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1. Introduction
Middle East respiratory syndrome coronavirus (MERS-
CoV), which was called human coronavirus EMC (hCoV-
EMC) before (Zaki et al., 2012), was first isolated from 
the sputum of a patient with acute pneumonia and renal 
failure in Jeddah, Saudi Arabia, in September 2012. By 17 
July 2013, the World Health Organization had confirmed 
82 cases of infection, including 45 deaths, mostly from the 
Arabian Peninsula (Saudi Arabia, Qatar, Jordan, and the 
United Arab Emirates).

Like severe acute respiratory syndrome coronavirus 
(SARAS-CoV), MERS-CoV is also a beta-coronavirus that 
originated from bats and causes pulmonary illness. The 
spike (S) protein of the virus is responsible for mediating 
the infection by binding to its entry receptor, which 
has been identified as CD26 (also known as dipeptidyl 
peptidase 4, DPP4) (Raj et al., 2013). The MERS-CoV S 
protein is a membrane glycoprotein with 1353 amino 
acids, including a domain at the N-terminal region (S1), 
a membrane-proximal domain (S2), a transmembrane 
domain, and an intracellular domain. The determinant 
part by which the virus targets its biologic receptor is 
located in the S1 domain (Wang et al., 2013), called the 

receptor-binding domain (RBD), which was determined to 
be a fragment of 231 amino acids (residues 358 to 588) (Mou 
et al., 2013). 

Obviously, the RBD is a crucial part to be further 
studied for vaccine development and drug design in order to 
stimulate the immune system against the virus or to inhibit its 
interaction with its receptor, respectively. Prior experience in 
SARS-CoV vaccine development would suggest that vaccine 
candidates designed on the basis of the RBD subunit of the 
SARS-CoV S protein (located in the S2 subunit) are more 
effective in comparison with vaccines based on DNA or an 
inactivated virus (He et al., 2005; Du et al., 2009; Jiang et al., 
2012; Lu et al., 2013). Therefore, in the case of MERS-CoV, 
searching for similar peptide vaccines seems to be effective. 
Moreover, in novel strategies for vaccine design process such 
as the use of epitope-loaded dendritic cells (Hatipoğlu et al., 
2013), the exact identification of important antigenic sites of 
a protein is undoubtedly needed. Experimental screening of 
specific major histocompatibility complex (MHC)-binding 
peptides is expensive and time-consuming, as it requires 
a binding assay for each single peptide; by performing a 
reliable in silico analysis, we can summarize the steps for a 
MERS-CoV vaccine development procedure.
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Cytotoxic T lymphocytes (CTL)-mediated cellular 
immunity is the most important mechanism in controlling 
viral infections (Wodarz and Nowak, 2000). This type of 
immunity is mediated by MHC class I CTLs: restricted 
CD8+ CTLs. MHC class I CTLs have short epitopes 
(usually about 9 residues) from proteolytically cleaved 
proteins to CTLs; however, statistics say that only 1 CTL 
epitope out of 200 nanomer epitopes will be able to bind 
to a specific MHC (Lundegaard et al., 2006). On the other 
hand, MHCs are very polymorphic, though only some of 
their alleles may become frequent in a given population.

What we present in this study is based on 3 steps. 
First, the CTL nanomer epitopes from the MERS-CoV 
receptor-binding domain of its S protein were obtained 
using the best 3 of all epitope prediction servers available 
on the World Wide Web. Once the specific epitopes 
were identified, the next step was to examine whether 
the predicted epitopes could bind efficiently to the most 
frequent MHC class I allele in Middle Eastern populations, 
which is HLA-A*0201 (Sheth et al., 1985; Valluei et al., 
2005; Ferrante and Gorski, 2007). Finally, epitope-loaded 
MHC class I molecule interactions with human T-cell 
receptor (TCR) α and β were modeled. The latter 2 steps 
were done using an in silico molecular docking technique.

2. Materials and methods
2.1. Retrieval of target amino acid sequence
The amino acid sequence of the S glycoprotein of MERS-
CoV was obtained from the NCBI protein database 
(accession number AGN52936.1). The receptor-binding 
domain (residues 358–588) was highlighted for further 
analysis.
2.2. CTL epitope prediction and modeling 
CTL-specific epitope prediction was performed using 
NetCTL 1.2 (Larsen et al., 2007), EpiJen (Doytchinova et 
al., 2006), and NHLApred (Bhasin and Raghava, 2007). 
NHLApred and EpiJen expanded the MHC class I binding 
prediction to different MHC alleles, making it possible to 
specify a favored MHC allele from the existing list of HLA 
alleles. Here, the HLA allele selected for the prediction 
was HLA-A*0201. However, the NetCTL server predicts 
its MHC class I binding peptides for different supertypes; 
as a result, NetCTL selected the HLA-A2 supertype.

Having obtained the predicted epitopes from the 
servers, their 3D structures were modeled using the 
PEPstr server (Kaur et al., 2007), which models the tertiary 
structure of peptides (7 to 25 amino acids long) with high 
accuracy.
2.3. MHC and TCR model retrieval and molecular 
docking
The structure of a complex between HLA-A*0201 and 
TCRαβ was fetched from the Protein Database Bank (PDB 
ID: 1AO7) and used as our reference structure.

A molecular docking technique using ClusPro server 
(Comeau et al., 2004a, 2004b; Kozakov et al., 2010) 
was then performed to model the interactions of the 
3D-modeled epitopes with MHC and also to model the 
interactions of epitope–MHC with the TCR molecule. We 
first docked the peptidic epitopes into the reference MHC 
molecule. After identifying the most appropriate peptide–
MHC complex for each epitope, it was separately docked 
into TCRα and TCRβ.

3. Results and discussion
A protective high-affinity epitope binds the MHC molecule 
with enough strength and in a near-native binding 
orientation. The resulting epitope–MHC complex should 
bind the TCR molecule in the same manner. Therefore, 
since not every peptide with high affinity to MHC proteins 
is considered an epitope, it is better to make sure that the 
predicted epitopes can efficiently interact with MHC and 
TCR molecules.
3.1. CTL epitope prediction and modeling
In this study, 3 CTL epitope prediction servers were 
employed to construct an in silico approach to identify the 
HLA-A*0201-restricted T-cell epitopes for MERS-CoV. 
Each server uses a different algorithm, guaranteeing that 
nearly all possible epitopes would be predicted.

In NetCTL 1.2, the MHC peptide binding and 
the proteasome cleavage events are predicted using 
artificial neural networks (ANNs). NetCTL 1.2 also 
makes predictions about TAP transport efficiency 
via a weight matrix method proposed by  Peters et al. 
(2003). In NHLApred, the CTL epitopes are predicted 
with a combinatorial approach consisting of ANNs and 
quantitative matrices (QMs) (Bhasin and Raghava, 2007), 
and the EpiJen server implements a QM method to predict 
CTL epitopes (Doytchinova et al., 2006). Six T-cell epitopes 
were identified by these prediction algorithms and are 
shown in Table 1. The number of predicted epitopes may 
seem low, but it is important to bear in mind that we 
studied the receptor-binding domain of the S glycoprotein, 
which is a fragment only 231 amino acids in length.

There is a further more subtle point that we must 
consider, which is that the epitope should not be hidden by 
glycosylation. Among all experimentally validated human 
CTLs, only a small number of them are shown to be 
glycosylated (whether N- or O-glycosylated) (Szabó et al., 
2009); however, there is experimental evidence that shows 
that glycosylation might deactivate the peptidic T-cell 
epitope (Lisowska, 2002; Szabó et al., 2009). Therefore, 
predicted epitopes were checked to see if their residues 
were glycosylated. Using UniProt, it was shown that the 
only glycosylated residue in the receptor-binding domain 
of the MERS-CoV spike is an asparagine, which is not 
located in any of predicted epitopes (Magrane, 2011).
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Using the PEPster server, tertiary structures of the 
peptides were modeled. With this server, models can 
be generated under different modeling conditions, such 
as vacuum, hydrophobic, or hydrophilic environment 
simulations. Here, hydrophilic conditions were selected 
due to the fact that not only are epitopes in a hydrophilic 
environment while binding to MHC molecules, but there 
are also water molecules located in the MHC groove to 
stabilize the peptide–MHC interaction. The server gives one 
model for each short peptide in PDB format. The modeling 
algorithm is concerning with β-turns, which are the most 
important counterpart in short peptides, in addition to 
regular structures (Kaur et al., 2007).
3.2. Molecular docking
Docking of each predicted epitope into a HLA-A*0201 
molecule, obtained from the PDB (PDB ID: 1AO7), was 
done using ClusPro. It provides different docking options 
and, if we have the knowledge of what forces dominate in our 
complex, it is possible to choose from these options. Since 
the major interaction between an immunogenic peptide 
and MHC is hydrophobic force (Ferrante and Gorski, 2007), 
models were created under hydrophobic conditions. The 
server’s output contained at least 6 different results for each 

peptide. Among these docked models, conformations with 
high similarity to the native complex of 1AO7 were selected. 
The considerations included: 1) whether the peptide is 
docked into the peptide binding groove of MHC in a way such 
that the whole peptide is completely located into the groove, 
2) whether the distance between the peptide and groove is 
comparable to that of the native structure, and 3) whether 
the C-terminal residue of the peptide has interaction with 
the groove. The latter consideration is because in MHC class 
I restricted CTL epitopes, the anchoring residue is often the 
residue located in the peptide’s C-terminal. After choosing 
well-oriented peptide–MHC complexes (the closest ones to 
the native structure 1AO7) from the 6 models, their binding 
free energy scores (generated by the ClusPro server itself) 
were compared and the peptide–MHC complex with the 
lowest score was selected for further analysis. However, it 
was the orientation factor that played the most important 
role in our investigations. The binding free energy score 
only came into consideration when there were negligible 
differences between well-oriented models. This process was 
done for each previously predicted epitope.

The selected peptide–MHC complex was docked into 
TCRα and TCRβ separately. In this case, models created 
with the “balanced” mode of ClusPro were extracted and 
analyzed, as there is a combination of chemical forces 
participating in the interaction between the peptide–MHC 
and TCR molecule, not just one. Here, native TCR-binding 
orientation over peptide–MHC class I is a way that TCRβ 
binds from its N-terminal domain; for TCRα, it binds from 
where the first N-terminal residue is located in its single 
domain. The peptide–MHC/TCR complex with the lowest 
binding free energy was selected among the well-oriented 
coordinates. This is the same scenario previously done for 
selecting the best peptide–MHC complex.

Molecular docking results are prepared in Table 2.
Finally, the predicted epitopes’ potential to be the 

true epitopes was evaluated on the basis of their docking 

Table 1. Peptides predicted, via epitope prediction methods, 
as HLA-A2/A*0201-restricted T-cell epitopes of the receptor-
binding domain of MERS-CoV spike protein.

Peptide Sequence Prediction methods

P1 LLSGTPPQV NetCTL, EpiJen
P2 ILDYFSYPL NetCTL, EpiJen
P3 ILATVPHNL NetCTL, EpiJen
P4 NLTTITKPL EpiJen
P5 LQMGFGITV NetCTL, EpiJen
P6 FSNPTCLIL NHLApred

Table 2. Molecular docking results of predicted epitopes.

Peptide

Peptide/MHC Peptide-MHC / TCRαβ
Real epitope 
potentialOrientation score a Binding free

energy score
Orientation scorea Binding free energy score

TCRα TCRβ TCRα TCRβ

P1 + –971 + + –601 –916 High
P2 + –1286 +/- +/- –679 –971 Medium
P3 + –1394 +/- +/- –635 –762 Medium
P4 + –1009 - - –623 –778 Low
P5 + –1338 + +/- –685 –855 Medium
P6 ++ –1389 +/- + –636 –910 High

a ++: certifiable, +:acceptable, +/-: intermediate, -:false.
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properties. Peptides with binding orientations closer to the 
native structure and lower binding free energy scores are 
ranked higher in having the potential to be real epitopes.

Among the 6 predicted epitopes, it was concluded 
that 2 of them (P1 and P6) have the potential to be real 
epitopes, as their binding orientations in interaction with 
either TCRαβ or HLA-A*0201 molecules were close to the 
reference coordinate and their binding free energies were 
the lowest scores among all binding scores. Among the 
predicted epitopes, P4 seemed to have low potential to be a 
real epitope, demonstrating that not all predicted epitopes 
have the potential to be real ones.

In conclusion, the combination of epitope prediction 
processes and a knowledge-based molecular docking 
technique can provide a more reliable identification of 
MHC class I CTL epitopes compared to merely using 
automated epitope-predicted servers. Therefore, this study 
was conducted to predict HLA-A*0201-restricted CTL 
epitopes of the receptor-binding domain of MERS-CoV S 
protein in a more reliable way. Results revealed possible 
CTL epitopes and further computational analysis revealed 
their real epitope potential.

Since bioinformatic tools are growing quickly in both 
technique and number, they have become a crucial part 
of different biological analyses, such as drug design, drug 
discovery, and the vaccine design process (Öztürk, 2013). 
Although computational studies are not as accurate as 
experimental assays, by making use of bioinformatics tools 
we can improve the output results of experimental assays 
by adding complementary steps based on our theoretical 
knowledge.

The combinatorial approach used here can improve 
the process of epitope prediction compared to the 
conventional methods. Such in silico approaches can 
dramatically reduce the number of peptides necessary 
for further experimental screenings. Therefore, this study 
was conducted to predict HLA-A*0201-restricted CTL 
epitopes of the receptor-binding domain of MERS-CoV 
S protein with a new, improved method. The results can 
suggest the best epitope candidates to be further tested 
experimentally in vaccine designing procedures.
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