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Abstract

The moments are calculated for some levels of Rdawdler potentials. Using
isospectral Hamiltonians, the calculations are reckel to deformed wave functions and
their properties are graphically demonstrated. Heoniltonians are said to be strictly
isospectral, if they have exactly same eigenvajuectsum and S-matrix. The wave
functions and their dependent quantities are diffebut related. This property is utilized
to obtain the uncertainty in position space. Duethlie presence of a deformation
parameter, the uncertainty in position space iraaged.

1. Introduction

The studies of molecular properties with high aacyr require the treatment of
electron correlation effects. The calculation afodlon transition moments have been
performed using various methods. Some relation® Heen derived in N-dimensional
space which connects the moments of the ground detsity to the lowest multipole
excitation energy [1-4]. The present method forséhecalculations includes a free
parameter which can be adjusted without disturlifreg energy eigenvalues. Applying
supersymmetric quantum mechanical techniques [5-tt§ isospectral Hamiltonian
approach has been used to calculate the momentsofoe levels of Pdschl-Teller
potential. Although the idea of generating isosg@dtamiltonians using the Gelfand-
Levitan approach [12] or the Darboux procedure [8fe known for some time, the
supersymmetric quantum mechanical techniques niekprbcedure look simpler. When
one deletes a bound state of a given pote¥ii@) and re-introduces the state, it involves
solving a first order differential equation, whiedmits a free parameter. Thus, a set of

one-dimensional family of potential@(x/]) can be constructed which have the exactly

same energy spectrum as that\§k). For any one dimensional potential (full line or
half-line) with n bound states, one can construct an n-parameteityfarh strictly
isospectral potentials, i.e. potentials with eigealues, reflection and transmission
coefficients identical to those for original pot@ht[8]. This aspect has been utilized
profitably in many physical situations, which afdérderest to various fields [14-21].

2. Isospectral Hamiltonian Approach

The connection between the bound state wave furetiod the potential is one of the
key ingredients in solving exactly for the spectrwoh one-dimensional potential
problems. If the ground state wave functiap, () is known and its energy is chosen to be

zero, the Hamiltonian can be factorizedHys=A'A , (in unitsp = 2m=1), where
A=4+W(x) and A"=-L+W(x) are the supersymmetric operators and
W(X =-2[Ing,(R] is called the superpotential. We have
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Hy, = Af Ay =g, (1) The normalizgd ground state wave function corredpan
to the potentialV, (X, A) reads,

NAQ+ A (%)

[(X)+A

AN (AY,) =€,(A,),

H,(AY,) = &.(Ap,). ) Do(x,A) = , (8)

Here H, is the supersymmetric partner Hamiltonian of \whereA [0 (0—=1) . The egs. (7) and (8) represent the one-

H,. with eigenfunctions X, = A, . It is obvious that parameter family of isospectral potentials and weawetions,
which shall be used to obtain the moments for sstates of

H. has the same eigenvalue spectrum as thatlof but X
2 9 P of the potential.

for the caseAl/lO =0, which is the case of supersymmetry

broken. The relation between Hamiltonians reads, 3. Calculation of Moments

EP=gY; EP=0, The moments are calculated for different stateshef3-

level Poschl-Teller potential. For undeformed ptitdnthe
© —[E(l) ]-g Ay® calculation of odd moments gives the null resulieveas the

¥y =k Wi even moments result in some particular value. Viet stith

N Schrédinger equation for hyperbolic Poschl-Telletemtial,

W& =[ER =AY, which is reflectionless and admitdound states,
2 2_ 2
The superpotential relates the supersymmetric @artn [-% (%W)] 'P(n)(x) = W(")(x) 9)

potentialsV, (X) and V,(X) as _ o N
The normalized ground state wave function in positi

V(X)) = WA ( )9$C:ji)\(/ @) space reads
Y, = ;sech”x

For the potentia¥/, (X), the original potentiaV, (X) is ﬁ(l,n] (10)
not unique [6,7]. The argument is as follows. SigepoH , 2
has another factorizatid®B ', whereB ——+W(X) then, Whergﬁ 'is the' .beta funct.ion.. The first excited state wave

function in position space is given as
H,=AA =BB' but H, =B'B is not ATA rather it
defines a certain new Hamiltonian. For superpogénti Y, = L sech" x tanhx
W(X) , the partner potentiaV/, (X) is \/,8[; ,n— 1] - ﬁ(; nj (11)
Vo(%)= WA (3 + W( X @)

The isospectral Hamiltonian approach is used testroat

Consider the most general solution adhe isospectral Poschl-Teller potential and theesponding
~ ] wave functions. The deformed wave functions ared use
W(x) =W(X) + @(x) , which demands that, calculate the moments for the isospectral potenEal n-
level potential, the one parameter isospectral mulostate

F2 () +2W(RP( 3 +4'( 3= 0 (5)  wave function is calculated as,
The_ N solluticlnA ofh thle _abXOVS Idecl1uati(()jn)I is B (x 1) = JA@Q+A) - — sech"x
P =LIn[1(X)+A] , where 1(x)=[*gZ(x)dx' an ﬁ(},nj [sm Xl sec™ x| (x}}/l (12)
is a constant. Therefore, we obtain, 2 ﬂ(%,nj 2n-1
A d
W) =W 3+—In[ (3+A4]. (6) o1 -1)(n- 2......
dx [ ] where f( § = (2 (n-3)(r 3....0 ) sech Ty 2,

=i(2n-3)(2n-9.....(2n 2k )}

and the deformed first excited state wave funcisoobtained
using the relation

The corresponding one-parameter family of potestial
V, (X, A) isgivenas

Vi (xA) = V(% - 2 (|n(|(>9+/1)) )
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3, =w1(x)+i(L]( d

= o e

sech?™ ¥ x tanhx

; _ " 2 -1
%(X,A)—A[secﬁ‘ ><tanhx+5 A%[ 00+ jsecﬁ % (13)

where

2 -1 1
I (x) = A%< sinhx sed?™? 1 _sedrx_ 27 (=D set x
2n-3 2n-1 (2= P
The normalized ground state, first excited statd tre
second excited state wave functions for 3-leveleptil
reads,

\15

W, =Tsem3 X (14)

Y, = \/%sedwzx tarh x (15)
w2(x) = V3 (sechx —Z sech3x) (16)

The values obtained for the ground state, firsitescstate
and second excited state square moments are 080a0d
2.70 respectively. The values of the square momientthe
ground state and first excited state of the P&$ehér
potential as a function of the number of boundestdt) are
plotted in figures 1 and 2. As the number of bostates in
the potential increases, the values of the grotate sind first

excited state square moments go on decreasing. \Wieen

consider the deformed wave functions, we also obdéame
non zero value for the odd moments as a functiothef

deformation parameter. The deformed moments arteplo

for different states of the Pdschl-Teller potentiala function
of the deformation parametgrin figures 3-8.
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Figure 4.1. The square moments for the ground state of thekdstler
potential as a function of the number of boundestaif the potential (n).
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Figure 4.2. The square moments for the first excited statehefRoschl-
Teller potential as a function of number of boutates of the potential (n).
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Figure 4.3. The moments for the ground state of the P&schéTpbtential
as a function of the deformation parametgr (
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Figure 4.4. The moments for the first excited state of the IHéEeller
potential as a function of the deformation paramétg



286 Anil Kumar: Calculation of Moments and Uncanrtgiin Position Space

0.08

0.06

0.04 |

002 |

0.00 |

.02 -

def momt (x)

004 |

.06

0.08 1 1 1 1 1 1 1 1 1

Figure 4.5. The moments for the second excited state of thehRdsller

potential as a function of the deformation paraméte
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Figure 4.6. The square moments for the ground state of thekdstler

potential as a function of the deformation paramétg

1.00

085 |

=
w
=
T

def momt(x)

080 |

07s

Figure 4.7. The square moments for the first excited statehefRoschl-

Teller potential as a function of the deformati@rameter £).
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Figure 4.8. The square moments for the second excited state d?6schl-
Teller potential as a function af

4. Uncertainty in Position Space

These calculations are further used to obtain taicgy in
the position space and the isospectral Hamiltoaoroach
is utilized in reducing the uncertainty in the piasi space.
The uncertainty in position space is given By)(*= < x*>-
<x>* which can be calculated for each level of threellev
potential. For the undeformed case, it is straathrd to
check that x> = 0, so uncertainty in position space is equal
to <x*>. This is calculated for ground state, first eadistate
and second excited state to be 0.20, 0.82 and 2.70
respectively. When we consider the deformed wawnetfons,
then <xX> increases for smaller values bfand we also get
contribution from <x3 for smaller values oft and the
uncertainty in position space get reduced for snalbhlues
of deformation parameter.
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