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Abstract: There are indications that serotonergic neurotransmission is disturbed in several psychiatric disorders. One explanation 
may be disturbed transport of tryptophan (precursor for serotonin synthesis) across cell membranes. Human fibroblast cells offer an 
advantageous model to study the transport of amino acids across cell membranes, since they are easy to propagate and the environmental 
factors can be controlled. The aim of this study was to functionally characterize tryptophan transport and to identify the main transporters 
of tryptophan in fibroblast cell lines from healthy controls.
Tryptophan kinetic parameters (Vmax and Km) at low and high concentrations were measured in fibroblasts using the cluster tray 
method. Uptake of 3H (5)-L-tryptophan at different concentrations in the presence and absence of excess concentrations of inhibitors 
or combinations of inhibitors of amino acid transporters were also measured. Tryptophan transport at high concentration (0.5 mM) had 
low affinity and high Vmax and the LAT1 isoform of system-L was responsible for approximately 40% of the total uptake of tryptophan. 
In comparison, tryptophan transport at low concentration (50 nM) had higher affinity, lower Vmax and approximately 80% of tryptophan 
uptake was transported by system-L with LAT1 as the major isoform. The uptake of tryptophan at the low concentration was mainly 
sodium (Na+) dependent, while uptake at high substrate concentration was mainly Na+ independent. A series of different transporter 
inhibitors had varying inhibitory effects on tryptophan uptake.
This study indicates that tryptophan is transported by multiple transporters that are active at different substrate concentrations in human 
fibroblast cells. The tryptophan transport trough system-L was mainly facilitated by the LAT1 isoform, at both low and high substrate 
concentrations of tryptophan.
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Introduction
Serotonin, an important neurotransmitter in the 
brain, is known to play an important role in functions 
subserving mood, anxiety, aggression, sleep, appetite 
and sexual behaviour.1 Disturbed serotonergic 
neurotransmission is implicated in the pathogenesis 
of schizophrenia,2 bipolar disorder,3 depression,3 
obsessive-compulsive disorder,4 and generalized 
anxiety disorder.5

Evidence for disturbed serotonergic neurotrans-
mission in different neuropsychiatric patients was 
obtained from observations that patients with affective 
disorders and suicide attempters have lower levels of 
the serotonin metabolite (5 hydroxyindolacetic acid, 
5HIAA) in the cerebrospinal fluid (CSF) compared 
to controls.3,6–10 Since 5HIAA is believed to reflect 
serotonin turnover in the brain,7 the findings of low 
levels of this metabolite could implicate a reduction 
in central serotonergic transmission in both mania and 
depression. Serotonin re-uptake inhibitors has shown 
to be effective in the treatment of depression and other 
psychiatric disorders.11 Tryptophan is the precursor 
for serotonin synthesis and reduced availability of 
tryptophan to the brain has been shown to result in 
mood changes of healthy volunteers in experimental 
studies using tryptophan depletion.12

The rate of serotonin synthesis in the brain 
depends on different factors: free plasma tryptophan 
concentrations, the rate at which tryptophan crosses the 
blood-brain barrier (BBB), the affinity of tryptophan 
to the transport protein, the enzymatic activity of tryp-
tophan hydroxylase and the kynurenine pathway that 
metabolizes more than 90% of tryptophan. Any inter-
ference with any or all of the above factors could 
influence the availability of serotonin.13–15

Disturbed transport of tryptophan across the 
erythrocyte membranes in depressed patients16–18 and 
aberrant transport of amino acids such as tyrosine 
and alanine across the membranes of fibroblasts 
obtained from patients with schizophrenia and autism 
is a repeated finding in many studies.19–25 The reason 
for aberrant transport of amino acids across the 
plasma membranes in psychiatric patients has not 
been identified; some studies have shown abnormal 
expression and dysfunctional amino acid transporters 
resulting in disturbed neurotransmission.26

Our group has functionally characterized tyrosine 
transport in fibroblasts and shown that tyrosine is 

transported into human fibroblasts mainly via the 
sodium (Na+) independent system-L and the Na+ 
dependent system-A.27 System-L consists of four 
isoforms LAT1,28 LAT2,29 LAT330 and LAT431 and 
these transporters are widely expressed in the body 
and are present in both BBB and fibroblasts.32 A recent 
study by our group has shown that tyrosine is mainly 
transported through the LAT1 isoform of system-L33 
that is present in the BBB.34,35 In the same study it was 
shown that both tyrosine and alanine have affinity for 
the LAT1 and LAT2 isoforms of system-L. Tyrosine 
is also transported via ATA2, one of the isoforms 
of system-A,33 that is present at the BBB36 and in 
fibroblasts.27,33

Transport of tryptophan across the plasma mem-
branes differ between cell types in different cell 
lines.37 Presence of two tryptophan transport systems 
in human fibroblasts were reported and that the 
kinetic parameters Vmax and Km differed between 
them.38 System-1 was shown to have high affinity and 
low Vmax for tryptophan, while system-2 was shown 
to have lower affinity and higher Vmax for tryptophan. 
It was shown that the transport of tryptophan at low 
substrate concentrations was Na+ dependent while 
the transport at high substrate concentration was Na+ 
independent.38 In a recent study, a novel amino acid 
transporter with high affinity (Km value in nanomo-
lar range) and an unusual selectivity for tryptophan 
in human monocyte-derived macrophages was 
described.39 It was indicated that tryptophan transport 
across the brush border of placenta is through the 
LAT1 isoform of system-L, while tryptophan transport 
across the basal membrane of the placenta is through 
LAT2 isoform of system-L and system-y+L.37

The tryptophan transport with respect to the 
isoforms of system-A and L and the tryptophan 
affinity to other transporters have not been fully 
characterized in human fibroblasts. The specific aims 
of the present study were to functionally characterize 
the tryptophan transport and to identify the main 
transporters of tryptophan in fibroblast cell lines from 
healthy controls.

Materials and Methods
Materials
Fibroblast cell lines obtained from healthy controls 
were used. Three randomly selected fibroblast cell lines 
(n = 3) obtained from a Biobank33 were used to study 
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Na+ dependency of tryptophan transport, to determine 
tryptophan transport at low and high concentrations 
in the presence and absence of different inhibitors and 
to determine tryptophan kinetic parameters at low and 
high concentration ranges. One cell line (n = 1) was 
used to study the tryptophan transport in the presence 
of tryptophan itself as a competitive inhibitor. The 
ethical committee at Karolinska Institute, Stockholm, 
Sweden approved the study.

Cell culture growth media, antibiotics, growth 
media supplements and fetal bovine serum (FBS) 
were obtained from Gibco Invitrogen cell culture 
(Sweden). 3H (5)-L-tryptophan with specific activity 
30 Ci/mmol was obtained from Larodan Fine 
Chemicals AB (Malmö, Sweden). D-Glucose was 
obtained from Ambresco (Ohio, USA) and phosphate 
buffered saline (PBS) was from The National 
Veterinary Institute (SVA) (Uppsala, Sweden). All 
chemicals, inhibitors and amino acids were pur-
chased from Sigma-Aldrich (Stockholm, Sweden). 
Cell culturing flasks and 24  multi-well trays were 
purchased from Costar Europe Ltd. Micro-well 
plates used for protein determination were purchased 
from Nunc (Roskilde, Denmark). Liquid scintilla-
tion cocktail (Optiphase Hi Safe-3) and the liquid 
scintillation counter (Winspectral 1414) were pur-
chased from PerkinElmer Life Sciences, USA. All 
amino acid solutions and inhibitor solutions were 
made with phosphate buffer saline solution (PBS) or 
with sodium free choline HEPES buffer and the pH 
was maintained between 7.35 and 7.4.

Methods
Cell culturing
Fibroblast cells were cultured in minimal essential 
medium containing 10% FBS, L-glutamine (2 mM/L), 
penicillin (100 mg/ml), streptomycin (100 mg/ml) and 
Amnio-MaxTM. Cells were maintained in a humidified 
atmosphere at a temperature of 37 °C with 5% CO2 
in air. Cells were grown in tissue culture flasks for 
confluence and were seeded into 2  cm2 multiwell 
plates to carry out the measurements. Cells in the 
multiplates were grown for approximately 5 days to 
attain confluence. Cell lines between the 4th and the 
21st passage (number of splitting) were used for the 
experiments.

Uptake studies
To functionally characterize the tryptophan 
transport at low concentration, fibroblasts cultured 
in multiwell plates were washed twice with PBS 
containing calcium and magnesium. The cells were 
then pre-incubated for one hour at 37°C in PBS 
with 1% D-glucose to deplete the cells of endog-
enous amino acids. The preincubation medium was 
removed and the fibroblast cells were incubated with 
uptake solution by using the cluster tray method23,40 
for 5  minutes at 37°C. The uptake solution con-
tained 50  nM of 3H (5)-L-tryptophan in combina-
tion with excess concentrations (50 µM) of different 
inhibitors (Table 1). The reaction was terminated by 
rapidly washing the cells with ice cold PBS twice. 
The cells were then lysed for 60 minutes by using 

Table 1. Inhibitors and their selectivity’s to the isoforms of both system-L and -A and other amino acid transporters and their 
effect on tryptophan uptake at low concentration (50 nM) in fibroblast cell lines from healthy controls (n = 3).

Inhibitors Selectivity of inhibitors 
(reference number)

Functional transport systems  
after inhibition

Tryptophan 
uptakea

MeAIB System-A(42) System-L + otherb 95.8 (7.1)NS

BCH System-L(30) System-A + otherb 23.4 (5.1)**
NEM LAT2, LAT3, LAT4(30,31) System-A and LAT1 + otherb 97.9 (12.7)NS

Tyrosine ATA2, System-L(39) y+L + otherb 18.2 (2.9)**
Phenylalanine System-L, b0+AT(39) System-A, y+L + otherb 16.5 (2.3)**
Tryptophan Tryptophan transporters(39) Otherb 10.6 (2.0)**
1MT Tryptophan transporters(39) Otherb 12.0 (1.4)**
D-Methionine LAT1(44) System-A, LAT2, LAT3, LAT4 + otherb 20.6 (3.4)**
Leucine ATA3, System-L, y+L(37) ATA1, ATA2, b0+AT + otherb 17.7 (2.8)**
Lysine ATA3, b0+AT, y+L(37) ATA1, ATA2, system-L + otherb 82.3 (27.3)NS

Notes: aThe values of tryptophan uptake are presented as percentages (mean (SD)) of tryptophan uptake, compared to the percentage of tryptophan 
uptake in the absence of inhibitors set to 100%; bOther: Undefined transport system or systems. **P , 0.005.
Abbreviations: NS, not significant; LAT1, LAT2, LAT3 and LAT4, isoforms of system-L; ATA2, isoform of system-A; MeAIB, methyl-aminoisobutyric acid; 
BCH, 2-aminobicyclo heptane-2-carboxylic acid; NEM, N-ethyl maleimide; 1MT, 1-methyl-L-tryptophan.
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0.5 M sodium hydroxide (NaOH). An aliquot from 
the cell lysate was mixed with scintillation cocktail 
and the radioactivity was assayed by liquid scintil-
lation counting. All assays were performed in trip-
licates. The uptake of tryptophan was correlated to 
total amount of protein in each well, determined by 
Bradford multi-well method41 using bovine serum 
albumin as standard.

To functionally characterize the tryptophan trans-
port at high concentration, fibroblasts were incubated 
with 0.5  mM of unlabelled L-tryptophan, 3H (5)-
L-tryptophan in the presence or absence of excess 
concentrations (2.5  mM) of different inhibitors or 
combinations of inhibitors (Table 2) using the same 
procedure as mentioned above.

Competitive inhibitors (transporter selective 
substrates) such as methyl-aminoisobutyric acid 
(MeAIB),42 2-aminobicyclo heptane-2-carboxylic 
acid (BCH),43 D-methionine,44 tryptophan, tyrosine, 
1-methyl-L-tryptophan (1MT),39 leucine,37 lysine,37 
N-ethylmaleimide (NEM)31,43 or combinations of the 
above in excess concentration (50  µM or 2.5  mM) 
were used to inhibit system A and/or L and/or their 
selective isoforms or other transporters in order to 
study the tryptophan transport ability of uninhibited 
amino acid transporters. An overview of single and 
combinations of inhibitors and their selectivities for 

different transport systems are described in Tables 1 
and 2.

Sodium dependency
To test the sodium dependency of tryptophan trans-
port at high (0.5 mM) and low (50 nM) concentra-
tions, confluent fibroblasts were incubated for 5 min 
with 0.5 mM of unlabelled L-tryptophan and 3H (5)-L-
tryptophan or with 50 nM of 3H (5)-L-tryptophan. The 
uptake solutions were prepared either with PBS or 
with sodium free choline HEPES buffer. Termination 
of uptake assay and analysis was performed as 
mentioned above.

Tryptophan Kinetics
Tryptophan kinetic parameters (Vmax and Km) at low 
and high concentrations were determined by incu-
bating the fibroblasts in the multi well plate for 
1 minute at 37 °C together with high concentration 
range (0.75 mM-2 mM) and low concentration range 
(5 µM–500 µM) of 3H (5)-L-tryptophan. Termination 
of uptake assay and analysis was performed as 
mentioned above.

Calculations
Uptake of tryptophan in nmol/min/mg protein or 
pmol/min/mg protein was obtained from the average 

Table 2. Inhibitors, combinations of inhibitors, their selectivities’ for the isoforms of system-L and -A amino acid transporters 
and their effect on tryptophan uptake at high concentration (0.5 mM) in fibroblast cell lines from healthy controls (n = 3).

Inhibitors Selectivity of inhibitors  
(reference number)

Functional transport systems 
after inhibition

Tryptophan 
uptakea

MeAIB System-A(42) System-L + otherb 98.0 (3.2)NS

BCH System-L(30) System-A + otherb 63.4 (6.9)*
NEM LAT2, LAT3, LAT4(30,31) System-A and LAT1 + otherb 78.9 (16.6)NS

D-methionine LAT1(44) System-A, LAT2, LAT3, LAT4 + 60.8 (7.6)*
otherb

Tryptophan Tryptophan transporters(39) Otherb 47.61

1MT Tryptophan transporters(39) Otherb 48.6 (7.3)*
MeAIB + BCH ATA2 + system-L Otherb 54.6 (7.9)*
MLT + MeAIB Tryptophan transporters + system-A Otherb 47.4 (4.7)**
MLT + BCH Tryptophan transporters + system-L Otherb 47.4 (5.6)**
MLT +  
D-Methionine Tryptophan transporters + LAT1 Otherb 45.9 (6.3)**
MLT + NEM Tryptophan transporters + LAT2, LAT3, LAT4 Otherb 29.2 (5.1)**

Notes: aThe values of tryptophan uptake in the presence of inhibitors are presented as percentage (mean (SD)) of tryptophan uptake, compared to the 
percentage of tryptophan uptake in the absence of inhibitors set to 100%; bOther: Undefined transport system or systems. 1One cell line (n = 1) was used 
to carry out the experiment. *P , 0.02, **P , 0.005. 
Abbreviations: NS, not significant; LAT1, LAT2, LAT3 and LAT4, isoforms of system-L; ATA2, isoform of system-A; MeAIB, methyl-aminoisobutyric acid; 
BCH, 2-aminobicyclo heptane-2-carboxylic acid; NEM, N-ethyl maleimide; 1MT, 1-methyl-L-tryptophan. 
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of counts per minute correlated to the amount of 
protein. The uptake values of tryptophan are presented 
as percentages (%) of tryptophan uptake, relative to 
tryptophan uptake in the absence of inhibitors set 
to 100%. For uptake assays, each experiment was 
performed in triplicates.

Kinetic parameters (Vmax and Km) of tryptophan 
uptake were determined according to Michaelis-
Menten’s equation and the double reciprocal method 
of Lineweaver and Burk. In short, the initial rates 
of uptake are plotted against the low and high 
concentration ranges to obtain the diffusion constant 
(Kd) as the slope of regression. The inverse values of 
uptake, corrected for Kd, are then fitted to a straight 
line against the inverted values of the concentrations. 
The straight line intercepting at the Y-axis gives the 
1/Vmax value and the X-axis intercept gives the -1/Km 
value. Vmax is the maximal transport capacity of the 
carrier-mediated process (nmol/min/mg protein) and 
Km is the affinity constant (the concentration at half-
saturation; µmol/l). Each experiment was performed 
in duplicates.

Statistical analysis
Kinetic parameters are presented as means with 
standard deviations (SD). The values of tryptophan 
uptake and inhibition in the presence and absence of 
inhibitors and sodium are presented as percentage (%) 
of tryptophan uptake. The percentage uptake values 
of tryptophan in the presence or absence of inhibitors, 
sodium and kinetic parameters of tryptophan at 
low and high concentration ranges were normally 
distributed when tested with the Shapiro-Wilk 
test. Paired samples t-test was used to compare the 
percentage uptake values of tryptophan at different 
conditions of inhibition to uptake of tryptophan 
without inhibition, to compare uptake values of 
tryptophan in the presence and absence of sodium and 
to compare the kinetic parameters of tryptophan at low 
and high concentration ranges. A P-value below 0.05 
was considered to denote statistical significance.

Results
Effect of sodium on uptake of tryptophan
The uptake of tryptophan at high concentration 
(0.5 mM) was lowered by 26.2% (P = 0.026) in the 
absence of Na+ ions in the uptake medium. Tryptophan 

uptake at low concentrations (50 nM) was lowered by 
71.0% (P = 0.035) in the absence of Na+ ions in the 
uptake medium (Fig. 1).

Tryptophan kinetics at low and high 
concentration ranges
The kinetic parameters for tryptophan transport in 
the low concentration range (5 µM–500 µM) resulted 
in a Vmax of 6.5 (1.9) nmol/min/mg protein and a Km 
of 17.1 (8.5)  µmol/L. The kinetic parameters for 
tryptophan transport in the high concentration range 
(0.75 mM–2 mM) was for Vmax 8.8 (2.2) nmol/min/mg 
protein and for Km 459.3 (138.7) µmol/L. Thus, the 
transport of tryptophan at low concentrations had 
a lower Vmax (P =  0.030) and around 25 fold higher 
affinity (P = 0.029) (Fig. 2) in comparison to tryptophan 
transport at high concentration range (Fig. 2 insert).

Effect of different inhibitors on uptake  
of low concentration of tryptophan (50 nM)
Uptake of tryptophan at the low concentration (50 nM) 
was studied in the presence of excess concentration 
(50 µM) of different inhibitors. Uptake of tryptophan 
in the presence of MeAIB was inhibited by only 4.2% 
(Table 1).

Uptake of tryptophan in the presence of BCH was 
23.4% and NEM inhibited around 2% of tryptophan 
uptake, which demonstrates a less specific role of the 
isoforms LAT2, LAT3, and LAT4  in the uptake of 
tryptophan at low concentrations (Table 1).

Tyrosine, a substrate for System-A (ATA2) and 
system-L (LAT1, LAT2) inhibited around 82% of 
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Figure 1. Uptake of tryptophan into fibroblast cell lines from three (n = 3) 
healthy controls in the presence and absence of sodium (Na+) ions. 
Absence of Na+ ions in the uptake medium resulted in a 26.2% decrease 
in uptake of tryptophan (0.5 mM) (P = 0.026) (A) and a 71.0% decrease 
in the uptake of tryptophan (50 nM) (P = 0.035) (B), when compared to 
uptake of tryptophan in the presence of Na+ ions in the uptake medium.
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tryptophan uptake. Phenylalanine a substrate for 
LAT1, LAT2 and system-b0+AT inhibited around 83.5% 
of tryptophan uptake (Table 1).

Around 90% of tryptophan uptake was inhibited 
by both tryptophan and 1MT, a tryptophan analogue. 
D-methionine inhibited tryptophan uptake by 80%, 
which indicates that the LAT1 isoform of system-L 
is the major (approximately 80%) transporter of 
tryptophan at low concentrations. Leucine, a substrate 
for ATA3, system-L and system-y+L inhibited around 
82.3% of tryptophan uptake (Table 1). When lysine, 
a substrate for ATA3, System-b0+AT and system- y+L, 
was used as an inhibitor it resulted in around 17.7% 
inhibition of tryptophan uptake. These results indicate 
that system-L and other undefined transporters 
together transport the major part of tryptophan at low 
concentrations.

Effect of different inhibitors  
on uptake of high concentration  
of tryptophan (0.5 mM)
Uptake of tryptophan at the high concentration 
(0.5  mM) was studied in the presence of excess 
concentrations (2.5  mM) of different inhibitors or 
combinations of inhibitors (Table 2).

MeAIB, a system-A inhibitor, did not result in any 
significant inhibition of tryptophan uptake. In the 
presence of BCH, a system-L inhibitor, 36.6% of 
tryptophan uptake was inhibited, indicating that 63.4% 
of tryptophan at high concentration is transported by 

transport systems other than system-L. When LAT1, 
one of the isoforms of system-L, was inhibited by 
D-methionine it resulted in 39.2% inhibition of 
tryptophan uptake. When LAT2, LAT3 and LAT4, 
isoforms of systems-L, where inhibited by NEM, it 
resulted in around 21.1% inhibition of tryptophan 
uptake (Table 2).

When using 1MT as an inhibitor it resulted in an 
inhibition of tryptophan uptake by 51.4%. To check 
if 1MT has the same inhibitory effect as tryptophan, 
tryptophan was used as an inhibitor at a concentration of 
2.5 mM to inhibit 3H (5)-L-tryptophan uptake (0.5 mM) 
and it resulted in an inhibition of 52.4% of tryptophan 
uptake (Table 2).

Effect of combinations of inhibitors  
on uptake of high concentration  
of tryptophan (0.5 mM)
MeAIB and BCH together inhibited the tryptophan 
uptake by 45.4%, indicating that 54.6% of tryptophan 
is transported through a system other than system-A 
and system-L (Table 2).

When using 1MT and MeAIB in combination it 
resulted in 52.6% inhibition of tryptophan uptake 
and when 1MT and BCH were used in combination 
52.6% of tryptophan uptake was inhibited. This also 
indicates that approximately 50% of tryptophan is 
transported through a system other than system-A and 
system-L (Table 2).

1MT and D-methionine together inhibited around 
54.1% of tryptophan uptake, indicating that LAT2, 
LAT3, LAT4 and a system other than system-A and 
system-L (LAT1) is responsible for around 45.9% of 
tryptophan uptake (Table 2).

1MT and NEM together inhibited around 70.8% 
of tryptophan uptake, indicating that the system other 
than system-A and system-L and LAT1 accounts for 
29.2% of tryptophan uptake. These results also show 
that NEM slightly inhibits other tryptophan specific 
systems than system-A and system-L (Table 2).

Discussion
Functional characterization of tryptophan transport 
at both low and high concentrations was carried out 
in the present study. It was demonstrated that the 
transport of tryptophan differed at low vs. high sub-
strate concentrations and that low and high tryptophan 
concentrations differed regarding Na+ dependency, 

0.250

0.800

0.600

0.400

0.200

0.000

0.200

0.150

0.100

0.050

0.000
−4.000

−100.000 100.000 200.000 300.0000.000

−2.000 0.000 2.000
1/

y

1/
y

1/s

1/s

Figure 2. Division of kinetic analysis of the tryptophan uptake at high 
(0.75–2 mM) and low (5–500 µM) concentration ranges. Initial rates of 
uptake corrected for the diffusion constant Y (nmol/min/mg protein) is 
plotted against low and high (insert) substrate concentration S (mM) 
according to the double reciprocal method of Lineweaver and Burk. Each 
point represents the means of six determinations of three cell lines.

http://www.la-press.com


Tryptophan transport in human fibroblast cells

International Journal of Tryptophan Research 2011:4	 25

kinetic parameters, and effects on tryptophan uptake 
of different transporter inhibitors.

Uptake of tryptophan at high concentration 
(0.5  mM) is mostly Na+ independent, while 
tryptophan uptake at low concentration (50  nM) is 
mainly Na+ dependent. Absence of Na+ ions in the 
uptake solution resulted in around 26% inhibition 
of tryptophan uptake at the high concentration 
(0.5 mM) and a 71% inhibition of tryptophan uptake 
at the low concentration (50 nM). These results are 
in accordance with the study by Groth et al, 1972,38 
which demonstrated that tryptophan uptake in the 
absence of Na+ is inhibited at low concentrations but 
not at high concentrations.

The kinetic parameters of tryptophan differed 
between low and high concentrations.

Tryptophan transport at the low concentration 
range (5  µM–500  µM) has a low Vmax and higher 
affinity indicated by a low Km value, while tryp-
tophan transport at the high concentration range 
(0.75 mM–2 mM) has a higher Vmax and lower affinity 
indicated by a higher Km value. This observation is 
also in accordance with Groth et al, 1972,38 and this 
indicates the involvement of more than one trans-
porter in the uptake of tryptophan.

Uptake of tryptophan at low concentration (50 nM) 
was mainly through the system-L, since the system-L 
inhibitor BCH inhibited around 76.6% of tryptophan 
uptake. Confirmation of this finding was demonstrated 
by obtaining approximately the same percentage 
of inhibition of tryptophan uptake in the presence 
of tyrosine, phenylalanine and leucine, which also 
are inhibitors for system-L. The LAT1 isoform of 
system-L is the major transporter of tryptophan at 
low concentration, as demonstrated when using 
D-methionine as an inhibitor, which resulted in 
around 80% inhibition of tryptophan uptake. In the 
presence of MeAIB, the inhibitor for system-A, and 
NEM, the inhibitor for LAT2, LAT3 and LAT4, 
almost no inhibition of the uptake of tryptophan at low 
concentration was shown, which indicates minor role 
of these transporters in the uptake of tryptophan at low 
concentrations. Tyrosine, which is mainly transported 
by the LAT1 isoform and to a smaller extent by the 
ATA2 isoform,33 when used as an inhibitor it resulted in 
around 81% inhibition of tryptophan uptake showing 
that tryptophan transport at low concentrations may 
be in similar fashion as tyrosine transport.

The uptake of tryptophan at low concentration is 
with high affinity, is mainly Na+ dependent and has 
different inhibitory effects of the inhibitors, when 
compared to tryptophan uptake at high concentration. 
This may indicate the presence of a hitherto uniden-
tified transporter functioning at low concentrations 
of tryptophan. Alternatively, it could be a variant 
of a known transporter that has different functional 
properties due to an alteration in the structure of the 
transporter protein. As an example, the functional 
properties of system-L are known to alter due to 
different light-chain subunits.39,45

Tryptophan uptake at high concentration (0.5 mM) 
through system-L was around 36.6%. This is 
demonstrated by using BCH as system-L selective 
inhibitor. System-A has no specific role in the 
uptake of tryptophan at high concentration, which 
is demonstrated by using MeAIB as a system-A 
inhibitor. The role of the isoforms (LAT1, LAT2, 
LAT3, and LAT4) of system-L in uptake of tryptophan 
was also studied in the present study by using the 
inhibitors of the isoforms. D-methionine used as an 
inhibitor for LAT1 isoform showed that the uptake of 
tryptophan (at high concentration) through LAT1 was 
around 40%. The role of LAT2, LAT3, and LAT4 in 
the uptake of tryptophan (at high concentration) was 
around 21%, which was demonstrated by using NEM 
as an inhibitor for LAT2, LAT3, and LAT4 isoforms. 
The percentage of tryptophan uptake by individual 
isoforms of system-L are obtained when each isoform 
is inhibited by a inhibitor, but when system-L is 
working in the absence of inhibitors the isoforms of 
system-L could be working in parallel with different 
transport capacities.

When using either 1MT, which is a close structural 
analogue of tryptophan, or tryptophan as inhibitors at 
a concentration of 2.5 mM, it resulted in only about 
48.6% uptake of tryptophan (at high concentration). 
This shows that the rest of tryptophan uptake is 
probably through a transport system that transports 
higher concentrations of tryptophan ie, more than 
2.5 mM. This transport system seems to be different 
from system-A and system-L as it was not inhibited 
completely by either MeAIB or BCH. This transport 
system is probably a Na+ independent system since 
uptake of tryptophan at high concentration was 
found to be mainly Na+ independent. The reason for 
tryptophan and 1MT not being able to completely 
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inhibit the uptake of tryptophan could be that the 
transport system that transports tryptophan at high 
concentrations is not totally saturated at a competitive 
inhibitor concentration of 2.5 mM.

The results of the present study indicate that the 
uptake of tryptophan into human fibroblasts is sub-
served by different transport systems at different 
substrate concentrations. Tryptophan uptake at 
different concentrations is different in terms of Na+ 
dependency, kinetic parameters, substrate selectivity, 
and inhibitory effects of different competitive 
inhibitors or transporter selective inhibitors. Moreover, 
the present findings show that tryptophan transport 
through system-L is mainly facilitated through the 
LAT1 isoform, at both low and high concentrations 
of tryptophan. However, these observations are only 
based on functional activity of the transporters and 
not based on data at the protein level. Hence, further 
biochemical studies with more selective or specific 
transporter inhibitors are necessary to understand the 
transport of tryptophan across cell membranes, but 
such inhibitors are presently not available.
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