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1. Introduction
Obesity and overweight are problems that are continually 
growing from a public health point of view and they 
are considered as main causes of pathologic disorders 
such as metabolic syndrome or cardiovascular diseases 
(Bravo et al., 2014). Moreover, the most recent data 
from the World Health Organization show that this 
epidemic not only affects developed countries, but are also 
spreading in emerging countries (http://www.who.int/
dietphysicalactivity/childhood/en/; Peralta et al., 2015).

The lifestyle of any person is a well-defined rhythmic 
phenomenon and it is controlled by the circadian system 
(Corbalán-Tutau et al., 2011). This system coordinates 
living organisms with their changing environments and 
allows them to perform those biochemical, physiological, or 
behavioral functions that ensure the survival of all species at 
the proper times. Most of these functions are orchestrated 
by a biological clock system comprising a master clock, 
the suprachiasmatic nucleus of the hypothalamus, and 
peripheral clocks (also called oscillators), located in 
most tissues in the body (Serón-Ferré et al., 2013). The 
suprachiasmatic nucleus receives information from 
the retina through the retino-hypothalamic tract about 
environmental light/dark conditions; this information is 
transmitted through neurohormonal signals to the rest 

of the tissues to set the body’s internal clock (Bravo et al., 
2013).

Chronodisruption can be defined as the alteration 
of circadian rhythms in living organisms. It can provoke 
negative effects in the body and highlight the temporal 
reorganization of physiological systems (Fu et al., 2015). 
A classical chronodisruption example is that produced 
during aging. The elderly stage usually shows an advanced 
phase, a reduced amplitude, a higher fragmentation, and 
a lower consistency in circadian rhythms (Witting et al., 
1990; van Someren, 2000). Recently, our research group 
has showed that an obesity-induced study carried out in 
rats resulted in circadian alterations very similar to those 
observed in old animals (Bravo et al., 2014, 2016).

However, there is limited information about the effects 
of obesity on circadian rhythms and therefore more 
studies are required that focus on this pathology from a 
chronobiological perspective with the aim of obtaining 
better knowledge about what happens in circadian 
rhythms. Our research group decided to investigate what 
consequences a high-fat diet may have on glucose and 
albumin circadian rhythms in rats, due to the fact that 
these metabolites are essential for the maintenance of 
physiological functions in living organisms.
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2. Materials and Methods
2.1. Animals
To perform this research, 84 four-month-old adult male 
Wistar rats were used in this assay. Our research group 
decided to choose this age in rats in order to avoid circadian 
changes that may be common in younger animals. Animals 
were separated into two groups: a control group (n = 42; 
body weight [mean ± SEM]: 488 ± 9.26 g), which was fed 
a standard food, and a group fed a high-fat diet (n = 42; 
body weight: 490 ± 3.68 g). The animals were individually 
housed under controlled environmental conditions at 24 ± 
1 °C, with a 12 h/12 h light/dark period.

The study was approved by the Bioethical Committee 
of the University of Extremadura (Badajoz, Spain) 
in accordance with the National Institute of Health’s 
Guidance for the Care and Use of Laboratory Animals and 
the European Community’s Council Directives (86/609/
EEC).
2.2. Animal diets
The control group was fed maintenance food for rodents 
(A04, SAFE: Scientific Animal Food & Engineering; Table 
1). The high-fat diet group was fed a 60% lipids high-fat diet 

whose composition is presented in Table 2. Both groups 
were allowed food and water ad libitum throughout the 
trial. From weaning until the experiment started rodents 
were fed a common food for growing.
2.3. Blood samples
Both the control group and the high-fat group were 
separated randomly into seven subgroups (n = 6 per group) 
to extract blood samples at 0000, 0200, 0400, 1000, 1400, 
1800, and 2200 hours in order to gain reliable information 
about circadian rhythms in glucose and albumin levels. 
Blood extractions were carried out by making an incision 
in the tail and collecting the blood (0.75 mL) in vials 
containing 50 µL of 10% ethylenediaminetetraacetic acid. 
The vials were centrifuged at 300 × g for 15 min. Aliquots 
of the resulting plasma were frozen at –20 °C and assayed 
at the end of the trial with commercial enzymatic kits 
provided by Spinreact to measure glucose and albumin.
2.4. Statistical analysis
Rhythmicity for metabolite concentrations was determined 
using the Ritme software package. This software performs 
cosinor analysis by fitting a sinusoidal function to the 
experimental variables. The mathematical expression used is

Table 1. The control diet (SAFE A04) administered to 42 control rats for 11 weeks. Nonspecified 
percentages are due to nonenergetic fractions such as moisture or fiber. 

Nutrients % in diet Energetic value (kcal)

Proteins 16 64

Carbohydrates 47 176.2

Lipids 3 27

Vitamin supplement 1.7 ---

Mineral supplement 5 ---

Fatty acids % in lipid fraction % in total diet

Lauric acid (C12:0) 0.100 0.003

Myristic acid (C14:0) 1.400 0.042

Palmitic acid (C16:0) 24.400 0.732

Palmitoleic acid (C16:1) 2.800 0.084

Margaric acid (C17:0) 0.300 0.009

Margaroleic acid (C17:1) 0.300 0.009

Stearic acid (C18:0) 12.800 0.360

Oleic acid (C18:1) 43.700 1.311

Linoleic acid (C18:2) 10.800 0.324

Linolenic acid (C18:3) 0.900 0.027

Arachidic acid (C20:0) 0.200 0.006

Gadoleic acid (C20:1) 0.900 0.027
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Y = M + A cos (ω – φ),

where M is the MESOR (midline estimating statistic of 
rhythm); A is the amplitude of the function, defined as 
the distance between the peak value and the MESOR; ω 
is the angular frequency equal to 2π/T, with T being the 
period of the rhythm (in our case T = 24 h); and φ is the 
acrophase, which indicates the hour of the maximal value 
during the circadian fluctuation (Franco et al., 2012).

Statistical analysis of our data was conducted using 
the GraphPad Prism v.6 software package. Three types of 
study were carried out:

-	 Descriptive analysis, calculating the arithmetic 
mean ± standard error of the mean as representative 
values.

-	 Correlations and linear regressions. For the 
correlation analysis, Spearman’s test was used 
due to the non-Gaussian distribution of the data, 
with the significance level taken to be P < 0.05. 
Linear regressions were performed on both the 
correlative and the noncorrelative data to evaluate 
any differences occurring during the experiment.

3. Results
During the 11 weeks of the study, an increase in body 
weight was observed both in the control group and the 
high-fat group. However, the obesity-induced group had 
a higher increase compared with the control group from 
the second week of the assay (P < 0.001) and the difference 
in weight remained the same during the assay (Figure 1).

During the time in which we administered the 
high-fat diet, no correlation between body weight and 
the chronobiological parameters that we studied was 
observed in either the control group or the obesity-
induced group (Figure 2). Nevertheless, we found a trend 
close to significance (P = 0.058) between rat body weight 
and glucose acrophase in the control group. The glucose 
circadian rhythm was present in every week in the control 
group (Table 3). On the other hand, rats fed the high-fat 
diet only showed a circadian glucose rhythm in the 7th 
experimental week.

Albumin assay showed that control rats fed standard 
food had a circadian rhythm during all the experimental 
weeks, while the high-fat group lost its albumin 
rhythmicity in weeks 3, 5, and 9 (Table 4). Moreover, there 

Table 2. High-fat diet administered for 11 weeks to 42 rats.

Nutrients % in diet Energetic value (kcal)

Proteins (casein) 17 68

Carbohydrates (sucrose) 18.5 69.4

Lipids (pork lard) 60 540

Vitamin supplement AIN-93-MX 1 ---

Mineral supplement 3.5 ---

Fatty acids % in lipid fraction % in total diet

Lauric acid (C12:0) 0.200 0.120

Myristic acid (C14:0) 1.680 1.008

Palmitic acid (C16:0) 24.860 14.916

Palmitoleic acid (C16:1) 2.500 1.500

Margaric acid (C17:0) 0.460 0.276

Margaroleic acid (C17:1) 0.360 0.216

Stearic acid (C18:0) 14.280 8.568

Oleic acid (C18:1) 41.560 24.936

Linoleic acid (C18:2) 12.480 7.488

Linolenic acid (C18:3) 0.610 0.366

Arachidic acid (C20:0) 0.280 0.168

Gadoleic acid (C20:1) 0.740 0.444
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Figure 1. Body weight evolution during 11 weeks in a control 
group (n = 42) fed control chow and an induced-obesity group 
(n = 42). ***P < 0.001.

Figure 2. Glucose circadian rhythms in a control group (n = 42) fed control food and an induced-obesity group (n = 42): A) MESOR, 
B) amplitude, C) acrophase. Noncontinuous lines represent nonsignificant correlation.

Table 3. Glucose circadian rhythms in the control group (n = 42) fed control food and the obesity-induced group (n = 42). Blood 
extractions were carried out at 0000, 0200, 0400, 1000, 1400, 1800 and 2200 hours (6 rats per extraction group). Cosinor analysis was 
performed with Ritme software with a significance level of P < 0.05 (*) to establish circadian rhythms. Glucose concentration (MESOR) 
is expressed as mg/dL.

Week
Control diet High-fat diet

MESOR Amplitude Acrophase Sig. MESOR Amplitude Acrophase Sig.

1  126.04 29.54 8:16 0.00* 128.20 7 10:06 0.05

3 114.73 5.00 7:29 0.00* 124.24 4.15 14:33 0.34

5 118.44 6.49 5:57 0.02* 122.07 3 0:12 0.53

7 115.01 4.87 4:42 0.04* 100.48 19.04 19:53 0.00*

9 114.27 5.14 5:25 0.01* 138.69 6.06 17:16 0.28

11 147.02 4.69 5:03 0.04* 176.64 11.24 20:58 0.21
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were not clear trends in the chronobiological variables that 
we studied (Figure 3).

4. Discussion
Obesity is a physiopathologically complex condition with 
genetic, psychological, and/or environmental causes, which 
is growing among the world’s population. Both overweight 
and obesity show many characteristics such as high body 
mass index, endothelial dysfunction, atherosclerosis, 
hypertension, insulin resistance, and consequently diabetes 
mellitus type II, among other physiological disorders 
(Aranceta et al., 2006; Bravo et al., 2014).

Several studies focused on laboratory animals have 
used cafeteria diets. However, these diets have as their 
main problem the fact that they do not provide animals 
with all the nutrients needed for correct development 
(Moore, 1987; Reeves et al., 1993). For this reason, in 
the present research, we used a high-fat diet designed to 
induce animals to obesity with every requirement (Hariri 
and Thibault, 2010). Previous works about obesity-induced 
diets established study periods longer than ours (11 

weeks), which varied between 15 and 16 weeks (Laposky 
et al., 2006; Ríos Lugo et al., 2010; Nagatomo et al., 2012; 
Bravo et al., 2014). Moreover, in this assay, a diet with a 
lipid percentage of 60% and a carbohydrate percentage 
of 18.5% was used, while the previously mentioned 
articles had a lipid composition of 34.9%–35.8% and a 
carbohydrate composition of 25.9%–35%. With our own 
formula, we were able to create a new experimental way to 
induce obesity in rodents in less time.

The glucose circadian rhythm study showed higher 
glucose concentrations in most of the experimental weeks 
in the high-fat group, which may be linked to a status of 
prediabetes in these rats. Previous studies associated this 
kind of alterations with obesity and sleep/wake circadian 
rhythm disorders (Bravo et al., 2014; Kalsbeek et al., 
2014). Glucose circadian data showed clear symptoms of 
chronodisruption as can be observed in MESOR, amplitude, 
and acrophase, which showed different trends regarding 
the control group, the acrophase of glucose being the most 
evident parameter. Albumin chronobiological data showed 
a circadian rhythm during the assay in control rats, with 

Table 4. Albumin circadian rhythms in the control group (n = 42) fed control food and the induced-obesity group (n = 42). Blood 
extractions were carried out at 0000, 0200, 0400, 1000, 1400, 1800, and 2200 hours (6 rats per extraction group). Cosinor analysis was 
performed with Ritme software with a significance level of P < 0.05 (*) to establish circadian rhythm. Albumin concentration (MESOR) 
is expressed as g/dL.

Week
Control diet High-fat diet

MESOR Amplitude Acrophase Sig. MESOR Amplitude Acrophase Sig.

1 4.09 0.11 8:40 0.02* 4.33 0.50 4:36 0.00*

3 5.01 0.33 5:28 0.01* 3.65 0.22 23:00 0.09

5 3.61 0.61 8:12 0.00* 3.16 0.19 19.26 0.23

7 3.65 0.57 6:17 0.00* 3.78 0.38 7:57 0.00*

9 3.85 0.28 5:20 0.03* 3.33 0.09 2:17 0.71

11 3.72 0.32 5:38 0.02* 3.87 0.48 4:42 0.00*

Figure 3. Glucose circadian rhythms in a control group (n = 42) fed control food and an induced-obesity group (n = 42): A) MESOR, 
B) amplitude, C) acrophase. Noncontinuous lines represent nonsignificant correlation.
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an acrophase during the activity phase as has been shown 
in humans. This was found previously for other molecules 
that participate in protein metabolism and show their 
circadian peak during the activity phase (Buzio et al., 1989). 
Notwithstanding, our finding seems to be the first one 
that shows chronodisruption with the albumin circadian 
rhythm losing its rhythmicity in 3 weeks during our study; 
this alteration may affect arterial function, producing 
cardiovascular risks associated with metabolic syndrome 
such as hypertension (Cho et al., 2012).

As has been mentioned, molecular clocks modulate 
the circadian rhythm, present in most tissues and organs. 
The first evidence of this was the finding of the influence 
of the pancreas clock in insulin release with a key role 
in diabetes mellitus type II development and the role 
of the liver in glucose tolerance control through liver 

gluconeogenesis. Otherwise, clock genes in adipocytes 
do not seem to affect glucose homeostasis, but they have 
an indirect effect on the appetite-controlling nucleus in 
the hypothalamus (Garaulet and Ordovás, 2013). These 
data, together with results obtained in the present work, 
show how desynchronization in different clocks in the 
body due to a physiopathology like obesity affects both 
glucose and albumin homeostasis and produces a loss of 
rhythmicity. Finally, we want to highlight that due to the 
limited data on this topic, it is difficult to understand the 
complexity involved in it, and more studies are required 
for its complete comprehension.
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