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1. Introduction
Glioblastoma is considered as the most aggressive 

primary brain tumor and has an extremely poor prognosis. 
The median 5-year survival rate is less than 3%, which 
makes this disease a devastating condition for both patients 
and their caregivers. Resistance to available therapies and 
recurrence are common in most cases; identification and 
molecular characterization of cancer stem cells (CSCs) 
(Singh et al., 2003; Yuan et al., 2004) have shown that 
these cells are responsible, in part, for resistance, as well as 
tumor reformation.

In this review, we will try to summarize the recent 
advances in glioblastoma biology, with a special focus 
on glioblastoma CSCs (GSCs). We will also discuss the 
molecular features of GSCs, and how these features can be 
exploited as potential therapeutic strategies.

2. Glioblastoma
2.1. Background and epidemiology
Gliomas are the most common primary brain tumors 
(approximately 80% of all cases). Glioblastoma in 
particular is the most common and aggressive form of 
glioma (Omuro and DeAngelis, 2013). Glioblastoma is 
classified as WHO grade IV astrocytoma according to the 
World Health Organization (WHO) classification of brain 
tumors. The estimated incidence of brain and nervous 

system tumors is 240,000 cases per annum. According 
to the Central Brain Tumor Registry of the United States 
(CBTRUS) report in 2013, the incidence of glioblastoma is 
3.19/100,000. and the median age at diagnosis is 64 years 
(Ostrom et al., 2013; Thakkar et al., 2014). 

The tumor is generally localized in the forebrain 
(cerebrum). In most cases, tumor formation occurs 
spontaneously. However, several genetic and 
epidemiological risk factors have been identified, including 
increased age, exposure to high-dose radiation, and history 
of genetic disorders (e.g., Li–Fraumeni syndrome, Turcot’s 
syndrome, retinoblastoma, and neurofibromatosis 1 and 
2), allergies, ionizing radiation, and occupational exposure 
to chemicals (e.g., pesticides, solvents) (Schwartzbaum et 
al., 2006; Ostrom et al., 2014). In addition, while symptoms 
vary between patients depending on tumor size and 
localization, the common symptoms include increased 
intracranial pressure, visual impairment, seizures, sensory 
loss, mood/personality changes, and impaired cognitive 
function (Wen and Kesari, 2008; Ostrom et al., 2014). 
Magnetic resonance imaging (MRI) is performed in 
suspected cases, and definitive diagnosis is made after 
pathological examination of the biopsy specimen.

Glioblastoma patients have poor prognosis, and the 
5-year survival rate after diagnosis is less than 5% (Ostrom 
et al., 2013; Smoll et al., 2013). Long-term survival in 
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glioblastoma is associated with several parameters, 
including younger age, lower Ki-67, hypermethylation of 
the O-6-methylguanine-DNA methyltransferase (MGMT) 
promoter, and mutations in the IDH1 and IDH2 genes 
(Scott et al., 1999; Krex et al., 2007; Yan et al., 2009; 
Hartmann et al., 2010).
2.2. Molecular subtypes of glioblastoma
In 2010, Verhaak and colleagues integrated mRNA 
expression profiles from different platforms and discovered 
four distinct molecular subtypes (Verhaak et al., 2010). They 
demonstrated that the so-called classical, mesenchymal, 
proneural, and neural subtypes are characterized by 
individual genetic signatures. The classical subtype is 
characterized by chromosome 7 amplification (especially 
EGFR gene amplification) paired with chromosome 10 
loss, lack of TP53 mutations, focal 9p21.3 deletion (on 
the CDKN2A locus), and high expression levels of NES, 
Notch, and Sonic hedgehog (SHH) signaling pathway 
elements (Verhaak et al., 2010). The mesenchymal subtype 
is characterized by focal deletion of 17q11.2 (NF1 locus), 
expression of previously described mesenchymal markers 
(CHI3L1 and MET), and high levels of TNF and NF-κB 
pathway elements (Verhaak et al., 2010). The proneural 
subtype is characterized by mutations in the IDH1 and 
PDGFRA genes, which are not commonly seen in other 
subtypes (Verhaak et al., 2010). Integrated pathway analysis 
of genomic alterations in glioblastoma has shown that the 
PI(3)K/MAPK pathway, p53 pathway, and Rb pathway 
are the most affected signaling pathways (Brennan et al., 
2013).
2.3. Standard of care
The current standard of care consists of gross total 
resection (GTR), followed by radiotherapy and adjuvant 
chemotherapy. GTR is the recommended approach as it 
reduces intracranial pressure (Ricard et al., 2012), and the 
extent of GTR has a significant effect on survival. Orringer 
and colleagues reported that 1-year survival is significantly 
higher in patients who undergo >90% resection (Orringer 
et al., 2012).

Temozolomide (TMZ) is the current standard for 
chemotherapy for glioblastoma. Stupp and colleagues 
showed that TMZ administration during and after 
radiotherapy significantly increases the median overall 
survival and 2–5-year survival compared to radiotherapy 
only (Stupp et al., 2009). Moreover, inactivation of MGMT 
expression through promoter methylation is correlated 
with higher sensitivity to TMZ (Esteller et al., 2000; 
Hegi et al., 2005). Hegi and colleagues identified that 
TMZ+radiotherapy leads to significantly higher median 
overall survival in patients with methylated MGMT 
promoter (21.7 months), compared to patients who received 
radiotherapy only (15.3 months) (Hegi et al., 2005). Taken 
together, these findings indicate the significant benefit 

offered by TMZ treatment to glioblastoma patients with a 
methylated MGMT promoter. 

External beam radiation therapy (EBRT) is the current 
standard in radiotherapy. Resistance to radiotherapy 
is quite common, and it is known that a specific EGFR 
variant (EGFRvIII) mediates radioresistance by inducing 
the genes involved in double-stranded DNA repair 
mechanisms (Mukherjee et al., 2009).

3. Glioblastoma stem cells
Different models have been proposed to explain the 
complicated nature of tumor development. The CSC 
hypothesis postulates a hierarchy in the tumor population, 
where CSCs are positioned at the top. Thus, CSCs give rise 
to different cell types through differentiation (Tang, 2012). 
However, it should be noted that the relationship between 
CSCs and differentiated tumor cells is bidirectional; in 
vitro and in vivo interventions (treatment modalities, 
silencing/overexpressing genes and/or proteins, hypoxia) 
may trigger dedifferentiation of tumor cells to GSCs, 
thus creating a dynamic equilibrium between these cell 
populations (Tang, 2012).
3.1. Molecular features of GSCs
Long-term clonal repopulation and self-renewal represent 
two key features of CSCs (Nguyen et al., 2012). CSCs 
cannot be easily distinguished from differentiated tumor 
cells in the case of tumors that display low levels of 
hierarchy, and in relatively homogeneous tumors (Nguyen 
et al., 2012; Kreso et al., 2014).

GSCs share several features with neural stem cells 
(NSCs), including expression of Nestin and CD133, and 
can form spheres in the presence of required growth 
factors (Zhu et al., 2014). Similar to NSCs, GSCs also 
rely on certain transcription factors, which are crucial for 
their maintenance. These factors include sex-determining 
region Y-box 2 (SOX2), octamer-binding transcription 
factor (OCT4), and Nanog homeobox (NANOG) (Schmitz 
et al., 2007; Ikushima et al., 2011). A list of key biological 
markers that are used for characterization of GSCs is 
provided in the Table. 

CD133 has served as one of the most frequently used 
markers to characterize GSCs. CD133+ glioblastoma cells 
are able to form tumors, even in low cell numbers. Singh 
and colleagues reported that 100 CD133+ cells are able to 
form tumors when transplanted into the brains of severe 
combined immunodeficient (SCID) mice; on the other 
hand, injection of high numbers of CD133– cells (105) does 
not cause tumor formation (Singh et al., 2004). 

Contrary to this notion, different studies have shown 
the presence of CD133– GSCs (Beier et al., 2007, 2011). 
Comprehensive gene expression studies on molecular 
subtypes of glioblastoma have shown that CD133 positivity 
is enhanced in the mesenchymal subtype (Phillips et al., 
2006).
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SOX2 is a transcription factor that has a critical role in 
maintenance of self-renewal of stem cells, and especially 
neural stem cells (Ellis et al., 2004; Thiel, 2013). SOX2 
overexpression at mRNA and protein levels has been 
identified in tumor tissues (Alonso et al., 2011; Annovazzi 
et al., 2011). Gene amplification (Brennan et al., 2013), 
as well as hypomethylation of the SOX2 promoter 
(Alonso et al., 2011), can explain SOX2 overexpression 
in glioblastoma. GSCs express SOX2, which maintains 
stemness through the TGF-β signaling pathway (Ikushima 
et al., 2009). Gangemi and colleagues showed that 
loss of SOX2 expression impairs cell proliferation and 
tumorigenicity of glioblastoma cells in vivo (Gangemi 
et al., 2009). Given the limited expression of SOX2 in 
the adult brain (Baer et al., 2007; Seymour et al., 2015), 
targeting SOX2 can be a potential strategy for treatment 
of glioblastoma.

Previously, Chen and colleagues showed that ablation 
of Nestin-expressing glioblastoma cells leads to increased 
survival of tumor-bearing mice (Chen et al., 2012). This 
finding highlights the importance of Nestin with respect 
to tumor propagation.

TLX is a nuclear receptor that is specifically expressed 
in adult NSCs, and its presence is required for neurogenesis 
in the subventricular zone (SVZ) (Liu et al., 2008). In 
addition, mouse models of glioblastoma have shown 
that the combination of forced TLX overexpression and 
loss of tumor suppressor genes (TP53 and INK4A/ARF) 
is sufficient to cause tumor formation (Liu et al., 2010; 
Park et al., 2010; Zou et al., 2012). Liu and colleagues 
identified that TLX overexpression leads to migration of 
progenitor and/or stem cells from their natural niche, and 
combination of p53 mutations and TLX overexpression 
lead to glioblastoma initiation in vivo (Liu et al., 2010). 

While Tlx has been shown to be druggable (Benod et 
al., 2014), identification and characterization of potent 
Tlx inhibitors warrant further studies. However, given 
the close link between TLX and histone deacetylases 
(HDACs), HDAC inhibitors can be used to target TLX+ 
GSCs (Xie et al., 2014).

L1CAM is a neural adhesion molecule that regulates 
different cellular processes, including migration, invasion, 
adhesion, survival, and growth (Maness and Schachner, 
2007). Bao and colleagues showed that L1CAM is 
differentially overexpressed in CD133+ glioblastoma 
cells (Bao et al., 2008). Cheng and colleagues provided 
supporting evidence for this phenomenon, showing that 
L1CAM is differentially overexpressed in the invasive 
fronts of glioblastoma (Cheng et al., 2011). In another 
study, Held-Feindt and colleagues showed that TGF- β1 
signaling regulates L1CAM expression in glioblastoma, 
and L1CAM confers resistance to TMZ (Held-Feindt 
et al., 2012). L1CAM also participates in regulation of 
DNA damage checkpoint response. Cheng and colleagues 
showed that the intracellular domain of L1CAM is cleaved 
from the membrane-bound form through ADAM10- (A 
Disintegrin and Metalloprotease 10) and Presinilin-
mediated cleavage. This, in turn, leads to its translocation 
to the nucleus, where it induces NBS1 expression 
through c-Myc (Cheng et al., 2011). As a result, L1CAM 
enhances DNA damage checkpoint activation and confers 
radioresistance to GSCs. 

Osteopontin is a secreted phosphoprotein that is 
critical for osteoblast function (Jan et al., 2010). In 
addition to its role in bone formation, osteopontin is 
an important angiogenic molecule for glioblastoma, 
as it is found in the tumor microvasculature (Takano 
et al., 2000). Osteopontin also functions as a driver of 

Table . Important markers for characterization of GSCs.

Marker Function Reference

CD133 Positive association with aggressiveness Brescia et al. (2013)

CD44 Positive association with aggressiveness Pietras et al. (2014)

CD15 Enrichment marker in CD133– tumors Kahlert et al. (2012), Auffinger et al. (2014)

TLX Self-renewal Zou et al. (2012)

ID1 Self-renewal Soroceanu et al. (2013)

Integrin α6 Regulation of self-renewal, proliferation, and tumor formation Lathia et al. (2010)

L1CAM Maintenance of growth and survival of CD133+ cells Bao et al. (2008)

Nestin Regulation of sphere formation, tumor growth, invasion Matsuda et al. (2015)

SOX2 Maintenance of self-renewal Seymour et al. (2015)

Osteopontin Maintenance of stemness, sphere formation, tumor growth Lamour et al. (2015)
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invasion and tumor growth. Jan and colleagues showed 
that osteopontin enhances invasion of glioblastoma cells 
by inducing MMP-2 secretion and vimentin expression 
(Jan et al., 2010). They also demonstrated that 5-aza-2’-
deoxycytidine, an anticancer agent, reduces cell invasion 
and inhibits glioblastoma tumor growth by suppressing 
osteopontin expression (Jan et al., 2010).

Inhibitor of DNA binding/differentiation (Id) 
proteins are negative regulators of the basic HLH family 
of transcription factors (Perk et al., 2005). Id proteins are 
well known for their functions related to differentiation, 
as well as self-renewal of stem cells (O’Brien et al., 2012; 
Romero-Lanman et al., 2012; Lasorella et al., 2014). Id1 
overexpression is a common feature of different cancers 
(Perk et al., 2006; Lasorella et al., 2014) and is also related to 
metastasis of breast cancer to the lungs (Gupta et al., 2007). 
Id1 overexpression has been documented in glioblastoma, 
which is also positively correlated with tumor grade and 
proliferation index (Vandeputte et al., 2002). Given the link 
between TGF-β and Id1 expression, inhibition of TGF-β 
signaling can be a potential strategy for glioblastoma 
treatment. Indeed, Anido and colleagues found that 
inhibition of the TGF-β signaling pathway decreases the 
number of CD44high/Id1high GSCs through suppression of 
Id1 and Id3 expression (Anido et al., 2010). They concluded 
that this strategy can be employed to overcome tumor 
recurrence, which is driven through GSCs.
3.2. Deregulated signaling pathways in GSCs
Deregulation of cellular signaling pathways is one of 
the major features that distinguishes CSCs from NSCs. 
Previous studies have shown that several key signaling 
pathways are deregulated in glioblastoma. These include 
Notch signaling, Wnt/beta-catenin signaling, receptor 
tyrosine kinase (RTK) signaling. and Sonic hedgehog 
(SHH) signaling.

RTK signaling pathways have been extensively studied 
in glioblastoma. Of note, comprehensive genetic analyses 
have shown that EGFR gene amplification and activating 
mutations, as well as PDGFR amplification, are common 
events in glioblastoma (Verhaak et al., 2010). Activation of 
RTK signaling pathways leads to constitutive activation of 
the downstream PI3K/Akt signaling, which is responsible 
for maintenance of cell growth and proliferation.

Notch signaling is critical for stem cells, as it functions 
in regulation of self-renewal and differentiation. Tchorz 
and colleagues showed that constitutive activation of 
Notch signaling leads to tumor formation and astroglial 
lineage entry (Tchorz et al., 2012). 

SHH signaling is a key pathway for maintenance of 
self-renewal and regulates proliferation of GSCs (Clement 
et al., 2007; Xu et al., 2008; Takezaki et al., 2011). In 
addition, hyperactivation of SHH signaling and PTEN 
coexpression are associated with reduced survival (Xu et 

al., 2008). Bar and colleagues showed that cyclopamine-
mediated inhibition of SHH signaling depletes GSCs (Bar 
et al., 2007). Their findings suggest that SHH inhibition 
can be a potential strategy to specifically target GSCs.

CSCs also rely on Wnt/beta-catenin signaling to 
regulate stemness and differentiation. In addition, Kim and 
colleagues reported that activation of Wnt/beta-catenin 
signaling can contribute to radioresistance in GSCs (Kim 
et al., 2012). Thus, targeting Wnt/beta-catenin signaling 
may serve as an alternative therapeutic strategy. Recently, 
De Robertis and colleagues identified and characterized a 
small molecule inhibitor (SEN461) of the canonical Wnt/
beta-catenin signaling pathway. They found that in vivo 
administration of SEN461 reduces tumor growth (De 
Robertis et al., 2013). 

4. Glioblastoma stem cells: a therapeutic challenge
It is hypothesized that treatment failure results from 
insufficient drug delivery and the targeting of differentiated 
tumor cells rather than CSCs (Beier et al., 2011). CSCs use 
different mechanisms to escape chemotherapy-induced 
cell death, including activation of DNA damage response 
(Bao et al., 2006) and functions of specific proteins 
including MGMT and multidrug resistance proteins (e.g., 
ABCB1) (Beier et al., 2011). 

Another factor affecting chemoresistance is tumor 
evolution. It has been suggested that tumors adapt a 
chemoresistant phenotype through selection of preexisting 
clones or formation of de novo subclones (Prados et al., 
2015). Supporting evidence for this notion has come from 
a recent study, where Johnson and colleagues analyzed 
the origin and evolution of recurrent glioma (Johnson 
et al., 2014). Through exome sequencing, they identified 
that TMZ treatment causes a significant portion of the 
recurrent tumors to follow an alternative path to high-
grade glioma. Moreover, they found that recurrent tumors 
have a TMZ-induced mutagenesis signature (in RB and 
Akt-mTOR genes) (Johnson et al., 2014). 

In another study, Auffinger and colleagues 
demonstrated for the first time that glioblastoma cells are 
capable of interconverting between non-CSCs and CSCs 
upon chemotherapy (Auffinger et al., 2014). They showed 
that TMZ treatment increases the proportion of GSCs 
in vitro and in vivo. In addition, lineage-tracing analysis 
showed that this increase is not a result of enhanced cell 
proliferation, but rather a result of a phenotypic shift to 
the CSC state (as demonstrated by stem cell markers, 
including CD133, SOX2, Oct4, and Nestin). Overall, their 
results suggest a potential mechanism for escape from 
chemotherapy.

Targeting self-renewal capacity of GSCs has been used 
as a promising strategy for treatment of glioblastoma. 
Recently, Hale and colleagues showed that GSCs are 
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enriched in CD36 (a scavenger receptor), which can 
be used to distinguish self-renewing cells. In addition, 
they found that reduction of CD36 expression leads to 
loss of self-renewal, tumor initiation capacity, and loss 
of integrin alpha 6 expression. Overall, they concluded 
that glioblastoma CSCs selectively use CD36 for their 
maintenance (Hale et al., 2014). 

Deregulated miRNA expression (i.e. downregulation 
of tumor-suppressor miRNAs) can also contribute to 
tumor formation and/or progression in glioblastoma. 
Gal and colleagues compared miRNA expression profiles 
of CD133+ and CD133– glioblastoma CDCs and found 
that several miRNAs (including miR-451, miR-486, and 
miR-425) are overexpressed in CD133– glioblastoma 
CDCs compared to CD133+ cells. They also showed 
that exogenous overexpression of miR-451 disperses 
neurosphere formation and inhibits cell proliferation 
(Gal et al., 2008). Their results indicate that restoring 
expression of tumor-suppressive miRNAs can be used as 
an alternative strategy for treatment of glioblastoma.

Hitomi and colleagues reported that connexins, which 
are structural elements of gap junctions, show differential 
expression between GSCs and differentiated tumor cells 
(Hitomi et al., 2015). Their results show that differentiated 
tumor cells predominantly express connexin 43 (Cx43), 
whereas GSCs express Cx46. In addition, they found that 

Cx46 expression decreases and Cx43 expression increases 
during differentiation of GSCs. Reduced expression of 
Cx46 impaired the tumor-forming capacity and self-
renewal of glioblastoma CSCs.

Gamma-secretase inhibitors and RNA interference 
have been previously used to inhibit Notch signaling, 
which leads to reduced radioresistance and impaired 
formation of tumor spheres (Fan et al., 2010; Wang et al., 
2010). 

5. Concluding remarks
The advances in stem cell biology in the past decade have 
helped us to better understand the development and 
pathogenesis of brain tumors. Despite the identification 
and characterization of GSCs, the existence of a specific 
cell population and their specific roles in the context of 
tumor development are still debated. By utilizing the key 
molecular features of CSCs, new therapeutic strategies can 
be developed to achieve more durable clinical responses. 
Alternatively, given the inherent tumor tropism of NSCs, 
endogenous and/or engineered NSCs can be used as 
therapeutic delivery vehicles for treatment of glioblastoma. 
Taken together, translating the accumulated knowledge on 
the biology of NSCs and CSCs with well-designed studies 
may bring new possibilities for effective therapies to 
glioblastoma patients.
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