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Abstract 
The moments are calculated for some levels of Pöschl-Teller potentials. Using 
isospectral Hamiltonians, the calculations are extended to deformed wave functions and 
their properties are graphically demonstrated. Two Hamiltonians are said to be strictly 
isospectral, if they have exactly same eigenvalue spectrum and S-matrix.  The wave 
functions and their dependent quantities are different but related. This property is utilized 
to obtain the uncertainty in position space. Due to the presence of a deformation 
parameter, the uncertainty in position space is rearranged. 

1. Introduction 

The studies of molecular properties with high accuracy require the treatment of 
electron correlation effects. The calculation of electron transition moments have been 
performed using various methods. Some relations have been derived in N-dimensional 
space which connects the moments of the ground state density to the lowest multipole 
excitation energy [1-4]. The present method for these calculations includes a free 
parameter which can be adjusted without disturbing the energy eigenvalues. Applying 
supersymmetric quantum mechanical techniques [5-11], the isospectral Hamiltonian 
approach has been used to calculate the moments for some levels of Pöschl-Teller 
potential. Although the idea of generating isospectral Hamiltonians using the Gelfand-
Levitan approach [12] or the Darboux procedure [13] were known for some time, the 
supersymmetric quantum mechanical techniques make the procedure look simpler. When 
one deletes a bound state of a given potential V(x) and re-introduces the state, it involves 
solving a first order differential equation, which admits a free parameter. Thus, a set of 

one-dimensional family of potentials ˆ ( , )V x λ  can be constructed which have the exactly 

same energy spectrum as that of V(x). For any one dimensional potential (full line or 
half-line) with n bound states, one can construct an n-parameter family of strictly 
isospectral potentials, i.e. potentials with eigen values, reflection and transmission 
coefficients identical to those for original potential [8]. This aspect has been utilized 
profitably in many physical situations, which are of interest to various fields [14-21]. 

2. Isospectral Hamiltonian Approach 

The connection between the bound state wave functions and the potential is one of the 
key ingredients in solving exactly for the spectrum of one-dimensional potential 
problems. If the ground state wave function (

0ψ ) is known and its energy is chosen to be 

zero, the Hamiltonian can be factorized as †
1H A A= , (in units 2m 1= =ℏ ), where 

d
dxA W(x)= +  and † d

dxA W(x)= − +  are the supersymmetric operators and 

( ) [ln ( )]= − d
0dxW x xψ  is called the superpotential. We have 
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† ,= =1 n n n nH A Aψ ψ ε ψ                (1) 

†( ) ( ),=n n nAA A Aψ ε ψ  

( ) ( ).=2 n n nH A Aψ ε ψ                 (2) 

Here 2H  is the supersymmetric partner Hamiltonian of

1H , with eigenfunctions nn Aψχ = . It is obvious that 

2H  has the same eigenvalue spectrum as that of 1H , but 

for the case 00 =ψA , which is the case of supersymmetry 

broken. The relation between Hamiltonians reads, 
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The superpotential relates the supersymmetric partner 

potentials )(1 xV  and )(2 xV  as 

, ( ) ( ) .= ∓
2

1 2

dW
V x W x

dx
                (3) 

For the potential )(2 xV , the original potential )(1 xV  is 

not unique [6,7]. The argument is as follows. Suppose  2H  

has another factorization †BB , where )(ˆ xWB dx
d += , then, 

††
2 BBAAH ==  but BBH †

1 =  is not AA†  rather it 

defines a certain new Hamiltonian. For superpotential 

)(ˆ xW , the partner potential )(2 xV  is 

ˆ ˆ( ) ( ) ( ).′= +2
2V x W x W x                     (4) 

Consider the most general solution as 

)()()(ˆ xxWxW φ+= , which demands that, 

( ) ( ) ( ) '( ) .+ + =2 x 2W x x x 0ϕ ϕ ϕ              (5) 

The solution of the above equation is 

[ ]( ) ln ( )= +d
dxx I xϕ λ , where ( ) ( ') '−∞= ∫

x 2
0I x x dxψ  and λ  

is a constant. Therefore, we obtain, 

[ ]ˆ ( ) ( ) ln ( ) .= + +d
W x W x I x

dx
λ               (6) 

The corresponding one-parameter family of potentials 

),(1̂ λxV  is given as 

ˆ ( , ) ( ) (ln( ( ) )).= − +
2

1 1 2

d
V x V x 2 I x

dx
λ λ         (7) 

The normalized ground state wave function corresponding 

to the potential ),(1̂ λxV  reads, 

( ) ( )
ˆ ( , ) ,
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+
=

+
0

0

1 x
x
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λ λ ψ
ψ λ

λ
                (8) 

where )1,0( −∈/λ . The eqs. (7) and (8) represent the one-

parameter family of isospectral potentials and wave functions, 
which shall be used to obtain the moments for some states of 
the potential. 

3. Calculation of Moments 

The moments are calculated for different states of the 3-
level Pöschl-Teller potential. For undeformed potential, the 
calculation of odd moments gives the null result, whereas the 
even moments result in some particular value. We start with 
Schrödinger equation for hyperbolic Pöschl-Teller potential, 
which is reflectionless and admits n bound states, 
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The normalized ground state wave function in position 
space reads 
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,
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where β is the beta function. The first excited state wave 
function in position space is given as 

sec tanh

, ,

−=
   − −   
   

n 1
1

1
h x x

1 1
n 1 n

2 2

ψ
β β      (11) 

The isospectral Hamiltonian approach is used to construct 
the isospectral Pöschl-Teller potential and the corresponding 
wave functions. The deformed wave functions are used to 
calculate the moments for the isospectral potential. For n-
level potential, the one parameter isospectral ground state 
wave function is calculated as, 
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and the deformed first excited state wave function is obtained 
using the relation 
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The normalized ground state, first excited state and the 
second excited state wave functions for 3-level potential 
reads, 

sec= 3
0

15
h x

4
ψ                   (14) 

sec tan= 2
1

15
h x h x

2
ψ                (15) 

�2(�
 	= √3	(secℎ� −
�

 
	secℎ3�
          (16) 

The values obtained for the ground state, first excited state 
and second excited state square moments are 0.20, 0.82 and 
2.70 respectively. The values of the square moments for the 
ground state and first excited state of the Pöschl-Teller 
potential as a function of the number of bound states (n) are 
plotted in figures 1 and 2. As the number of bound states in 
the potential increases, the values of the ground state and first 
excited state square moments go on decreasing. When we 
consider the deformed wave functions, we also obtain some 
non zero value for the odd moments as a function of the 
deformation parameter. The deformed moments are plotted 
for different states of the Pöschl-Teller potential as a function 
of the deformation parameter λ, in figures 3-8. 

 

Figure 4.1. The square moments for the ground state of the Pöschl-Teller 
potential as a function of the number of bound states of the potential (n). 

 

Figure 4.2. The square moments for the first excited state of the Pöschl-
Teller potential as a function of number of bound states of the potential (n). 

 

Figure 4.3. The moments for the ground state of the Pöschl-Teller potential 
as a function of the deformation parameter (λ). 

 

Figure 4.4. The moments for the first excited state of the Pöschl-Teller 
potential as a function of the deformation parameter (λ). 
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Figure 4.5. The moments for the second excited state of the Pöschl-Teller 
potential as a function of the deformation parameter (λ). 

 

Figure 4.6. The square moments for the ground state of the Pöschl-Teller 
potential as a function of the deformation parameter (λ). 

 

Figure 4.7. The square moments for the first excited state of the Pöschl-
Teller potential as a function of the deformation parameter (λ). 

 

Figure 4.8. The square moments for the second excited state of the Pöschl-
Teller potential as a function of λ. 

4. Uncertainty in Position Space 

These calculations are further used to obtain uncertainty in 
the position space and the isospectral Hamiltonian approach 
is utilized in reducing the uncertainty in the position space. 
The uncertainty in position space is given by (∆x) 2 = < x2>- 
<x>2

 which can be calculated for each level of three level 
potential. For the undeformed case, it is straightforward to 
check that <x> = 0, so uncertainty in position space is equal 
to <x2>. This is calculated for ground state, first excited state 
and second excited state to be 0.20, 0.82 and 2.70 
respectively. When we consider the deformed wave functions, 
then <x2>

 
increases for smaller values of λ and we also get 

contribution from <x>2
 
for smaller values of λ and the 

uncertainty in position space get reduced for smaller values 
of deformation parameter.  
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