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ABSTR ACT: Genomic studies have become noncoding RNA (ncRNA) centric after the study of different genomes provided enormous information on 
ncRNA over the past decades. The function of ncRNA is decided by its secondary structure, and across organisms, the secondary structure is more con-
served than the sequence itself. In this study, the optimal secondary structure or the minimum free energy (MFE) structure of ncRNA was found based 
on the thermodynamic nearest neighbor model. MFE of over 2600 ncRNA sequences was analyzed in view of its signal properties. Mathematical models 
linking MFE to the signal properties were found for each of the four classes of ncRNA analyzed. MFE values computed with the proposed models were in 
concordance with those obtained with the standard web servers. A total of 95% of the sequences analyzed had deviation of MFE values within ±15% relative 
to those obtained from standard web servers.
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Introduction
One of the most important recent advancements in molecular 
biology has perhaps been the discovery that the noncoding 
region of the genome can regulate gene expression. The past 
two decades have witnessed a steep increase in the study of 
the noncoding RNA (ncRNA). Systematic screening of vari-
ous genomes has brought to light a completely new knowledge 
database of the ncRNA.1–3 Micro RNAs (miRNAs) that reg-
ulate gene expression and small interfering RNAs that take 
part in RNA interference pathways for gene silencing are just 
two examples.4–7 Functions of ncRNA include transcription, 
control of translation, translocation, RNA processing and 
modification, and chromosome replication.8,9

RNA is made up of the four nucleotide bases A (adenine), 
U (uracil), C (cytosine), and G (guanine). It is a single-stranded 
molecule (read from the 5′ end to the 3′ end) but can involve in 
complementary base pairing via hydrogen bonds (A-U, C-G, 
Watson–Crick/canonical base pairing) in the same strand.1,3 
Noncanonical base pairing is also seen (A-G, wobble pair). 
Complementary base pairing causes the RNA single strand to 
fold onto itself forming the two-dimensional secondary struc-
ture. The optimal secondary structure formation happens in 
such a way that the thermodynamic free energy is minimum, 
and the resulting structure is called the minimum free energy 
(MFE) structure. The secondary structure folds in three-
dimensional space to form the tertiary structure. Function of 
ncRNA depends ultimately on this three-dimensional tertiary 

structure.10 The secondary structure is made up of substruc-
tural elements that are responsible for most of the overall fold-
ing energy and can be seen as a coarse-grained approximation 
of the tertiary structure. The secondary structure is obviously 
the first step in understanding the far more complicated three-
dimensional tertiary structure and thereby the function of the 
ncRNA sequence.

Many computational approaches to predict the secondary 
structure exists today. Broadly, they could be listed as proba-
bilistic, thermodynamic, and phylogenetic predictions and 
predictions with pseudoknots. Dynamic programming with 
the thermodynamic nearest neighbor approach is a popular 
method of MFE secondary structure prediction of RNA. 
This folding algorithm uses a nearest neighbor energy model. 
A secondary structure is uniquely decomposed into substruc-
tural elements (stacked bases, hairpin loops, bulges, interior 
loops, and multiway junctions), which are assigned energies. 
The free energy of the secondary structure is computed as the 
sum of energy contributions of the individual substructures 
that make up the secondary structure.

Computational methods are quite popular and ram-
pantly used in molecular biology. However, over the past two 
decades, the theory and methods of digital signal process-
ing (DSP) too have gained attention in molecular biology. A 
good amount of DSP methods has been employed to analyze 
DNA and proteins after the initial work in the turn of this 
century.11–13 Nevertheless, there has not been much published 
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work on DSP methods to analyze the noncoding region of 
the genome.

In this work, ncRNA was analyzed with respect to the 
MFE of its secondary structure. A novel mathematical model 
for MFE was developed in terms of signal parameters of 
ncRNA sequences. MFE has not been mathematically linked 
to length or any other signal parameter of the sequence. This is 
a novel approach to analyzing MFE and has not been reported 
in related literature to date.

Materials and Methods
Materials. Over 2600 ncRNA sequences downloaded 

from benchmarked databases, viz., GenBank and Rfam, were 
used in this work. The classes of ncRNA whose MFEs were 
analyzed are snRNA (902), snoRNA (573), miRNA (376), 
and ribosomal RNA (rRNA; 805), taken from across bacteria, 
archaea, fungi, and eukaryotes.

Methods. The optimal two-dimensional MFE struc-
tures of a sample of over 2600 ncRNA sequences were found 
with the thermodynamic nearest neighbor algorithm using 
MATLAB R2016a. A novel mathematical model for MFE 
was developed in terms of signal parameters of ncRNA 
sequences using multiple linear regression analysis. This model 
was used to compute MFE of ncRNA sequences. MFE values 
so obtained were compared and ratified with those obtained 
using standard web servers, RNAfold, and RNAstructure.

Secondary structure prediction and evaluation of 
MFE. The basic dynamic programming algorithm for the 
thermodynamic nearest neighbor model was proposed by 
Zuker and Steigler.14 Optimal MFE secondary structure was 
predicted for the sequences analyzed starting from the primary 

sequence.15,16 In this computation, canonical and noncanoni-
cal base pairings are considered, the energy contribution of 
coaxially stacked helices is not accounted for, and the forma-
tion of pseudoknots is forbidden. The RNA structure can be 
uniquely decomposed into substructural elements (stacked 
bases, hairpin loops, bulges, interior loops, and multiway 
junctions) and energies are assigned to these substructures. 
An up-to-date set of energy parameters is maintained by the 
Turner’s Laboratories.15,17 MFE is estimated in kilocalorie 
per mole by summing individual energy contributions from 
the secondary substructures, viz., base pair stacks, hairpins, 
bulges, internal loops, and multibranch loops. Figure 1 shows 
an illustration for the contributing energies of the different 
substructures and the net energy ΔG expressed in kilocalorie 
per mole. The secondary substructures have energy contribu-
tions that are sequence and length dependent. The algorithm 
implemented uses dynamic programming to compute the 
energy contributions of all possible elementary substructures 
and then predicts the secondary structure by considering the 
combination of elementary substructures whose total free 
energy is minimum.

Novel model for MFE. The signal properties considered 
here for developing the mathematical model are (1) the length 
of the ncRNA sequences in terms of the number of nucleotides 
(mentioned as NTL) and (2) standard deviation of the spectral 
coefficient matrix of the sequences (mentioned as SD_DFT).

Signal length and coefficient matrix of the signal spectrum. 
In order to make it conducive for DSP, the sequences of let-
ters from the four-character alphabet were first converted into 
numerical sequences. The binary indicator sequence repre-
sentation was used here.12 ua[n], uu[n], uc[n], and ug[n] are the 

Figure 1. The contributing energies of substructures. Here, overall ΔG = -4.6 kcal/mol. 
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binary indicator sequences corresponding to A, U, C, and G, 
which take on a value of 0 or 1 at location n, depending on 
whether or not the corresponding character exists at n.

ua[n] + uu[n] + ug[n] = 1� (1)

N is the sequence length, NTL.
The numerical sequence resulting from a character string 

of length N can be written as:

x[n] = aua[n] + uuu[n] + cuc[n] + gug[n]� (2)

n = 0, 1, 2, 3…… (N - 1) and α = 1 + j, u = 1 - j, c = -1 - j, 
g = -1 + j, following the convention of complex representation 
of bases13 where purines and pyrimidines are represented by 
numbers that are complex conjugates.

To obtain the spectral coefficients, the digital Fourier 
transform (DFT) of the sequence was found using the fast 
Fourier transform algorithm. DFT of a sequence x[n], of 
length N, is itself another sequence X[k], of the same length 
N.18,19 Can be expressed mathematically as

1
( 2 )/

0
( ) ( )

N
jk n N

n
X k x n e

−
−

=

= ∑ π

�
(3)

Magnitudes of spectral coefficients were separated from 
the spectrum and their standard deviation computed. This 
is SD_DFT.

Regression analysis—a brief outline. The mathemati-
cal models linking MFE, NTL, and SD_DFT were arrived 
through regression analysis. Regression is a generic term for 
all methods that attempt to fit a model to observed data in 
order to quantify the relationship between two groups of vari-
ables. The fitted model may then be used to merely describe 
the relationship between the two groups of variables, namely, 
the predictor or the independent variable(s) and the dependent 
or the target or the response variable(s). In all cases, the target 
(dependent variable) is a function of the independent variables 
called the regression function. In general terms, the two data 
matrices involved in regression are usually denoted as X and Y, 
where X represents the independent variable and Y represents 
the dependent variable. The purpose of regression is to build 
a model Y =  f(X). Such a model tries to explain, or predict, 
the variations in the Y variable(s) from the variations in the 
X variable(s). The link between X and Y is achieved through a 
common set of samples for which both X- and Y-values have 
been collected.

The literature on regression analysis present different 
types of regression. Authorities classify regression under dif-
ferent heads. Broadly, we have nonlinear regression and linear 
regression. Linear regression is one in which the observational 
data are modeled by a function that is a linear combination 

of the model parameters and depends on one or more inde-
pendent variables. For regression analysis in this work, linear 
regression was adopted as linear nature was observed in the 
relationship of parameters analyzed. As there is more than 
one predictor variable, multiple linear regression was used for 
developing the mathematical models for MFE in this work. 
The iteration done here is based on the minimum squared 
errors approach. Here, we will see a brief description of the 
regression analysis performed in this work.

The general format for the multiple linear regression rela-
tionship can be expressed by the regression equation as

= + + + + 1 2 0 1 1 2 2| , , . n n ny x x x b b x b x b x
�

(4)

where y represents the response variable and {x} represents the 
predictor variables. b0 is the intercept of the linear model and 
b1, b2, b3. represent the regression coefficients.20 Regression 
analysis method followed here develops a model based on the 
parameters analyzed. The response variable is expressed in 
terms of the predictor variables, using this model. In equa-
tion (4), each b coefficient represents the change in the mean 
response, E(y), per unit increase in the associated predictor 
variable when all the other predictors are held constant. For 
example, b1 represents the change in the mean response, E(y), 
per unit increase in x1 when x2, x3, x4,…xn are held constant. 
The intercept term, b0, represents the mean response, E(y), 
when all the predictors x1, x2, x3,…xn are zero.

In this work, there are two predictor variables (NTL and 
SD_DFT) and one response variable (MFE). So, in the pres-
ent context, the regression equation reduces to

0 1 1 2 2y b b x b x= + +
�

(5)

The simplest of linear regressions is the simple linear 
regression, which can be represented by the equation 
y = mx + c, the equation to a straight line, with slope m and 
intercept c, where {Y} would represent the response variable 
and {X} the predictor variable. A detailed discussion of regres-
sion is not intended here. The reader is referred to standard 
text books for further reading.20–22 Traditionally, the method 
of least squares regression allows you to find a two-variable 
linear equation y = mx + c that provides the “best fit” for the 
data points. In ordinary least squares, fit is defined as mini-
mizing the squared vertical errors, that is finding the values of 
m and c that minimize the function

= − −∑ i iF m c y mx c 2( , ) ( )
�

(6)

The solution can be found by minimizing the first 
differentials of F with respect to m and c, ie, ∂F/∂m = 0 and 
∂F/∂b = 0. This basic idea can be extended to multiple linear 
regression to find the equation of a plane, which has the basic 
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equation, z  =  ax  +  by  +  c, such that the vertical distances 
between points (xi, yi, zi) and plane are minimum. To do this, 
in the least squares approach, you must find the values of a, b, 
and c that minimizes the equation

2( , , ) ( )i i iG a b c z ax by c= − − −∑
�

(7)

which can be solved from the condition that the partial 
derivatives

= = =0, 0 and 0G G G
a b c

∂ ∂ ∂
∂ ∂ ∂ �

In the work presented here, multiple linear regression 
analysis was done taking MFE as the response variable and 
NTL and SD_DFT as the predictor variables. The statistical 
toolbox of MATLAB R2016a was used to perform regression 
analysis. Linear equations were arrived at linking the 
three, for the four classes of ncRNA analyzed. The equa-
tions are explained in the “Results” section and tabulated in 
Table 1. MFE was computed from sequence length and stan-
dard deviation of the spectral coefficient matrix using these 
mathematical models, for each class of the ncRNA analyzed. 
The accuracy of the model developed was probed by compar-
ing the MFE values obtained by using the model (named 
MFE_C) with MFE values obtained via MATLAB (named 
as MFE_M), and relative deviations were found. The perfor-
mance of the model was evaluated by comparing MFE values 
computed using it with the ones obtained from standard web 
servers RNAfold (MFE_F) and RNAstructure (MFE_S). 
Deviations in MFEs computed with the models developed 
were found relative to the MFE values obtained using these 
two web servers. Sample results have been included in the 
“Results” section.

Results
A total of 2656 ncRNA sequences belonging to four classes 
(miRNA, rRNA, snRNA, and snoRNA) were downloaded 
from databases, GenBank and Rfam. Optimal MFE second-
ary structures of the sequences were found with the ther-
modynamic nearest neighbor approach using MATLAB 
R2016a. Mathematical models for MFE for these four classes 
of ncRNA were developed from the signal parameters of the 

sequences, viz., length and SD of spectral coefficient matrices 
of the sequences. The deviation in the computation of MFE 
with the proposed model was found relative to the MFE 
values obtained with MATLAB and using two web serv-
ers, RNAfold and RNAstructure. Sample results are given in 
this section.

Figure 2 shows a sample secondary structure plot, the 
MFE secondary structure of rRNA sequence from Mus 
musculus with NCBI accession id NR_046118.1. MFE 
obtained for this sequence is -54.3  kcal/mol. The dynamic 
programming approach used with the thermodynamic nearest 
neighbor model ensures that only the optimal MFE secondary 
structure is plotted.

MFEs computed with the thermodynamic nearest 
neighbor algorithm via MATLAB were related to the signal 
properties of the sequences, namely, the length and the stan-
dard deviation of the spectral coefficient matrices of the 
sequences. Figures 3 and 4 show sample plots of MFE scat-
tered against NTL (length of the sequence) and SD_DFT 
(standard deviation of the spectral coefficients) in 3D space. 
The plots have MFE marked along the z axis, NTL along the 
x axis, and SD_DFT along the y axis. Figure 3 shows the 
scatterplot for the snRNA sequences analyzed here and 
Figure 4 is for snoRNA sequences. The rainbow grid in the 
graphs indicates the ideal fit plane. In regression, perfect fit is 
said to occur when the iterations of the predictor variables are 
perfect and there is zero error. The scatterplots taken for the 

Table 1. The equations developed relating MFE with sequence length and SD of spectral coefficient matrices.

SL. NO. CLASS OF 
ncRNA

NO. OF SEQUENCES 
ANALYZED

REGRESSION COEFFICIENTS EQUATION LINKING MFE (y) WITH 
NTL (x1) AND SD_DFT (x2)b0 b1 b2

1 miRNA 376 45.5857 0.3455x1 -4.2116 y = 0.3455x1 - 4.2116x2 + 45.5857

2 rRNA 805 21.2110 -0.1485 -1.5454x2 y = -0.1485x1 - 1.5454x2 + 21.2110

3 snoRNA 573 41.7028 -0.2219 -1.7731 y = -0.2219x1 - 1.7731x2 + 41.7028 

4 snRNA 902 36.2222 -0.1996 -1.5913 y = -0.1996x1 - 1.5913x2 + 36.2222
 

Figure 2. Secondary structure plot of NR_046118.1. M. musculus rRNA.
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different classes of ncRNA sequences show that most of the 
points fall on one plane, the number of outliers are very few. 
This indicates the correctness of the analysis.

The mathematical models developed relating MFE to the 
length and standard deviation of spectral coefficient matrix 
of sequences from the four classes of ncRNA analyzed are 
given in Table 1. The values of regression coefficients b1 and b2 
and the intercepts b0 obtained for each class are also shown. 
The mathematical model developed for each class was used 
in computing MFE from NTL and SD_DFT for the cor-
responding class of ncRNA analyzed.

The general form of the equation is (as given in the 
“Materials and Methods” section) = b1x1 + b2x2 + b0, where y is 
the dependent variable and x1, x2 are the predictor variables. 
The significance of the regression parameters b0, b1, and b2 has 
been already explained in the previous section. The equation 
linking MFE (y) with NTL (x1) and SD_DFT (x2) are

= − +y x x1 20.3455 4.2116 45.5857
�

(8)

= − − +1 20.1485 1.5454 21.2110y x x
�

(9)

= − − +1 20.2219 1.7731 41.7028y x x
�

(10)

= − − +1 20.1996 1.5913 36.2222y x x
�

(11)

for miRNA, rRNA, snRNA, and snoRNA sequences, 
respectively.

Using the above mathematical models, MFE was com-
puted (indicated as MFE_C) from nucleotide length (NTL) 
and the standard deviation of the spectral coefficient matrix 
(SD_DFT) for each of the four classes of ncRNA. The relative 
deviation of the computed MFE was found relative to the val-
ues obtained using MATLAB. These relative deviations are 
indicated as RD1. The relative deviation values crossed ±15% 
for about only about 2% of the sequences in all the 2656 
sequences studied. This indicates that the data analyzed was 
conducive to regression analysis.

Figure 3. Plot of MFE vs NTL and SD_DFT for snRNA (902) sequences.

Figure 4. Plot of MFE vs NTL and SD_DFT for snoRNA (573) sequences.
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Sample results of this computation have been included 
in this paper. Supplementary Table 1 shows results for com-
putation of MFE using the model developed for snRNA 
sequences studied here. These 902 sequences belong to dif-
ferent Rfam families, viz., RF00004, RF00007, RF00026, 
RF00283, RF00492, RF01458, RF01475, RF01490, and 
RF00618. The mathematical model is given in equation (11) 
above. Supplementary Table 1 has the identities of sequences 
that are in column 2. The third column shows the length of 
the sequence (NTL) and the fourth column has the standard 
deviation of the spectral coefficient matrix of the sequence 
(SD_DFT). From these two signal parameters, MFE is 
computed as per the mathematical model developed for 
snRNA: = -0.1996x1 - 1.5913x2 + 36.2222, where y is MFE, 
x1 is NTL (nucleotide length), and x2 is SD_DFT (stan-
dard deviation of the spectral coefficient matrix of snRNA 
sequences). This equation was obtained by regression analysis 
of the 902 snRNA sequences studied. The MFE computed 
from the model is indicated as MFE_C, whereas MFE com-
puted with the Bioinformatics toolbox of MATLAB is indi-
cated by MFE_M. Deviation in the computation of MFE_C 
was found relative to MFE_M (shown as RD1), and the per-
centage of relative deviation is shown in column 8 of Supple-
mentary Table 1. A total of 1.55210% (14 out of 902 sequences) 
of the sequences had values of RD1 beyond ±15%. These 
have been highlighted in red. One outlier was found, which 
had a value of relative deviation 41.98703% (sequence id 
AAFD02000024.1/69022-69131). These results indicate that 
the sample at hand was conducive to regression analysis. The 
time of computation have also been recorded and are given in 
Supplementary Table 1 under each family. The average time of 
computation was found to be between 0.15 and 0.7 seconds.

Accuracy of the models developed was checked by com-
puting the relative deviations of MFE values obtained using 
the model (MFE_C) with those obtained using the web 
servers RNAfold (MFE_F) and RNAstructure (MFE_S), 
which are represented as RD2 and RD3, respectively. Of the 
total 2656 sequences analyzed, around 95% were found to 
have relative deviations (both RD1 and RD2) within ±15%. 
The deviation values were less than ±5% for 45% and were 
between  ±5% and ±10% for 35% of the sequences. A total 

of 15% of the sequences had deviation values between ±10%  
and  ±15%. Only 5% of the sequences had deviation val-
ues above ±15%. The correlation between the MFE values 
obtained via RNAfold and RNAstructure was not found to 
be 1 always. The maximum relative discrepancy in their values 
for snRNA sequences was found to be 20.7%, and up to 22% 
discrepancy was noticed for the miRNA sequences analyzed.

The results of comparison for 902 sequences of snRNA 
belonging to the different Rfam families already mentioned 
are presented in Supplementary Table 2. Deviation in the 
value of MFE_C found in relation to MFE_F and MFE_S 
is indicated as RD2 and RD3, respectively, in Supplementary 
Table 2. The percentage deviations are also given, indicated by 
RD2 and RD3 in columns 6 and 9, respectively. Out of the 
902 snRNA sequences analyzed, 1.555% (14 out of 902) 6.2% 
(56 out of 902) has values of RD2 beyond ±15% and 6.6% 
(60 out of 902) had values of RD3 beyond ±15%. These details 
are clearly indicated in Table 2, which shows the percentage 
of relative deviations in MFE values computed. The details 
shown in Table 2 can be summed up as follows:

•	 46.01%, 41.695%, and 43.692% of the sequences showed 
a deviation of 0 to ±5% when the MFE values obtained 
with the proposed model are compared with those 
obtained with MATLAB, RNAfold, and RNAserver, 
respectively.

•	 Similarly, the proposed model showed a relative devia-
tion of ±5% to ±10% for 28.32%, 33.51%, and 34.61% 
of the sequences in the three comparisons in the order 
mentioned above.

•	 24.11%, 18.58%, and 15.044% of the sequences had ±10% 
to ±15% deviation when the MFE values from the model 
were compared with the ones obtained using MATLAB, 
RNAfold, and RNAserver, respectively.

•	 Deviations above ±15% were shown only by about 
1.55%, 6.21%, and 6.65% of the sequences in the same 
comparisons.

Discussion
Recent advancements in molecular biology have brought to the 
forefront the importance of ncRNA in regulating numerous 

Table 2. Percentage deviations of MFE values computed with the proposed model for snRNA sequences relative to MFE values computed with 
MATLAB, RNAfold, and RNAstructure.

SL. NO. PERCENTAGE DEVIATION PERCENTAGE OF SEQUENCES FOR WHICH THE PROPOSED MODEL GIVES RELATIVE 
DEVIATION:

FROM 0 TO ±5% FROM ±5% TO ±10% FROM ±10% TO ±15% ABOVE ±15%

1 Relative deviation 1 (comparison 
with MFE from MATLAB)

46.01769912 28.31858407 24.11607 1.55211

2 Relative deviation 2 (comparison 
with MFE from RNAfold)

41.69422986 33.51327434 18.5840708 6.208425

3 Relative deviation 3 (comparison 
with MFE from RNAstructure)

43.69211 34.6121107 15.04424779 6.6518847
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functions of the cell. Understanding the structure of RNA 
is one of the keys to understanding its function. Length and 
MFE of sequences are also common indices used to study 
RNA. In this work, the MFE of ncRNA sequences, which 
decides the optimal secondary structure, was analyzed with 
respect to its relationship to the sequence length and the stan-
dard deviation of spectral coefficients.

The parameters, sequence length, and MFE have been 
used in analyzing RNA from a very early time.23,24 There have 
been studies that have explored the influence of length and 
MFE on sequence stability.25,26 MFE has also been used as an 
index to study the relationship between entropy and structural 
properties of RNA sequences.27 Washeitl et al28 described an 
ncRNA gene finder that makes use of MFE z score com-
putations, together with comparative genomic techniques. 
The mean and standard deviation of MFE of sequences are 
made use of here. Clote et al29 described a method of “asymp-
totic z score” that sets asymptotic limits for mean and standard 
deviations of MFE per nucleotide of random RNA. They per-
form certain precomputations that speed up z score compu-
tations for the entire genome using a sliding window scan. 
This method provides a filter that can be used together with 
MFE computations and pattern matching to identify func-
tional RNA genes in expressed sequence tags and genomic 
data. RNAs for which native state (the free energy structure) 
is functionally important were found to have lower folding 
energy, when compared to random RNAs having the same 
length and dinucleotide frequency. As MFE is a discerning 
factor, knowing its value would be useful in situations where it 
is needed to know quickly whether a given sequence is func-
tional or a random RNA sequence.

MFE is a vital tool in identifying ncRNA genes. Lim 
et al30 described a technique for identifying miRNA genes 
where a moving window scan searches for stem-loop struc-
tures having at least 25 base pairs and has a predicted MFE 
of  -25  kcal/mol or less. A window that accommodates 
21 nucleotides is passed over each conserved stem-loop struc-
ture, and a log-likelihood score is assigned to each window to 
determine how well its attributes resemble those of experi-
mentally verified miRNA. Warris et al31 described yet another 
method of prediction of small regulatory RNAs in genomes 
using MFE distribution of sequences as the discerning factor. 
The underlying principle is that the secondary structures of 
small regulatory RNAs have lower free energies than ran-
dom RNA or other ncRNA sequences of the same length and 
nucleotide composition.

As is evident from the above, MFE and sequence length 
are important parameters to be analyzed in the study of RNA. 
Computational methods have been widely employed to study 
ncRNA. Even though DSP methods have become as popu-
lar as computational methods in the analysis of genomic data, 
little work has been done, which makes use of DSP techniques 
to analyze the noncoding genome. Though sequence length 
and MFE have been used extensively in analyzing RNA, a 

mathematical relationship linking MFE to the length or any 
other signal property of the sequence has not been reported in 
literature till date. Here, in this work, we have introduced a 
novel approach that links MFE, a thermodynamic property of 
ncRNA sequences to their signal properties.

The sequences studied in this work were taken from NCBI 
and Rfam databases. More than 2600 ncRNA sequences 
belonging to four classes, viz., snRNA, snoRNA, rRNA, and 
miRNA, across different organisms were analyzed. A novel 
mathematical model linking MFE, sequence length, and stan-
dard deviation of spectral coefficient matrix was developed for 
all the classes of ncRNA analyzed, and MFE was computed 
using this model. The performance of the models developed here 
for the four classes of ncRNA analyzed was checked for accu-
racy with standard web servers, RNAfold and RNA structure.

The main findings of this study can be summarized as 
follows. It was found that the MFE values computed with the 
proposed model was in concordance with those obtained from 
the web servers. The time of computation was comparable with 
that of RNAfold. In the comparisons mentioned above, the 
relative deviations of MFE values obtained with all the four 
proposed models were found to be within 0% to ±5% for about 
45% of the sequences; within ±5% to ±10% for about 35% of the 
sequences; between ±10% and ±15% for 15% of the sequences. 
Only around 5% of the sequences gave relative deviation per-
centages above ±15% in all the three comparisons. This shows 
the accuracy of the model.

At this point, it needs to be mentioned that at room tem-
perature, RNAs exist in an ensemble of structures and the 
MFE structure is not always the biologically relevant one.32,33 
There are several algorithms to predict these suboptimal sec-
ondary structures.34–36 Most of the common secondary struc-
ture prediction methods assume that the functional RNA 
structure depends solely on the thermodynamic equilibrium 
and does not consider the kinetics of folding. The impact of 
the kinetics of folding on the functional structure of RNA is 
not fully known.28 However, in examples like RNA switches, 
kinetics of folding is significant and there are studies that 
analyze this aspect.37,38 A sequence may fold into reliable 
structures other than the MFE structure or switch between 
structures as a consequence of energy fluctuations in the range 
of a few kT, where k is the Boltzmann constant and T is the 
absolute temperature.39 This energy range is around 3 kcal/mol 
at 37°C. Secondary structure is also predicted based on the 
ensemble, making use of McCaskill’s algorithm.36 The proba-
bility of a particular base pair in the thermodynamic ensemble 
is found using a partition function over all possible structures, 
computed with the algorithm.40 Secondary structure predic-
tion has also been performed by identifying a centroid structure, 
which is thought to represent the ensemble.41 In this work, we 
have considered only one structure from the ensemble, viz., 
the MFE secondary structure. The accuracy of the model 
examined here pertains only to the MFE structure from the 
ensemble of structures.
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The accuracy of MFE-based secondary structure predic-
tion depends on the type of RNA. Generally, it can be assumed 
that only two-thirds of the actual base pairs are predicted 
correctly while one-third of the true base pairs are missed,36 
even with the best of currently available prediction methods. 
In addition, all MFE-based structure prediction approaches 
give only a rough model of the RNA structure. Base pairing 
possibilities are described by the Shannon entropy introduced 
by Huynen et al.42 Shannon entropy is a measure of how well 
defined the RNA structure for a given sequence is.

Mathematically, the average S value for a sequence is 
given by

, ,
,

log( )/i j i j
i j

S P P N= − ∑
�

for all 1 # i # j # N,43 where N is the length of the sequence 
and Pi, j is the probability of base i pairing with base j.

Well-defined structures are said to have lower Shannon 
entropy than those that have many alternate structures 
(alternate/competing base pairs).42 Hence, Shannon entropy 
has been used to pick the most probable structure form the 
Boltzmann ensemble.44,45 The value of S is directly linked to 
N as shown in the above equation. Shannon entropy increases 
with the logarithm of the length N of the sequence and starts 
to saturate at a sequence length of 500.43 The mathematical 
models developed here link MFE linearly to the length of the 
sequence as well as to the standard deviation of spectral coef-
ficients. The spectral coefficients are computed after perform-
ing mathematical mapping of the sequence string as already 
explained, the value of which depends only on the bases in the 
sequence and base pairing is not considered. Shannon entropy 
is not the sole indicator to the correctness of base pairs pre-
dicted in the MFE structure.42 As Shannon entropy is not 
directly linked mathematically to MFE, a direct mathematical 
relationship between Shannon entropy and spectral coef-
ficient matrix cannot be made within the confines of this 
study. However, shorter sequences have lower values for S42 
and have stable structures. It was found in this work that 
shorter sequences have lower values of SD of spectral coef-
ficient matrix. So we could say that shorter sequences have 
lower Shannon entropy, lower values of SD_DFT, and lower 
MFE and form the more stable structures in the ensemble.

As already mentioned, no MFE-based secondary struc-
ture prediction algorithm ensures foolproof structures, as base 
pairs may be missed or wrongly predicted. The authors do not 
claim that this is the perfect method for computing MFE. 
Nevertheless, the technique presented here is computationally 
simple, and it is the first of its kind that links a thermodynamic 
quantity with the signal properties of the sequence. Signal pro-
cessing techniques have the inherent property of computational 
simplicity and easiness of implementation. Genomic sequences 
possess more signal properties, and there are varieties of DSP 
tools that can be put to use to analyze them. Researchers 

should explore ncRNA using DSP techniques, and this work 
should be considered as an initial step in the direction.

Conclusion
Over 2600 ncRNA sequences belonging to four classes were 
analyzed here with respect to the relationship between their 
MFE and signal parameters. Novel mathematical models 
linking MFE with the signal properties of ncRNA sequences 
of these four classes was arrived at. Only about 5% of the 
sequences showed relative deviations above ±15% when MFE 
values obtained with the model were compared with those 
obtained using conventionally accepted methods. This shows 
the accuracy of the models developed. Thus, the mathematical 
models are specific to the ncRNA classes studied and represent 
them aptly. Authors do not claim that the model developed here 
is the perfect method to compute MFE. But this work brings 
to light the relationship between the thermodynamic entity 
MFE and the signal properties of the sequence. This shows 
that the noncoding genome too is conducive to analysis with 
DSP techniques. DSP methods have the unique convenience 
of ease of implementation and lesser computational complex-
ity. It is hoped that this novel relationship linking MFE with 
signal properties of the sequences can be taken forward so that 
more signal processing approaches evolve to study ncRNA.
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