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Introduction
New sequencing technologies and decreasing sequencing 
costs are leading to a rapid increase in the availability of DNA 
sequence data. This is true both within and across species, per-
mitting increasing numbers of genome-wide scans for posi-
tive selection incorporating a more diverse range of species.1–4  
A general aim of these analyses is to identify genes that evolved 
adaptively, either across a clade or on specific lineages, and to 
understand the biological processes targeted during periods 
of phenotypic change. The codeml program in Phylogenetic 
Analysis by Maximum Likelihood (PAML) is a powerful 

suite of models routinely used for phylogenetic analyses of 
protein-coding sequence.5 These models calculate the ratio of 
nonsynonymous and synonymous substitution rates (dN/dS),  
a measure of selection pressure, and comparisons between dif-
ferent models permit tests for pervasive or episodic positive 
selection, acting on a gene-wide or codon-specific manner.

The performance of these models can be strongly 
influenced by gene misannotation, alignment error, and 
sequence quality.6–11 Unfortunately, with the adoption of 
next-generation sequencing methods,12 the likelihood of  
certain errors, including sequencing errors and misalignment 
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caused by splicing variants, has vastly increased.13–15 The inclu-
sion of alignments containing nonhomologous data caused 
by these effects can drastically inflate false-positive rates in 
PAML, and may also influence false-negative rates.6,7 Align-
ment quality is therefore of major importance in the accurate 
inference of positive selection.

The alignment program chosen can have a significant 
effect on the reliability of PAML analyses, with some, such 
as PRANK,16 outperforming others (ClustalW,17 MAFFT,18 
ProbCons,19 and T-coffee20).6,7 Postalignment filtering pro-
vides an additional step to improving alignment quality and 
has been implemented in two main ways. Column-based pro-
grams, such as G-Blocks21 or Noisy,22 examine the degree of 
conservation at each position in the alignment, removing con-
tiguous stretches of sequence that are not conserved across spe-
cies. G-Blocks’ original purpose was not to filter alignments 
for tests of positive selection, but instead to remove unreliable 
sequence data for phylogenetic studies.21 As such, although 
this approach may have some benefits with low-quality align-
ments, the columnwise nature of the method can remove 
high proportions of data, greatly reducing power.7 In addition 
G-Blocks will fail to remove sequencing errors that affect just 
one species in a large, multiple-sequence alignment. Where 
sequencing error is present at a site in one species, Gblocks 
and other column based filtering methods will not mask the 
data if that site is conserved across the rest of the alignment. 
Branch-specific analyses of evolutionary rates will therefore be 
vulnerable to this source of error.

An alternative approach is to use a measure of alignment 
confidence to filter the data set. These can be obtained from 
some alignment programs16,20 or through additional programs 
such as GUIDANCE23 or ALISCORE.24 These filters can 
effectively reduce false positives when alignment confidence 
is low. However, adding these additional filters provides little 
benefit beyond using the top-performing alignment program 
for well-supported alignments.7

The merit of implementing existing filters is therefore 
open to debate.7 This is particularly true when sequence diver-
gence is low, leading to alignments with high confidence. 
In these cases, short stretches of sequencing errors or longer 
stretches of nonhomologous sequence caused, for example, by 
splicing variation or misannotation, can have an overly domi-
nant effect on tests for positive selection. To this end, we have 
developed a Sliding Window Alignment Masker for PAML 
(SWAMP). This script provides an additional preprocessing 
step designed to mask these problematic sections of sequence.

Implementation
SWAMP analyses DNA sequences in a phylogenetic context, 
identifying regions with a high concentration of nonsyn-
onymous substitutions along a branch, over a short sequence 
window. The method utilizes the summary of nonsynonymous 
codon substitutions along branches within a phylogeny 
obtained by running a one-ratio model (model = 0, NSsites = 0) 

in codeml.5 These summary data contain details of the codon 
positions of all predicted substitutions along each branch. 
SWAMP uses this information to conduct a sliding-window 
scan across a gene to quantify the number of nonsynonymous 
substitutions within a user-provided codon window length. If 
a user-defined threshold is exceeded, the window is masked 
to exclude it from downstream analyses (Table 1). Masking is 
achieved by converting the sequence within the window to a 
sequence of N characters. These stretches of N characters are 
removed by PAML and therefore do not influence tests for 
positive selection or accelerated evolution (Fig. 1A and B).

A “branchnames” file, provided by the user, defines 
which row(s) of sequences (in most cases this will be species) 
will be affected by substitution patterns along each branch 
in the phylogeny. Generally, this relates species data to their 
ancestral lineages. The use of this “branchnames” file pro-
vides a further advantage in that a user may vary the mask-
ing parameters across specific branches or sequences, allowing 
different masking regimens to be applied to different parts of 
the phylogeny through multiple SWAMP iterations. This is 
achieved by the user listing only a subset of sequences and/or 
branches in the “branchnames” file in each of multiple itera-
tions of SWAMP, while supplying different thresholds and 
window sizes for each run. An example of this is provided in 
the SWAMP documentation along with step-by-step instruc-
tions on how to implement the program. This branch-specific 
masking may be useful in a number of contexts, for example, if 
the data for one of a number of species is more likely to contain 
errors than others, where assembly quality varies, or if signifi-
cant variation in branch length demands a flexible approach to 
alignment masking.

In some cases, initial masking can leave small “islands” of 
sequence data flanked by masked sequence. These potentially 
problematic stretches of sequence in close proximity to masked 
sections can be masked with the optional “interscan” function 
(Table 1). This function masks regions based on their length in 
comparison to neighboring masked regions (Fig. 1B and C). This 
ensures longer stretches of nonhomologous data that by chance 
share some similarity are still masked from the alignment.

Finally, SWAMP also notifies the user if the total length 
of the sequence falls below a defined minimum. These cases 
are likely to be incomplete sequences, which may then be 
excluded from downstream analyses if desired.

SWAMP is not a computationally expensive filtering 
approach. For example, across a data set of .6,000 four-way 
1:1 orthologs, described below, using a threshold of 10 and 
window size of 15, SWAMP ran in 93.3 seconds on a Mac 
with a 2.93-GHz i7 and 16-GB RAM.

Results and Discussion
Effects of SWAMP on branch-site tests for adaptive 

evolution. For developmental purposes, and to provide some 
guidance on initial parameters, we utilized a primate data 
set, consisting of 6,379 orthologs from Homo sapiens, Pongo 
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Table 1. Description of key SWAMP parameters.

Threshold -t THRESHOLD or  
--threshold  
THRESHOLD

A threshold-positive integer of the number of nonsynonymous substitutions  
at and above which the window will be masked.

Windowsize -w WINDOWSIZE or 
--windowsize  
WINDOWSIZE

An integer window size for the sliding-window scan, given in numbers of  
codons.

Minimum sequence length -m  
MINSEQLENGTH or 
--minseqlength  
MINSEQLENGTH

The required minimum number of informative codons in each of the  
sequences in the multiple-sequence alignment postmasking. This is a  
positive integer. The program will print a warning to the user in the  
standard output if a masked sequence is shorter than this minimum length.  
The default is 33 codons (99 base pairs).

Interscan masking -s or --interscan Activates interscan masking. This will additionally mask regions adjacent to  
already masked regions based on relative sequence length. This additional  
masking is performed at the start or end of the sequence alignment if the  
unmasked sequence region length is shorter than twice the length of the  
preceding or subsequent masked section. Where a sequence contains  
multiple masked regions, interscan will also mask internal unmasked  
regions that are shorter than the combined length of their flanking masked  
regions. This process occurs repeatedly until no more sections that meet  
the interscan masking criteria are found. Interscan is useful for removing  
very short stretches of sequences or sequences at the edge of masked  
regions that are possibly unreliable, but that do not themselves meet the  
masking criteria.

 

pygmaeus, Colobus angolensis, and Papio anubis. Although 
small, this data set is comparable in size with the majority 
of genome-wide scans for positive selection during human 
or anthropoid evolution performed to date (eg, Nielsen 
et al.3, and Scally et al.4) and permits the implementation of 
branch-specific tests for adaptive evolution that are widely 
used in studies of adaptive evolution (eg, Kosiol et al.1, and 
McGowen et  al.2) but are known to be sensitive to align-
ment and sequencing errors.6–9 The data were selected as 
they incorporate a range of sequencing technologies and 
coverage levels, therefore encompassing a range of potential 
errors. This allows for a comparison between high-quality 
Sanger-sequenced genomes, such as the genome of H. sapi-
ens, with genomes and exomes constructed using next-gener-
ation sequencing strategies that may have higher error rates, 
lower assembly quality, and greater difficultly in resolving 
repetitive regions.13–15 This data set therefore provides a use-
ful exploration of the effectiveness of the approach taken in 
SWAMP.

Protein-coding genes for H. sapiens, P. pygmaeus, and  
P. anubis were obtained from Ensembl v7325 and C. angolen-
sis was obtained from the National Center for Biotechnology 
Information (NCBI).26 One-to-one orthologs were aligned 
with PRANK,16 the alignment program that results in the 
lowest false-positive rates in downstream analyses,6,7 to mini-
mize errors that are attributable to a suboptimal alignment 
strategy and could otherwise be avoided. We ran the branch-
site test for positive selection on the four terminal branches.27  
This model produces significant results when there is an accel-
eration in dN/dS ratio at a subset of sites along a selected set 
of branches.6  Without masking, tests on all four branches 
are significant (likelihood ratio [LR] .2.71 at P = 0.05) for a 

large number of genes (Fig. 2). A number of these show likeli-
hood ratios above 50. Visual inspection of these alignments 
revealed that the majority of these cases contain short stretches 
of sequence with low conservation in the focal species, typical 
of sequencing or alignment error. With increasingly stringent 
SWAMP masking across a constant-sized window (15 codons) 
the number of these outliers decreases. Notably, the effect 
is most modest in the species with the highest quality data,  
H. sapiens (a Sanger-sequenced genome with high coverage) 
and C. angolensis (an exome with high coverage26), indicating 
the effect is largely due to data quality rather than removing 
true positives. Note the Homo and Pongo, and Colobus and 
Papio, branch lengths are equal in length (time since diver-
gence) so variation in evolutionary distance does not explain 
the variable effects of masking.

The effect of varying the window size is illustrated in 
Figure 3. Here we focus on the terminal Papio branch and 
compare results of the branch-site test using unmasked data, 
a window size of 5 and a window size of 15 with a thresh-
old of 3 and 10, respectively (ie, 60%–66% conservation). 
We limited the comparison to those genes with significant 
results at P  =  0.01 (LR  .5.41) with the unmasked align-
ments. Under both comparisons, a large number of genes 
have much higher likelihood ratios using the unmasked data 
(Fig. 3A and B). In many cases previously highly significant 
results have a LR of zero after masking. The difference in 
LR before and after masking was used to compare the two 
masking regimens (Fig. 3C). In a large number of cases, the 
effect size is similar, with 72/356 (20%) genes losing sig-
nificance under either masking regimen, but in some cases, 
they differ. The shorter window size specifically reduces the 
LR below significance for 119 more genes and may produce 
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more conservative results in this case, while the longer 
window size specifically reduces the LR of a smaller number 
of genes.16 Visual inspection of clear outliers in Figure 3C 
suggests smaller window sizes are more effective at filter-
ing short clusters of nonsynonymous substitutions, such as 
those that may be caused by sequencing errors, while larger  

window sizes may remove alignment errors caused by varia-
tion in exon splicing. Therefore, a two-step masking pro-
cedure with a large and small window size can effectively 
remove most of the problematic sequence.

Comparison with the gorilla genome analysis. A simi-
lar approach was previously implemented in a genome-wide 

Consensus G Y W R R Y S T R Q R F L K L K Y Y S I I L Q S R I 

Homo * * * * * * * R * * * * * * * * * * * L * * * * * *

Pongo P H R * * * R * * Y S * Q Q K * G S I * L * S R * Y

Colobus S * * Y * * * * * Y T * Q Q K * G G I * L * S R * *

Papio S * * W T M * * * * * * * * * Y * * * L * * * * * *

Consensus G Y W R R Y S T R Q R F L K L K Y Y S I I L Q S R I 

Homo * * * * * * * R * * * * * * * * * * * L * * * * * *

Pongo N N N * * * R * * N N N N N N N N N N N N N N N * Y

Colobus S * * Y * * * * * N N N N N N N N N N N N N N N * *

Papio S * * N N N * * * * * * * * * Y * * * L * * * * * *

Consensus G Y W R R Y S T R Q R F L K L K Y Y S I I L Q S R I 

Homo * * * * * * * R * * * * * * * * * * * L * * * * * *

Pongo N N N N N N N N N N N N N N N N N N N N N N N N * Y

Colobus S * * Y * * * * * N N N N N N N N N N N N N N N * *

Papio S * * N N N * * * * * * * * * Y * * * L * * * * * *

Mask if >2 NS in 3 AA
eg, sequencing error  

Mask if >10 NS in 15 AA
eg, alignment error due to splicing variation  

‘Interscan’ Masking
Masks short sequences surrounded by masked data 

A 

B

C

Figure 1. Illustrative schematic of SWAMP masking. (A) Unmasked alignment with two potential data errors, short stretches of divergent sequence 
possibly caused by sequencing errors, and longer stretches possibly caused by exon splicing. (B) Application of a two-step filtering masks data errors; 
a shorter window of 3 AA with a maximum of 2 substitutions effectively masks possible sequence error (orange), and a longer window of 15 AA with 
a maximum of 10 substitutions effectively masks longer alignment errors (blue). (C) The ‘Interscan’ option further masks the data if short stretches of 
sequence are surrounded by masked data and the sum of the masked data either side of the sequence exceeds the length of the interceding unmasked 
data (purple).
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Figure 2. Effects of SWAMP filtering on branch-site tests for positive selection. Branch-site tests were conducted on the terminal Homo (A), Pongo (B), 
Colobus (C), and Papio (D) branches in a four-species alignment ((H. sapiens, P. pygmaeus),(C. angolensis, P. anubis)). The top 100 LR scores are shown 
for unfiltered data (light grey diamonds) and filtered for 10 or more nonsynonymous substitutions in 15 codons (medium grey squares) and 5 or more 
nonsynonymous substitutions in 15 codons (black triangles). As the filtering becomes more stringent, the number of LR values above 50 decreases, and 
when these alignments are visually inspected, they are often found to contain stretches of poorly aligned or nonhomologous sequence. The effects of 
genome coverage and assembly quality can also be seen by comparing the results of Homo, which has a high-coverage genome, with Pongo and Papio 
which have lower coverage genomes. The exome assembly of Colobus appears to be of comparatively high-quality consistent with its high sequence 
coverage.26

evolutionary analysis of protein-coding genes across African 
Great Apes4 using an unpublished forerunner of SWAMP. This 
analysis masked a 1:1 orthologous genes set for humans, chim-
panzee, gorilla, orangutan, macaque, and marmoset using a 
window size of 15 codons and a threshold of 10 nonsynonymous 
substitutions per window. Of 11,538  gene alignments 1,156 
(10.1%) were masked in at least one window. This mirrors our 
results in which of 6,379 alignments 1,022 (16.0%) genes were 
masked under the threshold of 5 nonsynonymous substitutions 
in 15 codons and 429 (6.7%) were masked under the threshold 
of 10 nonsynonymous substitutions in 15 codons. Notably, this 
analysis also found much lower numbers of genes being par-
tially masked in humans compared to other primates that have 
lower quality genomes. The masking performed in the analysis 
of the gorilla genome4 affected downstream PAML analyses in 

a similar way to that described above (G. E. Jordon and S. H. 
Montgomery, personal observation).

Comparison with column-based masking. A major dif-
ference between the approach taken in SWAMP and currently 
available postalignment filtering methods is the orientation 
of data analysis. Existing methods tend to filter alignments 
based on conservation within a column of a multiple- 
sequence alignment (ie, at a codon or nucleotide across spe-
cies), whereas SWAMP analyzes data within rows. This 
is advantageous as sequencing or alignment errors may not 
sufficiently reduce similarity at conserved sites to be filtered 
by column-based approaches. To demonstrate the effects of 
this difference, we filtered our alignments using G-Blocks21 
under default parameters. The filtering resulted in the removal 
of data from 185 (2.9%) of 6,379 alignments. In contrast to 
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Figure 3. Effects of masking at different window sizes. In (A) and (B), the LR statistics of genes significant for the branch-site test on the terminal Papio 
branch (P , 0.01) using the unfiltered alignments are plotted against the LR for the same test after masking with either (A) a window size of 5 codons and 
a nonsynonymous threshold of 3 or (B) a window size of 15 codons and a nonsynonymous threshold of 10. In each case, the percentage of conserved 
codons required in the window is approximately constant (60% or 67%, respectively). In (C) the difference in LR statistic between the unfiltered alignments 
and the masked alignments for the two masking regimens are plotted against each other. In this case, many genes are equally affected, with 20% losing 
significance, but a large number appear to provide more conservative results under the smaller window size. This is illustrated in (D), where the overlap 
between genes significant after masking using the 5-codon window size (green), the 15-codon window size (orange), and the unmasked alignments 
(purple) are shown.

SWAMP masking, the downstream PAML results based 
on these G-Block-masked alignments are almost identical to 
those obtained using unmasked data (Supplementary Fig. 1). 
Of course, across more divergent data sets that include regions 
where the alignment is problematic, users may find column-
based filtering more useful; indeed, this was the intended use 
of G-Blocks.21 However, given PAML is optimized for data 
sets that are unsaturated at synonymous sites, and therefore 
relatively well conserved, we expect the phylogenetic row-
based approach of SWAMP will be preferable in the majority 
of cases.

Usefulness of SWAMP and potential caveats. These 
results demonstrate SWAMPs utility on data from genomes 
of lower quality than those of the gold standard model organ-
isms (Fig. 2). SWAMP provides a flexible framework to mask 

large data sets, removing stretches of low-quality alignment, 
probable sequencing errors, and nonhomologous data that 
could otherwise inflate false-positive rates in tests for adaptive 
evolution.

Effective masking with the approach taken by SWAMP 
will most likely produce conservative results as a minority of 
masked sequence may reflect genuine divergence concentrated in 
a short stretch of sequence. This could conceivably occur in pro-
teins with key functional domains coded by a contiguous stretch 
of sequence. While this may result in some false negatives, a 
conservative approach is preferable in genome-wide studies, 
particularly when used to generate candidates for functional 
analyses. However, if this is a concern for a user, we recom-
mend testing for enrichment of protein domain types within the 
masked genes and extending the window size during filtering.
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A further caveat is that users must currently optimize 
their masking parameters manually. This can be done 
based on the genome-wide average rate of nonsynonymous 
substitutions/codons or simply by optimizing the parameters 
to ensure genes with significant results in downstream analy-
ses do not contain spurious alignments when the most signifi-
cant genes are inspected manually. The increased confidence 
in downstream analyses and the reduction in manual filtering 
of results should offset this investment in time.

It is generally accepted that short sequences and those 
that contain internal stop codons should be removed from 
genome-wide scans for positive selection. Sequences that 
contain repetitive elements could also be masked, for exam-
ple, with Repeatmasker.28–30 By implementing SWAMP 
in conjunction with optimal alignment programs and these 
established masking steps, researchers can increase their con-
fidence in conclusions drawn from evolutionary and phyloge-
netic analysis performed in PAML are other analysis suites. 
SWAMP provides a useful addition to methods of postalign-
ment filtering, improving the reliability and reproducibility of 
genome-wide analyses using PAML.

Conclusions
SWAMP effectively masks regions with high rates of non-
synonymous substitutions concentrated in short runs of 
sequence typical of sequence or alignment errors, prevent-
ing their inclusion in downstream evolutionary analyses. 
This removes sequence that violates the assumptions of the 
phylogenetic model implemented in the software package 
PAML that could otherwise give a false signal of positive 
selection. SWAMP effectively masks short stretches of erro-
neous sequence that may not be detected by existing mask-
ing/filtering methods but will be prevalent in low-coverage 
genomes and the branch- and sequence-specific operation 
allows different masking regimens to be applied to selected 
parts of the phylogeny. Although specifically designed for 
implementation with PAML, SWAMP will be useful as a 
preprocessing step for any analysis that requires the preven-
tion of the influence of sequence error and misannotation. 
In addition to the reduction in false-positive rates achieved 
through SWAMP preprocessing, the inclusion of the imple-
mented SWAMP parameters in future publication meth-
odologies will improve the reproducibility of genome-wide 
analyses for positive selection.

Availability and Requirements
Project name: SWAMP 
Project home page: http://github.com/peterwharrison/

SWAMP
Operating systems: Platform independent 
Programming language: Python
Other requirements: PAML 4.7 or higher, Python 2.6 

or 2.7 
License: GNU GPL v3
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