(%n) — £Gx™) + (I — aqpuG) TPy — (I — aynG)x*||?

< (1 — ant)?[lxn — x*[|* + 200 (¥ (%n) — LGX*, Xne1 — X¥)

<(1- anr)2||x,, —x*||? + 20y {f (xn) — f(x*), X1 — x¥)
+ 20, (Y f(x*) — uGX*, X1 — x¥)
< (1= ) |lxn = %117 + 220y Bl 1% — X*|| |01 — x*]]

+ 20, (Yf(x*) — uGxX*, X1 — x*)

2 2 2 2
< (1 —ont) Ml — x*[17 + oty B(11%n — x| + |xns1 — x*117)

+ 200, (Y f (%) — nGx™, X1 — 7).
This implies that

1— 20,7 + (oznr)2 +anyB

X _x* 2 < X _x* 2
[1Xn41 [I° < 1~y [1%n I
2
+ on (Yf(x*) — uGx*, x4 — x¥)
1_Ofnyﬂ
2(r —yB)x ant)?
<[1- ( )"]||xn—x*||2+ @m) e — 1P
1 —anyp 1 —anyB
2
b T F() — LGK®, Xpy — X7
1_Ofnyﬂ

< (1 = )l — |1 + 8,

where y, := 20{'&;’5) and &= | " g
2(z—vB)

Yo <7\ s from (3.1a), we have lim,,_,.. %, = 0; ¥, = 20, (t - ¥B), from (3.1a), we

have Y 2 yn=00 put M = sup f{||lx, - x*|| : n € N}

8ulVn = z(riyﬁ) [anT?M + 2(yf(x*) — uGx*, Xns1 — x*)]. So, lim,,_,.. 3,/7, < 0. Hence, by

Lemma 2.3, we conclude that x,, — x* as n — . O

4, Cyclic algorithm

Theorem 4.1. Let H be a real Hilbert space and let T; : H — H be a k;-strict pseudo-
contraction for some k; € (0, 1) (i = 1,..., N ) such that ﬂil F(T;) # Yand f be a con-
traction with coefficient B € (0, 1). Let G : H — H be a n-strongly monotone and L-
Lipschitzian operator with L >0, 1 >0. Assume that 0 <y < u(n — “;2 )/B =1/B

Given the initial guess xo € H chosen arbitrarily and given sequences {o,} and {B,} in

(0, 1), satisfying the following conditions:
(4.1a) lim,,_,., o, = 0,
(4.1b) ZZO oy = 00}
(4.1¢) Y021 | otner — o] < 00, or limyo [ =1
(4.1d) B, € [k 1), where k = max; {k;: 1 < i < N},
let {x,} be the sequences define d by the composite process (1.8), i.e.

Apn) = Bl + (1 = Bin)) Tjn)
Xnel = anyf(xn) + (I - a"MG)A["*'l]x"’

(o212 — X*|17 + 2y f(x*) — uGx*, xpa1 — 6%)]..
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where T,) = T;, with i = n(modN ), 1 < i < N, namely, T, is one of Ty, Ts,..., Ty cir-
cularly. Then {x,} converges strongly to a common fixed point of {T;} which solves the
variational inequality (1.6).

Proof. Step 1. {x,} is bounded. Take v ﬂf\:’l F(T;), from (1.8) and Lemma 2.9 we

have

lletny f (x%n) + (I — ctu it G)Afns1)Xn — V|
lotn (v f (xn) — nGv) + (I — anMG)A[n+l]xn — (I = apuG)v||
< (1 = an)llxn — || + anlly (f (xn) — f(v)) + vf(v) — nGv||
< (1 —ant)llxn — VI| + atnyBllxn — vl| + enllyf (v) — nGu||
= (1 = an(t — ¥B)) %0 — VIl + anllyf(v) — uGl|
llyf(v) — nGul| }
T—yB

||xn+1 - V”

< maX{llxn—vll,

By simple induction, we have

||Vf(”)—MGV||}.

[lxn — V| < max{llxo -l
T—yp

Hence {x,} is bounded.
From the proof of Step 1 in Section 3, we know that {T},,x,,}, {f (x,)}, {GA 1%, are
bounded.

NA@xn — Al = B + (1 = Bia)) Tin)%n — (BiugI + (1 = Bpny) Tinp )V
= 1By (xn — v) + (1 = Biu)) (Tjn)xn — V)|
< Alxn — || + | Tjnyxn — vI|.

So, {A[y%,} is bounded.
Step 2. lim,,_,.. ||%,.n - %.|| = O.
By (1.8) and Lemma 2.9, we have

Xnene1 = Xna1 ] = [l@nenVf (%nen) + (I = nNUG)AneNe11XneN
— o Vf (%) — (I — n it G) A1) Xnll
= |onNVf (%nen) + (I = 0N G) A1 Xnan
— oY f (%) — (I — nitG) A1) Xnll
= |letnNVf (%nen) = nenVf (%n) + Cnan v f (Xn)
— o Yf (%) + (I — W G)Ana | XneN
— (I = opeN b G) A1) xn — (I — anptG)Ajpi1 )l (4.1)
+ (I = et G)Afpe1)Xn
< e NYBlIXnen — Xull + |otnn — an |y 1f (x0)1]
+ (1= anT)||Xnen — Xnl| + lotnen — anl it l|GAs1) 20|
< NV BlIXneN — Xnll + |otnen — an Ky
+ (1 — anT)||Xnen — Xull

= (1 - an(f - )//3))||xn+[\l — Xp|| + lanen — anlKq,

where Kj is an appropriate constant such that K; > sup,»1 {¢#||GAp. 1%+ 7 |If
(%,)||}. By conditions (4.1a), (4.1b), (4.1c) and Lemma 2.3, we obtain ||x,.n - x,|| & O
as 1 —> oo,

Step 3. lim,,, « ||%, - Apieng = Apsr®al| = 0.
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From (1.8), we observe that
[1Xne1 — Afnerjxnl] = anllyf(xn) + UGA[n11%n].

It follows from the condition (4.1a) and the boundedness of {f(x,)} and {GA[,.1)%x,}
that

[1%n41 _A[n+l]xn|| - O(Tl g OO)
Recursively,
XN — ApneNiXnin—11] — 0(n — o00),

[1%neN—1 _A[n+N—1]xn+N—2|| - 0(1’1 - OO)

By condition (4.1d) and Lemma 2.5, we know that T8 [n+N] is nonexpansive, so we
get

AN XnsN—1 — A[neN1A[neN—1]1%nsN—2]] — O(n — 00).
Proceeded accordingly, we have

AN A N1 %neN—2 — AN AneN—11AneN—2%neN—3]| — 0(n — 00),

NAsN] - - Apne2)Xne1 — Anan] - - Ape)Xall — 0(n — 00).
Note that
[XneN — A[n+N] T A[n+1]xn|| < |%nen — A[n+N]xn+N—1 I
+ ||A[n+N]xn+N—1 - A[n+N]A[n+N—1]xn+N—2||
+ DRI
+ ||A[n+N] e 'A[n+2]xn+1 - A[n+N] - 'A[n+1]xn||
From all the expressions above, we obtain
||xn+N _A[n+N] t 'A[n+1]xn|| g O(Tl g OO)
Since

[l _A[n+N] e 'A[n+l]xn|| < 1%n — Xnan |+ [ XnanN _A[n+N] s ’A[n+l]xn||r

we conclude ||x, - Apng = Apr®n|| = 0 — o).
Step 4.

N
ou(tn) € [V F(Ty). (4.2)

i=1
Take a subsequence {Xn,} C {xn}, by step 3, we get

[1Xn, — Afnan] * + * Ape11%n || — 0 — 00).

Notice that, for each #;, Ajn+NJA[n+N-1] -  * An;+1] is some permutation of the map-
pings A;1A; - A, since Ay, Ay, Ay are finite, all the finite permutation are NI, there
must be some permutation appears infinite times.

Without loss of generality, suppose this permutation is A; A,-Apx, we can take a sub-
sequence {Xn, } C {¥n} such that x,, = q(k — o0©) and
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||xﬂjk _A1A2 t 'Aanjk || - O(k d OO)

By Lemma 2.5, we conclude that A;, A,,-, Ay are all nonexpansive. It is easy to
prove that Ajn+N] - - - A[n+1] is nonexpansive, so A, Ay-Ay is.
By Lemma 2.2, we have ¢ = A1A; + Ay q. From Lemmas 2.5 and 2.7, we obtain

N N
qgeF(A1Ay - Ay) = (| F(A) = [ F(T)).

i=1 i=1
Step 5.
lim sup{(yf — uF)x*, x, — x*) < 0. (4.3)
n—oo

Indeed, there exists a subsequence {Xn;} C {xn} such that

limsup((yf — uG)x*, x, — x*) = im ((yf — nG)x™, xp, — x™).
n— 00 J—00

Without loss of generality, we may further assume that ¥»; — X. It follows from (4.2)
that x € F(T). Since x* is the unique solution of (1.6), we obtain

limsup((yf — uG)x*, xp — x*) = im ((yf — nG)x*, xy, — x*)
n—00 J—=o0
={(yf — nG)x*, x —x*) < 0.

Step 6. x,, > x*(n —> o).
From Lemma 2.9, we have
[%ne1 — x*”2 = ”an(yf(xn) - N'Gx*) + (I - anMG)A[nH]xn - (I - OlnMG)x*HZ
< (1= @) llxn — %17 + 20 (yf () — HGx", X1 — X¥)
=< (1 - anf)znxn - X*“z + 20,y (f(xn) _f(x*), Xn+1 — x*)
+ 20, (Yf(x*) — uGX*, Xpe1 — x¥)
< (1= ant)|lxn = x*|17 + 200y Bl %0 — x| [1Xne1 — ]
+ 20, (Yf(x*) — uGxX*, X1 — x*)
< (1 —ant)?llxn = x*|17 + anyB(I1xn — x* 117 + 101 — x*11%)

+ 2Oln()/f(X*) — uGx*, xp — &%),

This implies that

1 — 20,7 + (an7)* + oy
|21 — &*|? < nT + (o) " x — x*)?
1—ayyp
2
s T () — G X — )
1 —oayypB
2(r —yB)x ant)?
<[1- ( ) g — x* 11 + () |lxn — ™[I
1 —oyyB 1 —anyp
2
b () = HGKY, X — X7)
1 —ayyB

< (1 = )l — |1 + 8,

where y, := 20;4;1—1/;/;) and &= o' glomT?|lxn — x*[17 + 2(yf (x*) — nGx*, xpa1 — 2)]..

Vn < z(lf:yylf)an, from (4.1a), we have lim,,_,.. ¥, = 0; ¥, = 2a,, (r -¥8), from (4.1b), we
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have > 2 yp=00 put M = sup f{||x, - «x*||: n e N}, we have
Sn/¥n = 2(1——1)//3) [anT?M + 2(yf(x*) — uGx*, Xns1 — x*)]. So, limsup,,_,.. 9,/7, < 0. Hence,
by Lemma 2.3, we conclude that x,, — x* as # — co. . O
Taking n = 1, B, = 0 and T is nonexpansive mapping in Theorems 3.1 and 4.1, we
get
Corollary 1 (see[4]) Let {x,} be generated by the following algorithm
Xne1 = anyf(xn) + (I — ponF) Ty,

Assume the sequence {o,,} satisfies conditions:

(C1) lim,, ,.. @, = O;
o0
(C2) Zn:O oy = 00;;

(C3) either Y02, | apa1 — aty| < 00 or limyoe % =1

then {x,} converged strongly to ¥ which solves the variational inequality
((yf —uF)x,x—X) <0, VxeF(T).
Taking n = 1, 8, = 0 and T is nonexpansive mapping, G = A, 4 = 1 in Theorems 3.1

and 4.1, we get
Corollary 2 (see[3]) Let {x,} be generated by the following algorithm:

Xne1 = anYf(xn) + (I — 0nA) Ty,

Assume the sequence {a,,} satisfies conditions (C1)-(C3), then the sequence {x,} con-
verged strongly to a fixed point ¥ of T which solves the variational inequality

((yf =A% x—X) <0 VxeF(T).
Taking #n = 1, B, = 0 and T is nonexpansive mapping, ¥ = 0 in Theorem 3.1 and

Theorem 4.1, we get:
Corollary 3 (see[2]) Let {x,} be generated by the following algorithm

Xne1 = Toxn — pAnF(Txy),
where T is a nonexpansive mapping on H, F is L-Lipschitzian and 1n-strongly mono-

tone with k >0, 1 >0, 0 < u <2n/L* If {4,} is a sequence in (0, 1) satisfies the following
conditions:

(D) lim,, . A, = 0;
(ii) Y520 An = 00;

cee . 1 A‘
(iii) either 3 0% [Ane1 — An| < 00 or limyoo )" = 1

then the sequence {x,} converged strongly to the unique solution of the variational
inequality

(FXx,x —X) > 0, Vx¢€ F(T).

Taking n = 1, B,, = 0 and T is nonexpansive mapping, ¥ = 0 in Theorem 4.1, we get
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Corollary 4 (see[2]) Let {x,} be generated by the following algorithm
X1 = Tx = (I — 2 F) Tinpn

where T, = Ty mod n - Assume {A4,,} satisfies conditions (C1)-(C3) and C = F(Ty -~
T1) = F(Th Ty - T3T5) =+ = F (T - 1Tn - 2 -+ T1Tn ), then {x,} converged strongly
to the unique solution ¥ e C of the variational inequality

(FXx,x —X) >0 VxeC.
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