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Abstract: Venous thromboembolism (VTE) encompasses deep-vein thrombosis and pulmonary embolism

(PE). It is the third-most-frequent cardiovascular disease, with an overall annual incidence of 1–2 per 1,000 pop-

ulation. Chronic thromboembolic pulmonary hypertension (CTEPH) is regarded as a late sequela of PE, with

a reported incidence varying between 0.1% and 9.1% of those surviving acute VTE. Right ventricular (RV)

function is dependent on afterload. The most precise technique to describe RV function is invasive assess-

ment of the RV–to–pulmonary vascular coupling. However, assessments of RV afterload (i.e., steady and

pulsatile flow components and their product, the RC-time) may be useful hemodynamic surrogates of

coupling. RV load is different in acute and chronic PE. In acute PE, more than 60% occlusion of the cross-

sectional area of the pulmonary artery within a short period of time leads to abrupt hemodynamic collapse.

If the time of occlusion is limited to ∼15 seconds, significant decreases in fractional area change, tricuspid

annulus systolic excursion, and RV free-wall deformation (strain) occur, with the latter showing significant

postsystolic shortening. These changes have similarities to ischemic stunning, and they recover within min-

utes. In CTEPH, studies of pulmonary vascular resistance (PVR) and pulmonary arterial compliance dem-

onstrated low RC-times that were further lowered after pulmonary endarterectomy (PEA). Immediate post-

operative PVR was the only predictor of long-term survival/freedom from lung transplantation, suggesting

that the effect of PEA on opening vascular territories to flow outweighs its effect on proximal stiffness. This

review summarizes the current knowledge on vascular and intrinsic RV adaptation to VTE, including CTEPH,

and the role of imaging.

Keywords: right ventricle, hemodynamics, pulmonary heart disease, pulmonary embolism.

Pulm Circ 2014;4(3):378-386. DOI: 10.1086/676748.

Venous thromboembolism (VTE) encompasses deep-vein

thrombosis (DVT) and pulmonary embolism (PE). It is the

third-most-frequent cardiovascular disease, with an overall

annual incidence of 1–2 per 1,000 population. Chronic

thromboembolic pulmonary hypertension (CTEPH) is

regarded as a late sequela of PE. Right ventricular (RV)

function is an important determinant of long-term out-

come in patients with acute PE and CTEPH. In these

conditions, the right ventricle (RV) is subjected to abnor-

mal and increased loading that varies in timing, magni-

tude, and duration. Consequently, RV dysfunction and

pulmonary hypertension (PH) are variably present at ini-

tial presentation of acute PE. After an episode of PE, pul-

monary hemodynamics and RV function normalize within

a few weeks in the majority of patients. CTEPH results

from persistence of thrombotic obstructions in the pul-

monary vasculature in the presence of significant positive

and obliterative vascular remodeling and chronic eleva-

tion in pulmonary pressures. CTEPH leads to a progres-

sive increase in RV afterload, causing RV dysfunction and

eventually RV failure and death. The condition is under-

diagnosed, and the true prevalence is still unknown. Prog-

nosis of acute PE and development of CTEPH can be pre-

dicted by pulmonary artery pressures and RV function at

the time of diagnosis of the first episode of PE.1 While

noninvasive diagnostics are performed in acute PE, right

heart catheterization and pulmonary angiography remain

gold standards for the diagnosis of CTEPH.

INVASIVE ASSESSMENT OF RV AFTERLOAD

RV function is dependent on RV afterload, which con-

sists of pulmonary vascular resistance (PVR; steady flow
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load of the RV), pulmonary arterial compliance (CPA; os-

cillatory load of the RV during systole), and characteristic

impedance (Z) of the proximal pulmonary artery.2 RV hy-

draulic load is determined by the dynamic interaction be-

tween PVR and CPA.
3 RC-time, the product of resistance

and compliance, represents the exponential pressure decay

in the pulmonary artery during diastole.4 The CPA relates

to oscillatory load and has been shown to be of greater

prognostic importance than resistance5 and to be associ-

ated with RV dysfunction5,6 in patients with idiopathic pul-

monary arterial hypertension (iPAH).

By means of the pulmonary artery occlusion technique,

the decay from pulmonary artery pressure level to pulmo-

nary arterial wedge pressure level can be assessed to esti-

mate the pressure in precapillary small pulmonary arteries

(POCCL).
7-9 With POCCL, PVR can be partitioned into larger-

arterial (upstream resistance) and small-arterial plus ve-

nous (downstream resistance) components7-9 with the pul-

monary artery occlusion technique.

INVASIVE ASSESSMENT OF RV FUNCTION

RV function can be directly measured by conductance

catheterization and an instantaneous integration of RV

pressure, and pulmonary arterial flow (so-called pressure-

volume loops) can be derived. Diastolic RV function can

be assessed by RV end-diastolic pressure and volume, the

minimal rate of RV pressure change (dP/dtmin), the RV

stiffness constant (β), and the isovolumetric relaxation

time constant (τ).10-12 The adaptation of the RV to its after-

load can be assessed by quantification of the coupling of RV

systolic function to arterial elastance. Two measures are crit-

ical for the assessment of right ventricular–to–pulmonary

vascular (RV-PV) coupling: (1) end-systolic ventricular elas-

tance (Ees =end-systolicpressure/end-systolic volume),which

is the best possible load-independent measure of contractil-

ity, and (2) arterial elastance (Ea = end-systolic pressure/stroke
volume [SV]), a measure of afterload that opposes the RV.

The Ees and Ea can be graphically derived from pressure-

volume loops of the RV.13 RV-PV coupling can be calculated

by dividing Ees by Ea (Ees/Ea ratio). The optimal matching of

systolic ventricular and arterial elastances occurs at an Ees/Ea
ratio of ∼1.5. An isolated increase in Ea or decrease in Ees
leads to a decrease in Ees/Ea ratio, indicating decoupling of

the ventricle from its arterial system and a decrease in SV.

However, in contrast to that in the left ventricle (LV), mea-

surement of Ees in the RV might be inaccurate because of

the complex geometry of the RV and the triangular shape

of the RV pressure-volume loop, resulting from the high

compliance of the pulmonary vasculature14 and from the

fact that RV ejection continues after end-systole. This lim-

itation can be resolved by measuring pressure-volume

loops during preload reduction of the RV by temporary bal-

loon occlusion of the inferior vena cava. However, this

method is very invasive and may cause alterations in sym-

pathetic tone, thus leading to alterations in hemodynamics.

An alternative method that has been proposed to assess

Ees without the need for preload reduction is the single-

beat method.15,16 With the single-beat method, the max-

imal ventricular pressure (Pmax), as encountered in an

isovolumetric nonejecting beat, can be estimated by fit-

ting a sinus wave over the RV pressure curve during the

isovolumetric contraction-and-relaxation phase (Fig. 1).

The Ees can be derived from Pmax by dividing the differ-

ence between Pmax and mean pulmonary artery pressure

(mPAP) by SV.12,17 The Ea can be estimated as mPAP/

SV.12,17 Brimioulle et al.16 found an excellent correlation

between Pmax predicted by the single-beat method and

Pmax derived from pressure-volume loops during preload

reduction in dogs. Animal studies have shown that RV-PV

coupling is preserved in survivors of acute PE,18 while it

is decoupled in models of chronic pressure overload due

to recurrent embolization.19 Reduced ventriculoarterial cou-

pling efficiency has been shown in recent clinical studies

in different forms of PH.20-22 Intrinsic RV dysfunction con-

tributing to more severe decoupling could be demonstrated

in patients with scleroderma-associated pulmonary arterial

hypertension (PAH), compared to patients with iPAH.22 Re-

cent data suggest that the RV is decoupled from the pul-

monary vasculature in patients with CTEPH and in those

Figure 1. Prediction of right ventricular–to–pulmonary vascular
(RV-PV) coupling by the single-beat method. Left, maximal ven-
tricular pressure (Pmax) as encountered in an isovolumetric non-
ejecting beat, which is estimated by fitting a sinus wave over a right
ventricular pressure (PRV) curve during the isovolumetric contraction-
and-relaxation phase. PPA: pulmonary artery pressure. Right, end-
systolic ventricular elastance (Ees) can be derived from Pmax by di-
viding the difference between Pmax and mean pulmonary artery
pressure (mPAP) by the stroke volume (SV). Arterial elastance
(Ea) can be estimated as mPAP/SV. Adapted from Trip et al.17
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with chronic thromboembolic pulmonary vascular disease

(CTPVD).23

NONINVASIVE ASSESSMENT OF RV

AFTERLOAD AND FUNCTION

Assessment of RV function by imaging is challenging

because of its complex anatomy. While RV ejection frac-

tion (RVEF) is commonly used as an index of RV func-

tion, it is highly load dependent and does not reflect RV

contractility.24 This problem affects the clinical assess-

ment and management of patients with RV dysfunction,

including those with acute and chronic PE. On that ac-

count, other parameters reflecting RV function, such as

RV fractional area change (RVFAC) and tricuspid annular

plane systolic excursion (TAPSE), have been introduced

into clinical routine.25 More recently, several indexes have

been proposed as surrogates of RV function and contrac-

tility, including the RV myocardial performance index

(RVMPI, or Tei index)26-28 and the acceleration of the myo-

cardium during isovolumetric contraction (IVA).29 Based

on Doppler imaging, RVMPI is an established marker of

myocardial performance and ventricular contractility that

is independent of ventricular geometry. RVMPI has been

evaluated for the assessment of LV and RV function in

heart failure and PH.26-28,30-33 Myocardial deformation param-

eters of the RV free wall, such as strain and strain rate,

have been proposed as load- and heart motion–independent

measures of RV function.34-36 It has been suggested that

echocardiographic indexes of RV function, including TAPSE,

RVMPI, RVFAC, and IVA, are related to RV-PV coupling

(Ees/Ea) rather than to Ees alone.
19 RV echocardiographic

indexes, especially RVFAC and IVA, have been shown

to correlate more strongly with Ees/Ea than with Ees in an

experimental model of RV chronic pressure overload in-

duced by pulmonary arterial ligation and recurrent embo-

lization.19

RV-PV coupling can also be determined by combining

standard right heart catheterization and measurements

derived during magnetic resonance imaging. Studies in

healthy individuals and patients with PH have shown a

good agreement with conductance catheterization data.20,21

THE RV IN ACUTE PE

Pathogenesis and epidemiology
Acute PE and DVT are part of the spectrum of VTE.

Thrombi commonly form in deep veins in the legs. Ve-

nous thrombi detach from their formation sites and em-

bolize through the venous system, right atrium, and RV

toward the pulmonary circulation. DVT has an incidence

of 1.5 per 1,000 person-years. About 79% of patients who

present with PE have evidence of DVT. One-half of the

patients with proximal DVT experience an episode of PE.

The direct consequence of PE is an elevation in RV after-

load, followed by an increase in RV wall tension that may

lead to dilatation, dysfunction, and ischemia of the RV.

Death results from RV failure. RV ischemia in acute PE

results from myocyte necrosis and myocardial inflamma-

tion by infiltration with macrophages, T cells, and neutro-

phils and is distinct from the pattern due to epicardial

vessel occlusion seen in myocardial infarction.37,38

Noninvasive assessment and risk
stratification of acute PE
Electrocardiographic signs of RV strain, such as T wave

inversions in V1–V4, QR pattern in V1, the S1Q3T3 pat-

tern, and incomplete or complete right bundle-branch

block, are useful but insensitive for the assessment of RV

dysfunction in acute PE. However, the presence of RV

strain on electrocardiogram has been shown to correlate

with the extent of pulmonary vascular obstruction39 and

outcomes of acute PE.40 At least 25% of patients with acute

PE have signs of RV dysfunction on echocardiography. Over-

all and in-hospital mortality rates have been shown to be

higher in patients with echocardiographic signs of RV

dysfunction at the time of diagnosis of acute PE.41-44 Pa-

tients with systolic pulmonary artery pressures higher than

50 mmHg estimated by echocardiography at the time of

diagnosis have a 3-fold risk for persistent PH and RV dys-

function.45

RV afterload in acute PE
Acute PE leads to a number of pathophysiological changes

in pulmonary function. The most important among these

alterations is an acute increase in PVR. Abrupt increase in

PVR leading to RV failure is the principle cause of death

from PE. The mPAP and PVR increase in proportion to

the degree of pulmonary vascular obstruction in patients

without preexisting pulmonary vascular disease.46,47 In a se-

ries of 76 patients with acute PE and without previous

cardiopulmonary disease, long-term prognosis was related

to the level of mPAP and the presence of RV failure.1 Pa-

tients with mPAP higher than 30 mmHg at initial diagnosis

had progressive PH. Survival after 2 years of follow-up was

less than 20% when mPAP was higher than 50 mmHg.1

In contrast, acute PE in patients with preexisting pul-

monary vascular disease leads to higher pulmonary artery

pressures as a result of RV hypertrophy. It has been shown

that there is no correlation between the degree of pulmo-

nary vascular obstruction and mPAP in patients with

acute PE superimposed on pulmonary vascular disease.47
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The diastolic pulmonary vascular pressure gradient (DPG),

i.e., the difference between diastolic pulmonary artery pres-

sure and mean pulmonary arterial wedge pressure [mPAWP])

has been described as elevated in acute PE.48 A positive

correlation has been found between DPG and the per-

centage of embolic pulmonary arterial tree obstruction,

as assessed by pulmonary angiography.49-51 Furthermore,

DPG has been shown to be useful for the differentiation

between pulmonary and cardiac causes of acute respiratory

failure52 and PH.53-55

RV function in acute PE
The extent of pulmonary vascular obstruction and the pres-

ence of preexisting cardiopulmonary disease determine the

increase in RV afterload and the development of RV dys-

function.56 The sudden rises in pulmonary artery pressure

and PVR abruptly increase RV afterload, consequently lead-

ing to an increase in RV wall tension, followed by RV dila-

tion and dysfunction. As the RV dilates, the interventricular

septum shifts toward the LV. Progressive RV dilation ac-

companied by LV compression results in diastolic dysfunc-

tion and underfilling of the LV. LV underfilling leads to a

decrease in systemic cardiac output and systemic blood

pressure, potentially impairing coronary perfusion. Ele-

vated RV wall tension itself reduces right coronary artery

flow, increases RVmyocardial oxygen consumption and de-

mand, and causes ischemia.57

THE RV IN CTPVD/CTEPH

Pathogenesis and epidemiology
Incomplete resolution of acute PE is frequently observed

after acute PE but rarely results in CTEPH. Some symp-

tomatic patients may present with normal pulmonary he-

modynamics at rest, despite symptomatic disease, e.g.,

patients with complete unilateral obstruction. Despite the

absence of PH at rest, they are treated as CTEPH patients.

Suitable terminology to describe this condition of CTPVD,

or chronic PE, has not been accepted. In previous stud-

ies, the cumulative incidence of CTEPH after acute PE

was reported as 0.1%–9.1% after symptomatic PE.45,58-66

However, one has to take into account that the initial

thromboembolic event may have been asymptomatic. For

example, in the recent European CTEPH registry, 28% of

patients did not have a history of acute VTE.67 Therefore, the

true incidence of CTEPHmay be even higher. Pulmonary end-

arterectomy (PEA) is the treatment of choice for CTEPH,68

with a periprocedural mortality rate of less than 5% in

Europe today,69 nearly normalizedhemodynamics, and sub-

stantial improvement in clinical symptoms in the majority

of patients.68-70

Diagnosis and definition
A diagnosis of CTEPH can be made only after effective

anticoagulation of at least 3 months to discriminate the

condition from subacute PE.71 CTEPH is defined by an

mPAP of at least 25 mmHg with mPAWP no higher than

15 mmHg in the presence of at least one (segmental)

perfusion defect detected by lung scanning/multidetector

computed tomographic angiography or pulmonary angiog-

raphy.

RV afterload in CTEPH
Chronic obstructions in the pulmonary circulation lead

to an increase in RV afterload and eventually to an im-

pairment in RV function. RV afterload is characterized by

a steady flow component, expressed by PVR, an oscilla-

tory load component, expressed by CPA, and characteris-

tic impedance (Z ) of the proximal pulmonary artery.2

Despite similar PVRs, mPAP is lower in CTEPH than in

iPAH,72 which has led to the assumption that RV adap-

tation may be poorer in CTEPH patients than in iPAH

patients.73 This observation may be explained by the gen-

erally older age of patients, the long duration of functional

impairment, and disease-specific alterations of the pulmo-

nary circulation.73 RC-time is significantly lower in prox-

imal CTEPH than in distal CTEPH and PAH, which can

be explained by structural differences of the pulmonary

circulation and implies a higher RV workload.74 Compli-

ance (CPA) has been shown to be of greater prognostic

importance than resistance in patients with iPAH.5,6 The

prognostic value of CPA could also be demonstrated in

CTEPH patients undergoing PEA.75 In a study of 110 con-

secutive patients76 assessing RV afterload in CTEPH pa-

tients before PEA, immediately after PEA, and 1 year

after PEA, 84% of the patients had an immediate im-

provement in CPA after PEA. Immediate postoperative

CPA was identified as a univariate predictor of outcome.

However, in multivariate analysis, immediate postoper-

ative PVR was the only independent predictor of long-

term survival/freedom from lung transplantation after

PEA. Patients who had concurrent improvements in CPA

and PVR had the lowest likelihood for adverse outcomes

(death or persistent/recurrent PH) after PEA (Fig. 2).76

According to current knowledge, PVR appears to be the

most critical measure in CTEPH patients, especially when

measured immediately after PEA.

PEA has been shown to lead to an immediate decrease

in PVR and a concordant increase in CPA,
76 resulting in a

mild decrease in RC-time (baseline: 0.72 � 0.71 seconds,

immediately after PEA: 0.60 � 0.3 seconds; P = 0.13). A

significant decrease in RC-time after PEA was reported
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in a study from the United Kingdom (baseline: 0.49 �
0.11 seconds, after PEA: 0.38 � 0.11 seconds; P < 0.05).77

It appears that patients from whom more and longer

thrombus material can be removed have a better improve-

ment in hemodynamics and are less likely to develop per-

sistent/recurrent PH.76 Specimen assessment takes into

account both the technical success of PEA and the ana-

tomical CTEPH type that has previously been correlated

with outcomes.78 It has been reported that patients with

persistent exertional dyspnea after successful PEA dis-

play an abnormal pulmonary hemodynamic response to

exercise, characterized by increased PVR and decreased

CPA.
3

Upstream resistance is significantly higher in operable

CTEPH than in nonoperable CTEPH and iPAH.79 Pa-

tients with higher downstream and lower upstream resis-

tance before PEA appear to be at increased risk for persis-

tent PH and poor outcomes after PEA.80 Data indicate

that patients with upstream resistance of less than 60%

are at highest risk for adverse outcomes after PEA.80 It

has been suggested that CTEPH patients with lower up-

stream and higher downstream resistance may suffer from

concomitant small-vessel disease that resembles PAH, but

this has not been proven by histologic evidence.

RV function in CTPVD/CTEPH
Changes in pressure-volume loop morphology have been

observed in CTEPH patients as well as in patients with

CTPVD.23 Compared to healthy controls, patients with

CTEPH and CTPVD display a positive pressure differen-

tial during systolic ejection from pulmonary valve opening to

valve closure (−6.3 � 3.0, 3.2 � 3.5, and 20.4 � 18.4 mmHg

for controls, CTPVD patients, and CTEPH patients, re-

spectively).23 The RV has been shown to be decoupled in

patients with CTEPH, with an Ees/Ea ratio of 0.6 � 0.18,

compared to controls (Ees/Ea = 1.46 � 0.3). RV-PV decou-

pling could be observed in patients with CTPVD (Ees/Ea =
1.27 � 0.36), suggesting RV dysfunction despite normal

hemodynamics. In addition, slower RV relaxation, as indi-

cated by the time constant of isovolumetric relaxation τ,
has been found in CTEPH and CTPVD patients, compared

to controls.23

RV remodeling in CTEPH and reverse
remodeling after PEA
As a consequence of chronic increase in afterload, the

RV undergoes a remodeling process in order to main-

tain pulmonary blood flow. This process is characterized

by an increase in wall thickness and chamber dilatation.

According to the Laplace relationship, the thin-walled RV

augments thickness in order to cope with a chronic in-

crease in intraluminal pressure and wall stress.81 This is

mainly achieved by hypertrophy. With dilatation, the RV

loses its triangular shape, leftward ventricular septal bow-

ing develops, and tricuspid annular dilation results in tri-

cuspid regurgitation. Leftward ventricular septal bowing

with LV compression, in combination with low LV pre-

load and underfilling (“LV unloading”), has been shown

to cause LV diastolic filling impairment in a significant

proportion of patients with CTEPH.82 Chronic LV unload-

ing leads to atrophic remodeling, with LV diastolic and

systolic dysfunction.83 A recent study has shown that RV

failure in CTEPH patients is associated with a reduction

in LV free-wall mass, which is reversible after PEA.83 In

addition, the authors showed, in an animal model, that

this observation might be explained by myocyte shrink-

age due to atrophic remodeling.83 PEA has been shown to

restore RV remodeling by an acute reduction in RV

afterload,84,85 with subsequent improvement in biventric-

ular cardiac function and reduction in ventricular septal

abnormalities and RV systolic wall stress.86,87 Magnetic

Figure 2. Quadrants summarizing vectors that depict changes
in both pulmonary vascular resistance (PVR) and pulmonary
arterial compliance (CPA) between catheterizations at baseline
and immediately after pulmonary endarterectomy, to discrimi-
nate “PVR and CPA responders” from “PVR and CPA nonre-
sponders.” All patients’ vectors with persistent/recurrent pulmo-
nary hypertension in the upper-left quadrant are localized within
the circled area (representing cases with only a minor improve-
ment in CPA and PVR). Hemodynamic changes that are asso-
ciated with improved survival are all within the upper left quad-
rant. A color version of this figure is available online.
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resonance imaging studies have shown that reverse re-

modeling occurs early after PEA.86 Echocardiographic

studies demonstrated improvements in RV volumes and

areas,88 tricuspid regurgitation,89,90 TAPSE,85 RV strain,35

and RVMPI,30,85 indicating better RV function after PEA.

Reductions in RV mass and septal bowing, accompanied

by an increase in RVEF, have been documented by mag-

netic resonance imaging studies.84,91 Moreover, the mag-

nitude of reverse RV remodeling after PEA has been shown

to correlate with changes in hemodynamics.84,85 However,

despite significant improvement in RV function after PEA,

RVEF remained reduced compared to that in healthy in-

dividuals.84,85 The reason why indexes of RV function, in-

cluding RVEF, RVMPI, and TAPSE, fail to completely

recover after PEA is unknown. It has been suggested that

RV remodeling is only partly reversible because of diffuse

myocardial fibrosis, similar to PAH.12

OUTLOOK

Mortality in acute PE and CTEPH depends on RV func-

tion. One may assume that, in contrast to that in iPAH

and scleroderma-associated PAH, the RV in VTE is intrinsi-

cally normal, making VTE-dependent RV function an ideal

model to study consequences of abrupt (acute PE) and

gradual (CTEPH) afterload increase, because RV func-

tional changes are correlated with the degree of mechani-

cal obstruction of the pulmonary circulation. RV functional

recovery after PEA in CTEPH is a further attractive human

model to study reverse RV remodeling that may provide

insights in RV adaptation to increased afterload.
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36. Huez S, Vachiéry JL, Unger P, Brimioulle S, Naeije R. Tis-
sue Doppler imaging evaluation of cardiac adaptation to se-
vere pulmonary hypertension. Am J Cardiol 2007;100(9):1473–
1478.

37. Orde MM, Puranik R, Morrow PL, Duflou J. Myocardial
pathology in pulmonary thromboembolism. Heart 2011;97
(20):1695–1699.

38. Watts JA, Zagorski J, Gellar MA, Stevinson BG, Kline JA.
Cardiac inflammation contributes to right ventricular dys-
function following experimental pulmonary embolism in
rats. J Mol Cell Cardiol 2006;41(2):296–307.

39. Kjaergaard J, Schaadt BK, Lund JO, Hassager C. Quantifi-
cation of right ventricular function in acute pulmonary em-
bolism: relation to extent of pulmonary perfusion defects.
Eur J Echocardiogr 2008;9(5):641–645.

40. Stergiopoulos K, Bahrainy S, Strachan P, Kort S. Right
ventricular strain rate predicts clinical outcomes in patients
with acute pulmonary embolism. Acute Card Care 2011;13
(3):181–188.

41. Ribeiro A, Lindmarker P, Juhlin-Dannfelt A, Johnsson H,
Jorfeldt L. Echocardiography Doppler in pulmonary embo-
lism: right ventricular dysfunction as a predictor of mortal-
ity rate. Am Heart J 1997;134(3):479–487.

42. Coutance G, Cauderlier E, Ehtisham J, Hamon M, Hamon M.
The prognostic value of markers of right ventricular dysfunc-
tion in pulmonary embolism: a meta-analysis. Crit Care 2011;
15:R103.

43. Becattini C, Agnelli G, Vedovati MC, Pruszczyk P, Casazza
F, Grifoni S, Salvi A, et al. Multidetector computed tomog-
raphy for acute pulmonary embolism: diagnosis and risk
stratification in a single test. Eur Heart J 2011;32(13):1657–
1663.

44. Becattini C, Vedovati MC, Agnelli G. Prognostic value of
troponins in acute pulmonary embolism: a meta-analysis.
Circulation 2007;116(4):427–433.

45. Ribeiro A, Lindmarker P, Johnsson H, Juhlin-Dannfelt A,
Jorfeldt L. Pulmonary embolism: one-year follow-up with
echocardiography Doppler and five-year survival analysis.
Circulation 1999;99(10):1325–1330.

384 | RV in pulmonary embolism Gerges et al.



46. Delcroix M, Melot C, Vachiéry JL, Lejeune P, Leeman M,
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