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1. Introduction
In a 2009 special issue of Biochimica et Biophysica Acta 
dedicated to Dr Eric Berger, a colleague explained how 
his interest in glycosylation defects in human diseases 
began and how Berger, a medical doctor, had become a 
glycobiologist with the identification of the first disease 
caused by a glycosylation disorder in 1978 (Hennet, 
2009). In the following years, the description of many 
human diseases related to glycosylation defects gradually 
increased. Altered N-glycosylation patterns of proteins 
have been described with increasing age and in several 
diseases including cancer (Ruhaak et al., 2011).

The cell surface cover, the glycocalyx, is composed 
of glycan chains (oligosaccharides or polysaccharides), 
parts of glycoconjugates found within the structure 
of the plasma membrane and the extracellular matrix 
(ECM). Glycoconjugates are hybrid molecules including 
glycoproteins, proteoglycans, glycosphingolipids, and 
glycophosphatidyl inositol anchors (Figure 1). Light and 

heavily glycosylated plasma membrane glycoproteins have 
different functions. They are the molecules indicating 
differentiation (Feizi, 1981, 1985, 1987, 1991), blood 
groups in ABO and Rh systems (Eyers et al., 1994; 
Fredriksson et al., 2010), normal and cancer stem cells 
(Yin et al., 1997; Irollo and Pirozzi, 2013), and tumor-
associated antigens (Huang et al., 2013; Saldova et 
al., 2013b). Membrane receptors for growth factors 
(Matsumoto et al., 2008; Wu et al., 2013; Tan et al., 2014) 
and for Delta/Serrata (Takeuchi and Haltiwanger, 2014) 
bear glycans affecting the sensitivity of the cells to their 
molecular targets. Membrane transporters such as Na+-K-
ATPase (Tokhtaeva et al., 2010), the ATP-binding cassette 
(Hollenstein et al., 2007), glucose transporters (Haga 
et al., 2011), and transmembrane glycoproteins such as 
cadherin and integrin, playing an important role in cell 
adhesion and signaling (Zhao et al., 2008; Bassagañas et 
al., 2014), and a transmembrane serine protease involved 
in epithelial homeostasis in both health and disease 
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situations (Gray et al., 2014) are all glycoproteins. Glycan 
parts of the cell-surface glycoconjugates have a function 
in self- and nonself-discrimination (Karaçalı et al., 2000; 
Bayro and Deveci, 2006; Eratak and Karaçalı, 2006; Özkan 
and Karaçalı, 2006). The glycan structures also decorate 
signal and carrier molecules in serum. Follicle-stimulating 
hormone (Lombardi et al., 2013), luteinizing hormone 
(Mi et al., 2014), sex hormone-binding globulin (Sumer-
Bayraktar et al., 2012), and coagulant Factor VIII (Canis et 
al., 2012) are some such examples.

The cell-surface glycoproteins are responsible for many 
kinds of interactions between cells and their immediate 
environments. Free or membrane-associated glycan-
binding proteins (lectins, galectins, siglecs, and mannose-
binding free and membrane-attached receptors) play 
critical roles in these interactions. Events mediated by these 
interactions are recognition, antirecognition, adhesion, 
signal transduction, endocytosis, vesicle releasing, and 
migration between the organelles and the cells, on both 
molecular and cellular levels. Characteristic surface 
glycosylation patterns, glycotypes, providing a molecular 
signature, serve to discriminate the differentiated cells 
from each other. 

Glycosylation changes affecting the disruption of 
normal cellular interactions play an important role in 
determining cell fate during embryonic and pathological 
development (Karaçalı, 2003; Varki et al., 2009; Dodla et al., 
2012; Nairn et al., 2012). The alterations occurring on the 
glycans of cell-surface glycoconjugates, such as signaling 
and attaching and anchoring molecules, receptors, ligands, 
enzymes, differentiation and cancer-associated antigens, 
antibodies, and membrane transporters, dramatically 
change the normal cellular interactions between cells 
and their microenvironments. A significant relationship 
between the alteration of cell-surface glycan profiles and 
cancer progress has been described (Borzym-Kluczyk et 
al., 2012; Saldova et al., 2013a; Zhang et al., 2014). The 
modifications of cell-surface glycosylation are responsible 
for the behavioral changes of tumor cells, including 
invasion and metastasis (Li et al., 2010; Kang et al., 2011; 
Taniguchi and Korekane, 2011; Tian and Zhang, 2013; 
Zhang et al., 2013; Christiansen et al., 2014; Häuselmann 
and Borsig, 2014). 

During the last few years, glycosylation abnormalities 
in genetic diseases have been highlighted as ‘congenital 
disorders of glycosylation’ (Cylwik et al., 2013a, 2013b; 

Figure 1. Cell surface glycoconjugates, modified from Varki et al. (2009) with permission.
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Jaeken, 2013; Rosnoblet et al., 2013). Distribution of 
significant glycan structures on tumor cells makes the 
carbohydrates attractive targets as cancer biomarkers 
(Meany and Chan, 2011; Tuccillo et al., 2014) for the new 
and much publicized objective of personalized therapy 
(Contessa et al., 2008; Padler-Karavani, 2014) as well as for 
the development of anticancer vaccines (Hakomori, 2001; 
Li et al., 2010) and drugs (Kok and Sietsma, 2004; Gerber-
Lemaire and Juillerat-Jeanneret, 2010).

Alterations in glycosylation occur in different parts (core 
and/or antennae) of glycan structures of glycoconjugates 
of tumor cells, and in various forms (Brooks et al., 2002; 
Varki et al., 2009; Karaçalı et al., 2011). In general, an 
increased number of branches on the core structures and 
their extensions by addition of new monosaccharides cause 
the formation of heavily glycosylated glycoconjugates. The 
addition of new epitopes on proximal and distal parts of 
oligosaccharide chains and the alterations in linkage types 
at terminal monosaccharides alter the adhesive interactions 
of the cells. These alterations occur on the glycans of 
N-linked glycoproteins, O-linked glycoproteins (mucins 
and proteoglycans), and glycosphingolipids. In this review 
we focus particularly on the branching and elongation 
of oligosaccharide chains occurring in the common core 

structure of N-glycans on cell-surface glycoconjugates in 
cancer cells. These changes are responsible for the increase 
in size and the occurrence of metastatic phenotypes. 
Responsible enzymes and their key targets associated with 
cancer are also addressed. 

2. Alterations on the common core of N-glycans
2.1. Branching on the common core structure
Dolichol-linked precursors, common precursors of 
N-glycans consisting of 14 glycan units (2GlcNAc, 9Man, 
3Glc), are formed at the initial synthesis stage of all N-linked 
glycoproteins (Brooks et al., 2002; Varki et al., 2009; Taylor 
and Drickamer, 2011). First the N-acetylglucosamine 
(GlcNAc) sugar of the precursor is attached to the amide 
nitrogen of the asparagine residue in the β-glucosidic 
linkage (GlcNAcβ1-Asn) by the oligosaccharyltransferase. 
After transferring the precursor to the growing peptide, 
maturation reactions of the glycans start in the lumen of 
the rough endoplasmic reticulum and continue in Golgi 
compartments. Glycosidases and glycosyltransferases 
successively modify the structure of the precursor. The 
differential actions of these enzymes cause the formation 
of high-mannose and hybrid and complex types of 
N-linked oligosaccharides (Figure 2). All of these types 

Figure 2. The precursor and the basic types of N-glycans. The common core structure is shaded.
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have a common core structure consisting of 3 mannose 
(Man) residues and 2 GlcNAc residues.

Appropriate variations occurring on the glycans 
direct the protein folding, sorting, correct targeting, half-
life, and a number of molecular interactions (adhesion, 
receptor-ligand binding, and activation) of glycoproteins. 
Characteristic combinations of these glycan types appear 
on the surfaces of each differentiated cell. Differentiated 
healthy cells, together with a few 3- and 4-branched 
glycans, contain most abundantly 2-branched complex 
structures on their N-glycoproteins.

In tumor cells, increased branching on the core 
of N-glycans is a typical feature, except for truncated 
expression of oligosaccharides (Brooks et al., 2002; Varki et 
al., 2009). Two Man residues are attached to the first Man 
residue by 2 different linkages (α1-6 and α1-3), forming 
the initiation of 2 basic arms on the core structure. Specific 
N-acetylglucosaminyltransferases (GlcNAc-Ts, GnTs) 
catalyze the transfer of GlcNAc sugar from the active donor, 
UDP-GlcNAc, to specific positions on the core mannoses 
of N-glycans via a specific glycosidic linkage. Three, 4, and 
more branches can be started by the activity of a particular 
GnT on the core structure (Chen et al., 2009). Each of the 
attached GlcNAc sugars provides a new substrate for the 
succeeding glycosylation and their number determines the 
number of branches or antennaries originating from the 
common core structure on hybrid and complex N-glycans. 
The enzymes catalyzing glycosidic linkages at the starting 
points of the new branches are seen in Figure 3. 

The enzymes responsible for the addition of the 
new branches and for the increase in core size are well 
characterized by several GnTs and a fucosyltransferase 
(FUT8). In vertebrates, 7 different GnTs (productions of 
Mgat genes), indicated as GnT-I, -II, -III, -IV, -V, -VI, and 
-IX (Figure 3), have been determined to be involved in the 
initiation of the branching of the complex N-glycan core 
structure (Taniguchi and Korekane, 2011; Takamatsu et 
al., 2013).

Galactosyltransferases and sialyltransferases are the 
other important enzymes. One (Taylor and Drickamer, 
2011) or more (Antonopoulos et al., 2012) branches are 
extended by the addition of galactose and GlcNAc residues, 
which produce the polylactosamine (poly-LacNAc) 
extensions. Correlations between the originating branches 
of poly-LacNAcs and regulation of tumor development, 
invasion, metastasis, aggressiveness, and survival have 
been investigated (Seto et al., 2013). Sialic acid attached 
like a cap at the nonreducing end of the oligosaccharide 
chains prevents further elongation of the chains.
2.1.1. N-Acetylglucosaminyltransferases (GlcNAcTs, GnTs)
Sequential activity rules for the GnTs that initiate the 
branching of the complex N-glycan core structure were 
established by Brockhausen et al. (1988). GnT-I and GnT-

II are involved in initiating the synthesis of the various 
branches of complex N-glycans. 

GnT-I, encoded by the Mgat1 gene (Kumar and 
Stanley, 1989), acts before all the other GnTs. GnT-I is 
required for the conversion from the high-mannose type 
(with 5 Man residues) to the hybrid and complex types 
(with 3 Man residues) of N-glycans (Yip et al., 1997; Chen 
et al., 2002; Taniguchi and Korekane, 2011). It catalyzes the 
formation of β1-2 linkage by transferring a GlcNAc sugar 
to the Man residue on the α1-3 arm of the core structure 
with 5 mannoses (Figure 4). Two Man residues on the α1-6 
arm are removed by catalytic activity of α-mannosidase II. 
This structure is the substrate for the GnT-II and GnT-III 
enzymes. Mutation on the corresponding gene, Mgat1, 
causes embryonic lethality (Loffe and Stanley, 1994; 
D’Agostaro et al., 1995).

GnT-II controls the conversion of hybrid type to 
complex type structures (D’Agostaro et al., 1995; Ye and 
Marth, 2004). GnT-II recognizes the structure formed by 
the catalytic activity of α-mannosidase II and catalyzes the 
β1-2 glycosidic linkage by adding a GlcNAc to the α1-6 
arm on the core; a 2-branched core structure is formed 
(Figure 4). Activity of GnT-II is prerequisite (Zhang et 
al., 2000) for the GnT-IV, GnT-V, and GnT-IX activities 
that are responsible for cancer progression. Mutation 
on corresponding gene Mgat2 causes a number of 
abnormalities in early stages of development (Wang et al., 
2001).

GnT-III (the corresponding gene is Mgat3) catalyzes 
the formation of β1-4 glycosidic linkage by transferring 
a bisecting GlcNAc to the first Man residue on the core 
(Figures 3 and 4). The bisecting GlcNAc is found in 
various hybrid and complex N-glycans. The presence of 
a bisecting GlcNAc prevents subsequent processing and 
elongation of N-glycans, inhibiting the catalytic activity of 
the GnT-II, GnT-IV, GnT-V, and FUT8 enzymes that are 
responsible for branching of the core structure in vitro 
(Brockhausen et al., 1988; Isaji et al., 2010; Taniguchi 
and Korekane, 2011; Miwa et al., 2012; Xu et al., 2012). 
However, a contrary suggestion is also present. The 
glycomic profiles of several N-glycans having a bisecting 
GlcNAc revealed that they carry lactosamine (LacNAc) 
repeats and also a core fucose (Fuc) sugar (North et al., 
2010). The presence of the bisecting GlcNAc on the cell 
surface glycoproteins, such as E-cadherin and integrins, 
probably alters N-glycan conformation, which affects their 
interaction with carbohydrate-binding proteins, such as 
galectins and siglecs. The bisecting GlcNAc of N-glycans 
on adhesion and signal molecules regulates cellular 
signaling and tumor progression by modulating N-glycan/
galectin interactions (Miwa et al., 2012) 

Overexpression of GnT-III increases the bisected 
N-glycans but reduces the β1-6 GlcNAc branching 
structures on target glycoproteins. Knockdown of 
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endogenous GnT-III expression results in increased cell 
migration (Taniguchi and Korekane, 2011). As a result, the 
enzyme suppresses the integrin-mediated cell motility and 
has an inhibitory effect on cancer metastasis (Kariya et al., 

2010; Taniguchi and Korekane, 2011; Xu et al., 2012). The 
Mgat3 gene has a tissue-specific expression pattern. High 
expression levels appear particularly in mouse brain and 
kidney (Miwa et al., 2012)

 Substrate for

 Substrate for

 Substrate for

 Substrate for

 Substrate for

 Substrate for

 Substrate for

 2

Figure 3. The branches on the common core structure of N-glycans. The glycosyltransferases that 
initiate formation of the branches and the known branches that bear poly-LacNAcs, and related 
enzymes, are indicated. Modified from Taniguchi and Korekane (2011) with permission.
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GnT-IV (the corresponding gene is Mgat4) catalyzes 
the formation of β1-4 glycosidic linkage by transferring a 
GlcNAc sugar to the α1-3 Man arm of the N-glycan core. 
The enzyme acts on biantennary complex-type N-glycan 
and forms the 3-antennary core structure (Figures 3 
and 4). The third branch extends by addition of LacNAc 
repeats, poly-LacNAcs that bear galectin-binding epitopes 
(Takamatsu et al., 2010, 2013; Taniguchi and Korekane, 
2011). Secreted galectins are bound to β-galactoside 
sugar on poly-LacNAcs and cross-link glycoconjugates 
on the cell surface and in the ECM by producing a lattice 
formation. The galectin-glycoprotein lattice structure 
controls glycoprotein activity.

GnT-IV has 2 isoenzymes, GnT-IVa and GnT-IVb, and 
they both contribute to the galectin-mediated glycoprotein 
clustering on the cell surface (Takamatsu et al., 2013). In 
humans, GnT-IV isoenzymes have the same specificities 
but different affinities for sugar donors and acceptors. 
GnT-IVa has higher affinities and is more active than GnT-
IVb (Oguri et al., 2006). The results obtained from GnT-
IVb-deficient and both GnT-IVa- and GnT-IVb-deficient 
mice showed that GnT-IVb is expressed in various 
organs, whereas GnT-IVa expression is restricted to the 
gastrointestinal tissues (Takamatsu et al., 2010). GnT-IVa 
is expressed in malignant and premalignant trophoblastic 
cells but not in normal or benign cells (Niimi et al., 2012). 
On the contrary, in pancreatic cancer, the increased 
expression of GnT-IVb was found in tumor tissue, whereas 
GnT-IVa expression was found in surrounding normal 
tissues (Ide et al., 2006).

β1-Integrin and a cancer-associated antigen, 
extracellular matrix metalloproteinase (MMP) inducer 
CD147, are the target proteins of the enzyme GnT-

IVa. Overexpression of GnT-IVa causes an increase in 
branching of complex N-glycans on CD147, leading 
to enhanced cell migration and metastatic capabilities. 
However, downregulation of GnT-IVa reduces the 
branching and decreases cell migration and metastasis 
(Fan et al., 2012). In GnT-IVb-deficient mice, total 
enzymatic activity is preserved at a level comparable to the 
wild type due to upregulated Mgat4a expression (Niimi et 
al., 2012). Transcription factor Ets-1 is responsible for this 
compensation. Ets-1 evolves from GnT-IVb deficiency and 
induces the expression of GnT-IVa and GnT-V enzymes 
(Niimi et al., 2012).

GnT-V (the corresponding gene is Mgat5) is an 
enzyme that has dual functions as a membrane-bound 
glycosyltransferase and a soluble angiogenic factor (Saito 
et al., 2002; Nakahara et al., 2006). The membrane-bound 
form of GnT-V catalyzes the formation of β1-6 linkage 
by transferring a GlcNAc sugar to the α1-6 arm of the 
N-glycan core (Figures 3 and 4). This added GlcNAc residue 
provides an initial substrate to form the poly-LacNAc 
extension. Expression of poly-LacNAcs on the N-glycan 
core, which is often modified with Fuc and sulfate residues 
(Mitsui et al., 2012) on the surfaces of many cancer cells, 
indicates their association with cellular differentiation and 
oncogenesis (Hua et al., 2012; Gao et al., 2014). 

A close relationship between the metastatic potential 
of tumor cells and formation of poly-LacNAc extensions 
has been reported (Chakraborty and Pawelek, 2003; Pinho 
et al., 2013; Pocheć et al., 2013; Seto et al., 2013; Tanaka et 
al., 2013). The degree of the invasiveness and metastatic 
potential appears related to the amounts of poly-LacNAc 
chains. Comparison of the common glycoproteins from 
primary and metastatic melanoma cell lines shows that 

Figure 4. Branching on the common core structure of N-glycans. Sequential activities of responsible GnTs. Modified from Taniguchi 
and Korekane (2011) with permission.
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the metastatic melanoma cells bear larger amounts of 
poly-LacNAc chains than the primary cells (Kinoshita et 
al., 2014). Observation of an inhibition in invasion and 
metastasis events following downregulation of GnT-V in 
BGC 829 cells (Huang et al., 2014) supports that suggestion. 
There are several supporting reports indicating that the 
gene of GnT-V, Mgat5, is correlated with metastasis. Tumor 
growth and metastasis were suppressed by knockout of 
Mgat5 in animal studies (Demetriou et al., 1995; Yao et al., 
1999; Granovsky et al., 2000; Yamamoto et al., 2000; Ihara 
et al., 2002; Saito et al., 2002; Tsui et al., 2008). 

GnT-IX was recently designated (Inamori et al., 2003) 
as GnT-Vb (Kaneko et al., 2003) enzyme forming a β1-6 
branched structure (Figures 3 and 4) on the α1-3 arm of 
the N-glycan core (Taniguchi and Korekane, 2011). In the 
brain, GnT-IX catalyzes the branched form of O-mannosyl 
glycan structures, as well (Kanekiyo et al., 2013). Brain-
specific gene expression of this enzyme is regulated by 
epigenetic histone modification (Kizuka et al., 2011, 2014; 
Korekane et al., 2013).
2.1.2. α1,6-Fucosyltransferase (FUT8)
FUT8 (α1,6-fucosyltransferase) catalyzes the transfer of 
a Fuc sugar from the active sugar donor, GDP-fucose, to 
the first GlcNac residue linked to the asparagine residue 
of hybrid and complex N-glycan cores. FUT8 activity 
and increased core fucosylation play an important role 
in cancer development (Bernardi et al., 2013). In general, 
FUT8 activity is higher in tumor tissue than in healthy 
tissue and is related to sex, type of growth, and tumor stage 
(Muinelo-Romay et al., 2008). Overexpressed FUT8 and 
increased core fucose were observed in several malignant 
human cancers, such as in the serum of prostate (Saldova 
et al., 2011) and ovarian (Saldova et al., 2013a) cancer 
cells in cell lines of nonsmall cell lung cancer (Chen et al., 
2013), and in tissues of colorectal (Muinelo-Romay et al., 
2008) and hepatocellular (Li et al., 2013; Yin et al., 2014) 
carcinomas. However, increased levels of tetraantennary 
glycan without core fucosylation were also observed in 
hepatocellular carcinoma (Mehta et al., 2012).

Knockdown FUT8 in aggressive lung cancer cell 
lines significantly inhibits their malignant behaviors 
(Chen et al., 2013). In contrast, the level of FUT8 protein 
was decreased in gastric tumor tissues compared to the 
adjacent nontumor tissues (Zhao et al., 2014). Decreased 
core fucosylation in both tissue and serum from gastric 
cancer patients may result from the decreased expression 
of FUT8 (Liu et al., 2013). The results of glycoproteomic 
and microarray analyses show that core fucose regulates 
the function of proteins associated with malignancy. Cell-
surface antigens, antibodies, receptors, sugar transporters 
on Golgi membranes, and adhesion molecules (E-cadherin 
and integrins) are modified by FUT8 (Chen et al., 2013). 
Core fucosylation of several growth factors has been 

demonstrated to be required for signal transduction and 
alters the sensitivity for ligands. Core fucosylation of 
N-glycans of epidermal growth factor receptor (EGFR) is 
necessary for the binding of epidermal growth factor (EGF) 
(Wang et al., 2006). FUT8 promotes EGFR dimerization 
and phosphorylation (Liu et al., 2011) as well as cellular 
growth (Matsumoto et al., 2008). Knockdown FUT8 leads 
to a decrease in the growth response. Decreased core 
fucosylation of EGFR causes a reduced activation of EGF-
induced phosphorylation of the EGFR in gastric cancer 
(Zhao et al., 2014). Core fucose is required for the ligand 
binding affinity and function of TGF-β1 receptor (Wang et 
al., 2005; Venkatachalam and Weinberg, 2013).

Adhesion molecules, E-cadherin and integrins, play 
an important role in cancer development and progression. 
FUT8 regulates E-cadherin-mediated cell adhesion and 
is expressed in metastatic lung cancer cell (Geng et al., 
2004). The increase of core fucosylation of E-cadherin 
leads to strengthened cell–cell adhesion (Osumi et al., 
2009). Core fucosylation is essential for integrin-mediated 
cell migration and signal transduction (Zhao et al., 2008). 
FUT8 plays an important role in embryonic development; 
70% of FUT8-deficient [FUT8 (-/-)] mice that lack the core 
fucose structure die within 3 days after birth. The others 
may survive for several weeks, but they show growth 
retardation. In embryonic fibroblasts from FUT8 (-/-) 
mice, the levels of bisecting GlcNAc on β1-integrin and 
N-cadherin were increased. The responsible enzyme, GnT-
III, that inhibits cell migration in metastasis is regulated by 
FUT8 deficiency in vivo (Kurimoto et al., 2014). 

All these alterations, with the increase in size and 
structural complexity of the N-glycan core, cause 
functional changes of the glycans on the surface cover of 
the cells. In general, the degree of branching is very closely 
related to tumorigenesis. The increase in N-glycan core 
branching and the formation of long linear or branched 
poly-LacNAcs cause tumor progression. Reduced N-glycan 
branching degree retards tumor progression (Mehta et 
al., 2012). Briefly, GnT-I and GnT-II are prerequisites in 
the biosynthesis of highly branched N-glycans. GnT-III 
prevents cancer of the cells. GnT-IV, GnT-V, GnT-IX, 
and FUT8 are responsible for tumor progression and 
metastasis.
2.2. Elongation of the oligosaccharide chains, poly-
LacNAcs, and galectin-3
Carbohydrate chains on all types of glycoconjugates carry 
the repeats of N-acetyllactosamine (Gal-GlcNAc, LacNAc), 
poly-LacNAc extensions. Branching and composition 
of N-glycan cores affect the extent of poly-LacNAc 
chains. They are found more often in tetraantennary and 
triantennary N-glycans. The branch with β1-6 glycosidic 
linkage catalyzed by GnT-V on the α1-6 arm and 2 branches 
catalyzed by GnT-IX (GnT-Vb, isoenzyme of GnT-V) and 
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by GnT-IV on the α1-3 arm are available to carry poly-
LacNAc chains (Figure 3). According to the prevalent 
hypothesis, the poly-LacNAc extension is attached to one 
of the specific branches on the common trimannosyl core 
structure. However, the poly-LacNAc chains were equally 
distributed on all branches and not selectively enriched 
on a specific N-glycan branch in activated cytotoxic T 
lymphocytes after antigenic stimulation (Antonopoulos et 
al., 2012). Two kinds of poly-LacNAc chains are known, 
indicated as type I and type II according to linkage types. 
Type II is the most common chain form and the linkages 
are Galβ1-4GlcNAc and GlcNAcβ1-3Gal in LacNac 
repeats. In type I, the linkages are Galβ1-3GlcNAc and 
GlcNAcβ1-4Gal in LacNAc repeats.

Linear and branched poly-LacNAcs form i-histo and 
I-blood group antigens, respectively (Twu et al., 2010) 
(Figure 5). These are present on the surfaces of red blood 
cells and other somatic cells. Poly-LacNAc structures are 
important ligands for galectin-mediated cell adhesion to 
ECM proteins, such as laminin and fibronectin (Sauerzapfe 
et al., 2009). Extended and branched poly-LacNAcs cause 
the formation of multiantennary complex type N-glycans 
of enormous size. The enzyme required for branching is 
β1-6 branching glycosyltransferase (IGnT-V, GCNT2). 
Correlations between the originating branches of poly-
LacNAc and regulation of tumor development, invasion, 
metastasis, aggressiveness, and survival have been 
investigated (Seto et al., 2013). The increase in branching 
and in extension of poly-LacNAc is associated with tumor 
cell metastasis (Nabi and Dennis, 1998; Ishida et al., 
2005; Hua et al., 2012; Peng et al., 2012; Liu et al., 2014). 
In contrast, reduced degrees of branching and extension 
of poly-LacNAc chains retard tumor progression and 
metastasis (Togayachi et al., 2010; Liu et al., 2011, 2014; 
Shen et al., 2011).

Required enzymes for the formation of poly-LacNAc 
are β1,4-galactosyltransferases (β4GalT) and β1,3-N-
acetylglucosaminyltransferase (β3GnT). The length of 
poly-LacNAc extensions changes depending on the 

repeating action of these 2 transferases (Nabi and Dennis, 
1998). β4GalT is present in a unique form in all cells. 
However, the number of known β3GnT genes is 8 in 
mice and they are expressed in a tissue-specific manner 
(Henion and Schwarting, 2014). Each of the 8 determined 
β3Gn-Ts enzymes (Seko and Yamashita, 2005; Peng et 
al., 2012; Henion and Schwarting, 2014) synthesizes a 
different glycan type. β3Gn-T8 (homolog to β3Gn-T2) 
(Togayachi et al., 2010) has a central role in carcinogenesis 
and catalyzes the formation of poly-LacNAc on β1-6 
branches of N-glycans (Hoja-Łukowicz et al., 2013; Liu et 
al., 2014; Ni et al., 2014). β3Gn-T2 regulates the expression 
of extended poly-LacNAc chains that are essential for 
axon guidance and neuronal survival in the olfactory 
epithelium (Henion and Schwarting, 2014). β3Gn-T8 and 
β3Gn-T2 have the same specificity to act efficiently on 
tetraantennary and triantennary N-glycan cores (Seko and 
Yamashita, 2005). The mixing of β3Gn-T8 and β3Gn-T2 
in vitro forms a heterocomplex and its enzymatic activity 
is greatly enhanced compared to the individual enzymes 
(Seko and Yamashita, 2005). 

The branched and extended structure of poly-LacNAc 
chains is responsible for lattice formation with galectins. 
The galectin-glycoprotein lattice structure controls the 
activity of glycoproteins at the cell surface by regulation 
of their membrane localization, lateral mobility, and 
clustering. The lattice formation inhibits endocytosis 
(Grigorian et al., 2009), which is important for receptor 
turnover. Galectin-glycoprotein lattices can regulate the 
duration of signaling and receptor turnover. Thus, they 
can control the decision between cell growth and arrest 
(Rabinovich et al., 2007). Long poly-LacNAc chains with 
additional sialyl Lewisx epitopes are highly metastatic, 
while short poly-LacNAc chains with many more sialyl 
Lewisx epitopes are not metastatic (Srinivasan et al., 2009). 
This is probably related to the presence of the lattice 
formation for poly-LacNAc chains of different lengths. 

A chemotherapeutic agent, 5-FU, inhibits the 
expression of β3Gn-T8, and this causes a reduction of poly-

Figure 5. i and I antigens on poly-LacNAc chains. Galectin-3 recognizes proximal LacNAc units.
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LacNAc on CD147 in colon cancer cells (Gao et al., 2014). 
The levels of β3Gn-T8 and poly-LacNAc chains gradually 
increase from low to high metastatic potential in colorectal 
cancer cell lines. A positive correlation between β3Gn-T8 
expression and highly glycosylated CD147 indicates that 
β3Gn-T8 plays a critical role in the metastasis of colorectal 
cancer (Lu et al., 2014; Ni et al., 2014).

Galectins are soluble proteins recognizing and binding 
β-galactosides on poly-LacNAc extensions of the N-glycan 
core. They are found in the nucleus, cytoplasm, cell 
surface, and ECM, as well as in biological fluids (Argüeso 
and Panjwani, 2011). Different galectins have different 
specificities for oligosaccharides. Galectin-3 (Gal-3) binds 
proximal LacNac repeats on the poly-LacNAc chains of 
N-glycan cores (Stowell et al., 2008). Gal-3, existing as a 
monomer in solution, produces a pentameric structure 
through self-associated intermolecular interactions 
and mediates crosslinking of proteins, forming a lattice 
organization (Chiu et al., 2010; Argüeso and Panjwani, 
2011). Galectin-glycan lattices create homotypic or 
glycoprotein complexes that are involved in cellular 
signaling related to a variety of cell functions, including 
cell adhesion, migration, invasion, angiogenesis, immune 
functions, apoptosis, and endocytosis (Garner and Baum, 
2008; Nangia-Makker et al., 2008; Chiu et al., 2010; Çay, 
2012). During the ECM remodeling, new Gal-3-glycan 
lattices occur and mediate new interactions (Lagana et al., 
2006; Reticker-Flynn et al., 2012; Priglinger et al., 2013). 
Galectin-glycoprotein lattices control the organization 
of plasma membrane domains like lipid rafts and the 
direction of targeted delivery of glycoproteins to the cell 
surface. They determine the duration of signaling by 
inhibiting the endocytosis of glycoprotein receptors (such 
as growth factors) from the cell surface (Garner and Baum, 
2008).

The GnT-V expression-dependent Gal-3-TGFβR 
lattice preserves growth factor receptor densities at the 
level necessary for invasive phenotypes in transformed cell 
surfaces (Rabinovich et al., 2007). GnT-IVa expression-
dependent lattice formation increases the cell-surface half-
life of glucose transporter 2 on pancreatic β-cells, probably 
by inhibiting receptor endocytosis (Ohtsubo et al., 2005; 
Rabinovich et al., 2007). These points indicate that lattice 
structures are involved in cellular signaling in various 
ways depending on the origin of the poly-LacNAc chains.

3. Changes in cancer-associated proteins
It appears that the enzymes (GnT-IV, GnT-V, and GnT-
IX) initiating branches that possess poly-LacNAc chains 
on the core of N-glycans affect the same proteins involved 
in cancer development. GnT-V has a number of target 
proteins involved in tumor progression. Well-defined 
substrate proteins of GnT-V are growth factor receptors 
(such as EGF and TGF-β), adhesion and signaling 

molecules (cadherin and integrins), tumor-associated 
antigen (CD147), tissue inhibitor of metalloproteinase-1 
(TIMP-1), membrane-bound serine protease (Matriptase), 
and lysosomal-associated membrane proteins 1 and 2 
(Lamp-1 and Lamp-2). Each one contributes in a distinct 
manner to tumor progression and metastasis (Ochwat et 
al., 2004; Siddiqui et al., 2005; Kim et al., 2008; Taniguchi 
and Korekane, 2011; Drake et al., 2012; Christiansen et 
al., 2014). Expression of β1-6 GlcNAc branching on these 
substrate glycoproteins is related to a variety of tumors in 
malignant transformation (Ihara et al., 2002). Depending 
on the structural changes of N-glycans in these target 
proteins, different implications of GnT-V have been 
reported in cancer metastasis. 

The occurrence of poly-LacNAc chains is very 
important for tumor progression and metastasis. The 
branched structure catalyzed by GnT-V on several 
glycoproteins has received particular attention in the 
literature. GnT enzymes have different affinities for the 
same common core substrate. This produces a restriction 
mechanism among the GnTs. For example, GnT-I and 
GnT-II have nearly 250- and 20-fold higher affinity for 
UDP-GlcNAc than GnT-V, respectively (Chen et al., 2009). 
Higher expression of GnT-I reduces GlcNAc branching on 
the core of N-glycans by reducing the availability of UDP-
GlcNAc to GnT-IV and GnT-V.
3.1. Growth factor receptors
Growth factor receptors (GFRs) are synthesized in the 
cytoplasm and then transported toward the plasma 
membrane within the vesicles originating from Golgi 
membranes (Luo et al., 2013; Katsuda et al., 2014). It has 
been suggested that N-linked glycosylation is required for 
the successful cell-surface transportation and sensitivity of 
the TGF-β receptor in gastric carcinoma cell lines (Kim et 
al., 2012). N-glycans on GFRs such as EGF, TGF-β, IGF, and 
PDGF are modified by overexpression of GnT-V and high 
affinity ligands, poly-LacNAcs, for galectins are generated 
on tumor cells (Lajoie et al., 2007). The increase of β1-6 
branches bearing poly-LacNAcs has an influence on ligand 
binding, dimerization, and promotion of function of 
EGFRs (Guo et al., 2004; Takahashi et al., 2004). 

The formation of the lattice between increased poly-
LacNAc chains and Gal-3 causes the inhibition of receptor 
endocytosis (Partridge et al., 2004; Häuselman and Borsig, 
2014), the prolongation of receptor signaling (Kimura 
et al., 2012), and the promotion of cell proliferation. 
EGFR signaling in tumor cells is regulated by the 
competition between the galectin lattice and oligomerized 
caveolin-1 microdomains for EGFR (Lajoie et al., 2007). 
Morphological changes and cell detachment from the 
matrix occur after receptor stimulation (Guo et al., 2007). 
The cell detachment from the matrix is closely associated 
with tumor cell migration (Wang et al., 2009; Pocheć et 
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al., 2013). Results obtained from studies using knockout 
GnT-V and antisense cell lines support this suggestion 
(Seberger et al., 1999; Guo et al., 2001, 2007, 2010). 
Knockout of GnT-V by siRNA expression causes lowered 
expression of β1-6 branches on EGFR N-glycans without 
any effect on EGFR expression level (Guo et al., 2007). The 
EGFR signaling pathway maintains a balance among cell 
proliferation, differentiation, and apoptosis and thus plays 
an important role in the development and progression 
of several human carcinomas (Al Moustafa et al., 2012). 
Since occurrence of the epithelial-mesenchymal transition 
phenotype is initiated via EGFR signaling (Huang et 
al., 2013), downregulation of GnT-V has particular 
importance.
3.2. Adhesion and signal molecules
The modification of N-linked glycans on adhesion 
molecules such as E-cadherin and integrins can change their 
functions (Pinho et al., 2011). Overexpression of GnT-V 
provides the formation of β1-6 branches that bear a poly-
LacNAc extension. This branch is the cause of E-cadherin-
mediated tumor invasion (Pinho et al., 2013). Similarly, 
increased expression on β1-6 branching on N-glycans of 
β1-integrin inhibits the formation of fibronectin receptor 
α5β1. This deficiency causes a decrease in ECM adhesion 
and an increase in cell motility (Siddique et al., 2005). In 
the case of a decrease in GnT-V activity, an enhancement of 
integrin α5β1-dependent vascular endothelium adhesion 
and subsequent transmigration occur (Yang et al., 2012). 
These results indicate that N-glycan modification of the 
adhesion and signal molecules has an important function 
for migration and invasion activities of tumor cells.
3.3. Tumor-associated antigen (CD147)
CD147, a tumor-associated antigen, is a transmembrane 
protein and a member of the immunoglobulin receptor 
family and is highly expressed on the cell surface of 
various tumor cells (Bai et al., 2014). The role of CD147 
in tumorigenesis is related to the inducement of MMP 
expression. It stimulates the secretion of MMPs from 
fibroblasts to degrade the basement membrane and the 
ECM, to facilitate cancer cell penetration, migration, 
metastasis, and angiogenesis (Weidle et al., 2010; Chen 
et al., 2012; Huang et al., 2013; Zhao et al., 2013). The 
degradation of the ECM and the cell adhesion contacts, and 
the formation of blood vessels, are the main events during 
metastasis that are initiated with CD147. The stimulating 
effect of CD147 on the production of MMPs reaches 
the target cells by the vesicles. CD147 is released by an 
extracellular vesicle shedding mechanism and transported 
within the vesicle membrane. Although vesicle shedding 
is common in normal cells, it occurs at much higher rates 
in tumor cells (Redzic et al., 2013). Thus, the activation of 
MMPs is triggered by GnT-V via CD147 (Lee et al., 2013). 
Released CD147 contributes to the cells undergoing an 

epithelial-to-mesenchymal transition by activating local 
MMPs (Siu et al., 2013).

Overexpression of GnT-V results from the increase of 
both CD147 and MMPs. CD147 contains high mannose and 
complex type N-glycans bearing poly-LacNAc extensions 
on β1-6 branches of the core structure. Heterogeneous 
glycosylation of CD147 causes remarkable variations 
in its size. According to the results from site-mutated 
glycosylation studies, N-glycans of CD147 contribute to its 
MMP-inducing activity and the most highly glycosylated 
form of CD147 is more effective. Because β1-6 branched 
glycans are high-affinity ligands for Gal-3, extracellular 
Gal-3 triggers the clustering of membrane glycoproteins 
that contain poly-LacNAc extensions. Gal-3 interacting 
with poly-LacNAc on the CD147 and integrin β1 of retinal 
pigment epithelial cells is responsible for modified cell 
behavior (Priglinger et al., 2013). Aberrant β1-6 branching 
glycans on CD147 probably play an important role in the 
biological activity of CD147 (Zheng et al., 2006), which 
has been considered as a potential tumor marker (Chen et 
al., 2012; Huang et al., 2013).
3.4. Tissue inhibitor metalloproteinase-1 (TIMP-1)
Tissue inhibitor of metalloproteinase-1 (TIMP-1) is also a 
target protein for GnT-V.

TIMP-1 regulates the activity of MMPs (Groblewska 
et al., 2012) and serves as a biomarker in gastric cancer 
(Grunnet et al., 2013). Polylactosamination on the 
β1-6 GlcNA branch and sialylation on TIMP-1 are both 
characteristic in human colon cancer cells, WiDr, in 
which GnT-V was overexpressed (Kim et al., 2008). 
Glycosylation of TIMP-1 participates in the regulation 
of interaction between MMPs (Kim et al., 2012). The 
aberrant glycosylation of TIMP-1 is closely correlated with 
invasive and metastatic potentials of colon cancer cells 
by producing a weaker inhibition of MMPs, both in vivo 
and in vitro. Thus, the function of TIMP-1 is associated 
with the inhibition of MMPs, thereby blocking tumor 
cell migration and invasion. However, independent of 
their inhibitory activity on MMPs, TIMPs also have 
direct cellular functions in normal tissue physiology 
and disease progression. A novel therapeutic approach 
to cancer treatment, involving the normalization of 
the tumor microenvironment including normal ECM 
components, was postulated (Stetler-Stevenson and Gavil, 
2014). Involving the ability of TIMP-1 to act as a signaling 
molecule with cytokine-like activities (Ries, 2014) support 
this idea.
3.5. Membrane-bound serine protease (matriptase)
The other target protein for GnT-V is a type II 
transmembrane serine protease, matriptase, alternatively 
known as membrane-type serine protease-1 (MTSP-1). 
Expression of matriptase in a variety of normal tissues 
and especially in epithelial tissues (Takeuchi et al., 
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2000) suggests that this protease could regulate different 
biological events (Ihara et al., 2004). The function of 
matriptase is associated with epithelial homeostasis in 
both health and disease situations (Gray et al., 2014). 
Matriptase participates in tumor growth and progression 
through the activation of 2 important cancer invasion 
effectors, hepatocyte growth factor (HGF) and urokinase 
plasminogen activator (uPA), on the surface of cancer 
cells (Qiu et al., 2007; Kotthaus et al., 2010; Owen et al., 
2010). These proteins are involved in growth and motility 
of cancer cells, particularly carcinomas, and in the 
vascularization of tumors (Benaud et al., 2002). Proteases 
mediate the degradation of ECM and intercellular adhesive 
structures to allow penetration and migration of the 
cells into the extracellular angiogenic factors. Matriptase 
contributes to these processes (Uhland, 2006). Although 
proteolytic activity in the close environment of the cells is 
essential for tissue homeostasis, development, and repair, 
the incorrect regulation of proteolysis can cause malignant 
transformation (List et al., 2006; Bugge et al., 2007; 
List, 2009). Matriptase positively regulates carcinoma 
metastasis by activating the single-chain latent forms 
of uPA and HGF and converting them into biologically 
active forms (Suzuki et al., 2004; Kilpatrick et al., 2006; 

Qiu et al., 2007; Lee et al., 2010). A direct relationship 
between matriptase and GnT-V appears in human cancer 
tissues (Ihara et al., 2004; Ito et al., 2006). Matriptase with 
β1-6 GlcNAc catalyzed by GnT-V becomes resistant to 
autodegradation and trypsin digestion. N-glycosidase 
F-treated matriptase shows a greatly reduced resistance to 
degradation. The active matriptase is rapidly inactivated 
by hepatocyte growth factor activator inhibitor-1 (Chu et 
al., 2014).

All these alterations occurring in the N-glycan common 
core structure of cancer-associated proteins cause changes 
in their molecular interactions and functions.

4. Conclusion
Markedly extensive efforts have been made to understand 
the biological significance of protein glycosylation in cancer 
in recent years. In cancer progression and metastasis, the 
enzymes responsible for branching of the core structure 
and in formation and extension of poly-LacNAcs play 
very important roles. Elucidation of the interactions 
between their molecular structures and the functions of 
the associated enzymes, which are also glycoproteins, will 
make important contributions to a better understanding of 
tumor formation, progression, metastasis, and retardation.
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