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Abstract: The development of induced pluripotent stem cells (iPSCs) provides unprecedented 

opportunities for life sciences, drug discovery, and regenerative medicine. iPSCs have been generated 

from somatic cells in many patients with various genetic diseases carrying specific mutations. However, 

the efficiency of iPSC generation is quite low. Less than 1% of human primary somatic cells can usually 

turn into iPSCs. Previous studies have revealed that cellular signaling pathways, epigenetic status, and 

cellular senescence were major barriers to iPSC generation. Serendipitously in some cases, human 

mutations themselves affect the reprogramming efficiency of iPSC generation as well as cellular 

phenotypes recapitulating their disease symptoms. Mutations, which cause altered DNA repair (e.g., 

Ataxia-Telangiectasia, fanconi anemia and DNA Ligase IV (LIG4) syndrome), premature aging (e.g., 

Hutchinson–Gilford progeria syndrome and Néstor–Guillermo progeria syndrome), altered telomere 

homeostasis (e.g., dyskeratosis congenita), mitochondrial respiratory dysfunction, chromosomal 

abnormalities, and fibrodysplasia ossificans progressiva, have all been shown to affect the 

reprogramming efficiency of somatic cells to iPSCs. In this review, the effects of such mutations are 

summarized and the methods which have been employed to rescue efficient iPSC generation from 

mutant cells is discussed. Although the mutations affecting reprogramming processes are rare, these 

mutations have been invaluable to the elucidation of reprogramming mechanisms and to the 

development of improved reprogramming technologies. 
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1. Introduction 

Methods, by which to generate induced pluripotent stem cells (iPSCs), were developed by 

transducing defined transcription factors, such as OCT4, SOX2, KLF4, and MYC, into somatic cells [1,2]. 

Such transcription factors regulate the expression of genes important for self-renewal and pluripotency. 

However, only a small proportion of the transduced cells are reprogrammed to generate iPSCs 

successfully [3], which is a major road block to applying this technology for biomedicine. Previous 

studies have revealed several causes of the low efficiency of iPSC generation. iPSC generation requires 

specific activation and/or inhibition of cell signaling pathways induced by various cytokines and/or 

small chemicals [4,5]. The culture conditions during iPSC generation should be optimized. 

Reprogramming to pluripotency involves the global changes of epigenetic modifications (e.g., gene 

expression patterns, DNA methylation status, and histone modifications) specific to each somatic cell 

type; however, the changes can be incomplete in some iPSCs, which maintain the “epigenetic memory” 

of original cell types [6–8]. P53- or p16-mediated cell senescence has been shown as a major barrier 

against successful reprogramming into iPSCs [9–13]. Furthermore, although several other genes and 

molecules have been shown to regulate the reprogramming process, the precise effects of each during 

reprogramming remain unclear.  

Disease-specific iPSCs have been generated from patients with a variety of genetic diseases with 

either Mendelian or complex inheritance patterns and have offered an unprecedented opportunity to 

recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease 

investigation and drug development [14]. Serendipitously in some cases, these mutations also affect the 

reprogramming processes. Such cases have been invaluable in elucidating reprogramming mechanisms 

and developing improved reprogramming technologies. Here, I classify those reported to date into 

biological mechanisms and/or pathways. 

2. DNA repair 

Ataxia-Telangiectasia (A-T; OMIM #208900) is a rare neurodegenerative disease characterized by 

early-onset progressive cerebellar ataxia, eyes and skin telangiectasia, immunodeficiency, chromosomal 

instability, hypersensitivity to ionizing radiation, and increased cancer risk [15]. A-T is caused by a 

defect in the ATM (Ataxia–telangiectasia mutated) gene [16], which produces a serine–threonine kinase 

activated when cells are exposed to DNA double-strand breaks (DSBs) [17]. ATM phosphorylates many 

proteins regulating cell cycle checkpoint, apoptotic responses, and DNA repair, including p53, Chk2, 

BRCA1, RPAp34, H2AX, SMC1, FANCD2, Rad17, Artemis, and Nbs1. This activity initiates  
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cell-cycle arrest at G1/S, intra-S and G2/M checkpoints and promotes DNA repair after DSBs [18]. 

Several groups have independently generated A-T iPSCs and demonstrated that neuronal cells 

differentiated therefrom were excellent models to examine A-T-associated neurodegeneration [19–23]. 

The reprogramming efficiency from A-T patients’ somatic cells was markedly decreased compared to 

fibroblasts from healthy individuals [19,21,22]. Also, fibroblasts from Atm-deficient mice showed 

remarkably low efficiency of iPSC generation compared to somatic cells from wild-type mice [13,24]. 

These results suggested that ATM-mediated DNA-damage responses were important for reprogramming 

toward pluripotent state. In order to rescue the decreased iPSC generation efficiency of A-T patients’ 

cells, Bhatt et al., expressed BCL-xL (isoform Bcl-X(L) of BCL2L1), which markedly increased the 

reprogramming efficiency of normal blood cells [25–27], together with reprogramming factors during 

iPSC generation. This method allowed the generation of A-T iPSCs with high efficiency under  

xeno- and feeder-free culture conditions [28]. Regarding the genomic integrity of ATM-deficient iPSCs, 

a study showed that they were characterized by additional copy number variations (CNVs), suggesting 

that ATM-mediated DNA-damage response was important for maintaining genomic integrity in  

iPSCs [29]; however, other studies have shown that A-T iPSCs are chromosomally stable with rates of 

nucleotide substitution during long-term cultures comparable to control iPSCs [21]. 

Dysfunctions in non-homologous-end-joining (NHEJ) repair of DNA DSBs cause several human 

syndromes. DNA Ligase IV (LIG4) plays an essential role in NHEJ pathway [30,31]. Mutations in 

LIG4 result in LIG4 syndrome (OMIM #606593), which is characterized by growth defects, 

microcephaly, reduced number of blood cells, increased predisposition to leukemia, and variable 

degrees of immunodeficiency [32–34]. The generation of LIG4 syndrome-specific iPSCs has been 

reported in two independent studies [35,36]. These studies demonstrated that the impairment of  

NEHJ-mediated-DSB repair in LIG4 iPSCs resulted in the accumulation of DSBs and enhanced 

apoptosis. These studies also consistently reported the decreased efficiency of iPSC generation from 

LIG4 syndrome patients’ cells. One of the studies showed that the complementation of wild-type LIG4 

partially rescued the reprogramming efficiency [36]. This study also used patients’ cells with mutations 

in genes encoding DNA-protein kinase catalytic subunit (DNA-PKcs; OMIM #615966), and Artemis 

(OMIM #602450). They reported that DNA-PKcs mutant cells showed a modest decrease in 

reprogramming efficiency whilst Artemis mutant cells showed comparable reprograming efficiency to 

wild-type cells. Similarly, the reprograming efficiency of cells from individuals with mutations in 

Cernunos/XRCC4-LIKE FACTOR (XLF; OMIM #611291) was similar to that of healthy donors [37]. 

Taken together, these results indicated a critical importance of the LIG4-mediated NHEJ pathway for 

somatic cell reprogramming and self-renewal of iPSCs. However, there appears to be a spectrum of 

reprogramming defects across humans with germline mutations in NHEJ factors. Fanconi anemia (FA; 

OMIM #227650) is a rare recessive, autosomal or X-linked, chromosomal instability disorder, causing 

bone marrow failure, and increased predisposition to develop malignancies [38,39]. FA is caused by 

mutations in any of the 15 genes identified so far, which are involved in FA pathway. Most of FA 

pathway proteins form a unique nuclear protein complex that ubiquitinates FANCD2 and FANCI, 

leading to the formation of DNA repair reaction [40,41]. FA patients’ cells displayed chromosomal 
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instability and hypersensitivity to the DNA crosslinking agents that have been used for the diagnosis of 

FA [42]. Several groups have independently generated FA-specific iPSCs from FANCA, FANCC, 

FANCD2, and FANCG mutant cells and demonstrated that hematopoietic lineage differentiation from 

FA-specific iPSCs represented a good model system to recapitulate FA-associated disease  

phenotypes [43–49]. All of these studies showed compromised generation or decreased efficiency of 

FA iPSCs and indicated that activation of FA pathway proteins was critical in the reprogramming 

processes. In order to rescue the generation of iPSCs from FA patients’ cells, a study reported that the 

overexpression of human papillomavirus 16 (HPV16) E6 protein or p53 repression in combination of 

reprogramming factors overcame barriers to reprogramming [46]. However, the resulting FA iPSCs 

remained sensitive to the deficiency of the FA pathway and failed to self-renew. These results 

suggested that FA pathway genes are essential for DNA-repair mechanisms during reprogramming 

and for self-renewal of established pluripotent stem cells. 

In summary, the DNA repair genes which affect the efficiency of reprogramming are shown in 

Figure 1. The role of these genes in reprogramming largely remains elusive but examining further the 

involvement of DNA repair pathways in iPSC reprogramming mechanisms would be fruitful for a more 

complete understanding of the process. 

 

Figure 1. A figure illustrating the DNA repair genes which mutations affect 

reprogramming efficiency. 

3. Senescence 

P53-mediated cell senescence is a major barrier against successful reprogramming into iPSCs using 

p53-null mouse cells [9–13]. Although iPSCs from patients’ cells carrying germline mutations in p53, 

which cause Li-Fraumeni Syndrome (LFS; OMIM #151623), have been generated using standard 
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Yamanaka factors, the study did not report on the efficiency of reprogramming [50]. Another study 

showed that the absence of p53 activity also contributed to the enhanced efficiency of iPS-like cell 

generation from a cancer cell line, HCT116 [51]. The generation of iPS-like cells from HCT116 cells 

was successful only when seven reprogramming factors were used; OCT4, SOX2, KLF4, LIN28 (also 

known as LIN28A), nontransforming L-MYC, SV40 large T antigen (SV40LT) and small hairpin (sh) 

RNA against p53 [52]. These studies suggested that the inhibition of p53 was critical for the generation 

of iPS-like cells from cancer cells as well as from normal cells. Another study also demonstrated that 

both hypoxia and p53 deficiency increased iPS-like cell generation from HCT116 cells [53]. 

Hutchinson–Gilford progeria syndrome (HGPS; OMIM #176670) and Néstor–Guillermo progeria 

syndrome (NGPS; #614008) are rare premature ageing diseases. HGPS is caused by a single point 

mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing 

mutant of lamin A [54]. Progerin accumulation leads to various aging-associated nuclear defects, 

including disorganization of nuclear lamin A and heterochromatin loss. NGPS is caused by a 

homozygous mutation in BANF1 (barrier-to-autointegration factor 1), resulting in the impairment of 

post-mitotic nuclear envelope assembly by the loss of direct binding to chromatin, lamin A, and  

emerin [55,56]. Several studies have reported the generation of iPSCs from HGPS patients’ cells and 

have successfully demonstrated that vascular smooth muscle cells (SMCs), mesenchymal stem cells 

(MSCs) or fibroblasts differentiated from HGPS-iPSCs recapitulated the age-associated alterations seen 

in HGPS, such as premature senescence [57–60]. Two of the studies reported that no iPSC colonies were 

obtained from HGPS fibroblast cultures at late passages [57,58]. One of the studies also reported that the 

reprogramming efficiency of HGPS fibroblasts was 4-fold lower than that of parental control fibroblasts 

at earlier passages [57]. Another study reported that the reprogramming efficiency of NGPS fibroblasts 

was significantly lower than that of control fibroblasts and showed that shRNA knockdown of BANF1 

reduced the efficiency still further whilst ectopic expression of wild-type BANF1 rescued molecular 

alterations and reprogramming inefficiency in NGPS fibroblasts [61]. These results indicated the causal 

effect of BANF1 mutations on iPSC reprogramming efficiency and, in further experiments, 

demonstrated that genetic and pharmacological inhibition of NF-κB significantly increased the 

reprogramming efficiency of fibroblasts from NGPS patients, HGPS patients, as well as from normal 

aged-matched donors. 

4. Telomere homeostasis 

Dyskeratosis congenita (DC; OMIM #305000) is characterized by the defective maintenance of 

blood, pulmonary and epidermal tissues [62,63]. DC is caused by mutations in genes controlling 

telomere homeostasis, such as TERT, TERC, DKC1, or TINF2. Several studies have reported that there 

were some differences in the kinetics of telomere maintenance in iPSCs from DC patients. Agarwal et al. 

reported that DKC1 mutant (delL37) iPSCs had elongated telomeres compared to fibroblast cells [64], 

but other studies have reported telomere shortening and low TERC expression in TERC, TERT, or DKC1 

mutant iPSCs [65–68]. Among them, two studies consistently demonstrated that the reprogramming 
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efficiency of DKC1 mutant cells was lower, with slower kinetics compared to normal cells [64,66]. One 

of the studies also showed that the hypoxic conditions (5% O2) enabled successful reprogramming from 

DKC1 mutant fibroblasts [64]. These results suggested that telomere maintenance was a prerequisite for 

successful reprogramming into iPSCs and was associated with oxidative stress during reprogramming. 

5. Chromosomal abnormalities 

A study has shown that patient cells carrying 2.4 Mb duplication in chromosome 1 give rise to a 

lower efficiency of iPSC generation than do normal, healthy cells [69]. When we generated iPSCs from 

patients’ cells carrying ring chromosome 13, the efficiency of iPSC generation was much higher than 

that from healthy control cells [70]. Taken together, these results indicate that chromosomal 

abnormalities affect reprogramming and the effect is dependent upon on the type of abnormality. 

Although it might be hard to detect which genes are involved in the reprogramming process from the 

patients’ cells carrying chromosomal abnormalities, these cells could be useful resources for the closer 

examination of reprogramming mechanisms. 

6. Mitochondrial respiration 

Mitochondrial respiratory dysfunction caused by pathogenic mutations in mitochondrial tRNA 

genes emerges only when mutant mitochondrial DNA (mtDNA) proportions exceed intrinsic pathogenic 

thresholds. Thus, reprogramming efficiency was significantly decreased from fibroblasts with >90% 

mutant mtDNA (m.3243A>G), whereas fibroblasts with less mutant mtDNA showed normal 

reprogramming efficiency [71]. Another report has shown that mitochondrial respiratory defects caused 

by complex I mutations exerted only a modest decrease in reprogramming efficiency [72]. A recent 

study has reported a correlation between mitochondrial spare respiratory capacity in somatic cells and 

their reprogramming efficiency [73]. These results suggest that high variety in reprogramming efficiency 

among patient cells with mitochondrial respiratory dysfunction might be reflected by their different 

mitochondrial spare respiratory capacity. Mechanistically, we recently reported that TCL1 expression 

induced by KLF4 activates AKT to enhance glycolysis and inhibits mitochondrial polynucleotide 

phosphorylase (PnPase) to suppress oxidative phosphorylation during iPSC generation [74]. Together, 

these data indicate that mitochondrial respiratory activity is a key to successful reprogramming. Indeed, 

a low dose of resveratrol, a potent phenolic antioxidant found in grapes and red wine that also has  

anti-proliferative and anti-inflammatory activity, facilitated efficient cellular reprogramming from 

mitochondrial respiratory dysfunction patient-derived fibroblasts into iPSCs [75]. 

7. BMP signaling 

Fibrodysplasia ossificans progressiva (FOP; OMIM #135100) is a rare congenital disease 

characterized by the abnormal activation of endochondral bone formation in soft tissues. Most FOP 
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patients carry a missense mutation (617G>A) in Activin A Type I receptor (ACVR1), leading to the 

hyperactivation of bone morphogenetic protein (BMP)-SMAD signaling pathway [76]. We, and other 

groups, have generated iPSCs from FOP patients’ cells and successfully recapitulated FOP phenotypes 

in vitro [77–81]. BMP signaling has complicated roles in the maintenance of pluripotency. BMP 

promotes the self-renewal of mouse embryonic stem (ES) cells [82,83] whilst, in contrast, BMP inhibits 

the self-renewal of human pluripotent stem cells [84–88]. In mouse iPSC generation, BMP signaling 

facilitates their reprogramming [89]. Thus, BMP signaling has positive effects on both the induction and 

self-renewal of mouse pluripotent stem cells. The role of BMP signaling in human iPSC generation still 

remains elusive. One study has shown that fully-reprogrammed iPSCs could only be generated when 

BMP signaling inhibitors were employed [77], whilst we found an increased efficiency of iPSC 

generation from FOP patents’ cells in different culture conditions and cell densities [90]. Furthermore, 

the efficiency of iPSC generation from normal fibroblasts was enhanced by transducing mutant ACVR1 

(617G>A) or SMAD1 or by adding BMP4 protein at early periods of reprogramming. In contrast, 

adding BMP4 at later periods decreased iPSC generation efficiency. ID genes, transcriptional targets of 

BMP-SMAD signaling, are critical for iPSC generation. We subsequently found that the BMP-SMAD-ID 

signaling axis suppressed p16/INK4A-mediated cell senescence, a major barrier to reprogramming. 

However, the positive effect was easily masked by the overgrowth of non-reprogrammed cells when 

initial cell densities were too high, or by alteration in the periods of BMP treatment. Furthermore, the 

differences in the culture medium constituents may modulate the outcomes partly because recent studies 

have shown that Activin A, which normally activates only TGF-SMAD signaling, contributed the 

activation of BMP-SMAD signaling in FOP cells [91,92]. Collectively, iPSC generation from FOP 

patient cells are useful for clarifying the roles of cell signaling pathways in reprogramming processes. 

8. Future Perspectives: rescuing methods of reprogramming in mutant cells which show 

decreased iPSC generation efficiency 

Here, I summarize the methods used to rescue reprogramming of mutant cells which show 

decreased iPSC generation efficiency. 

(1) Transient overexpression of the wild-type genes. 

This method is simple, straightforward, and valuable to prove that the mutations themselves cause 

the decrease the reprogramming efficiency. However, it might also affect the outcome of disease 

modeling using iPSC-derived differentiated cells if the overexpressed genes remain in the 

reprogrammed iPSCs. For example in LIG4 syndrome iPSC generation, a study has demonstrated that 

the transient overexpression of wild-type LIG4 genes partially rescued the reprogramming efficiency [36]. 

(2) Addition of reprogramming enhancer genes. 

Many genes have been reported to increase the reprogramming efficiency [93,94]. It may be helpful 

to use these genes to improve efficiency from mutant cells. However, the effects of these genes might be 
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context-dependent. For example in A-T cases, BCL-xL was used to increase the reprogramming 

efficiency of patient-derived blood cells [28]. It might be also useful to overexpress target genes during 

reprogramming, which can relieve the clinical symptoms caused by specific mutations. 

(3) Treatment with specific chemicals during reprogramming. 

Many chemicals have been reported to increase reprogramming efficiency [95–97]. It may be 

helpful to use such chemicals to improve efficiency. However, the effects of these chemicals might be 

context-dependent and even poorly reproducible. It might be also useful to treat with chemicals which 

have been shown to relieve the clinical symptoms caused by specific mutations during reprogramming. 

For example, a low dose of resveratrol can increase the efficient cellular reprogramming of the 

mitochondrial respiratory dysfunction patient-derived fibroblasts into iPSCs [75]. Furthermore, some 

conventional culture conditions during reprogramming might be incompatible for specific mutant cells. 

In these cases, culture components, such as feeder cells, growth factors, hormones, extracellular matrices, 

vitamins, or amino acids, could be changed to improve the reprograming efficiency [90,98–100]. 

(4) Hypoxic conditions. 

Hypoxic conditions increase the reprogramming efficiency from normal human somatic cells [101]. 

This method can be generally used but the changes might be too subtle to increase effectively the 

reprogramming efficiency from mutant cells. For example, successful reprogramming from DC 

fibroblasts was achieved under low oxygen conditions (5% O2) [64]. 

9. Summary 

In this review, I introduce human mutations affecting reprogramming efficiency into iPSCs 

(summarized in Table 1). However, it remains largely unclear why and how these mutations affect the 

reprogramming process. I also introduce methods which have been used to rescue iPSC generation from 

mutant cells showing reduced or compromised reprogramming efficiency and I believe that these 

methods will also be useful in establishing disease-specific iPSCs from patients’ cells carrying mutations 

involved in the reprogramming process itself. 

Table 1. A summary of human gene mutations affecting reprogramming efficiency and kinetics. 

Biological Type/ 

Pathway 

Disease Name/Type Reprogramming Efficiency 

DNA repair Ataxia-Telangiectasia  

(A-T; OMIM #208900) 

 4 % (homo) and 15 % (hetero) compared to control 

fibroblast (Ref. 19) 

 ~1 % compared to control fibroblast (Ref. 21) 

somewhat reduced efficiency and slower kinetics (6–9 

weeks) (Ref. 22) 

LIG4 Syndrome  

(OMIM #606593) 

 0.7–17% compared to control fibroblast (Ref. 35) 

 Less than 1% compared to control fibroblast (Ref. 36) 
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DNA-PKcs mutation 

(OMEM #615966) 

 Slightly decrease or unchanged (Ref. 36) 

Artemis mutation  

(OMIM #602450) 

 Unchanged to control fibroblast (Ref. 36) 

 

Cernunos/XLF mutation 

(OMIM #611291) 

 Unchanged to control fibroblast (Ref. 37) 

Fanconi Anemia  

(FA; OMIM #227650) 

 No iPSC colonies from unmodified patients’ fibroblasts 

(Ref. 43, 44, ) 

 Lower efficiency (~10%) to control fibroblasts (+p53 

shRNA) and slower kinetics (~40 days) (Ref. 45) 

 0 to 0.005% to input cells (Ref. 47) 

 No colonies with OSKM combination under hypoxic 

conditions, but 0.0003 to 0.008% with OSKM+LIN28 and 

shp53 episomal plasmids (Ref. 49) 

Senescence Hutchinson–Gilford 

progeria syndrome 

(HGPS; OMIM #176670) 

 No iPSC colonies were obtained at late passages (Ref. 

64,65)  

 At earlier passages, the efficiency of reprogramming of 

HGPS fibroblasts was 4-fold lower than parental control 

fibroblasts (Ref. 64). 

Néstor–Guillermo 

progeria syndrome 

(NGPS; #614008) 

 Threefold to eightfold reduction in the reprogramming 

efficiency compared to control fibroblasts (Ref. 68) 

Telomere 

homeostasis 

Dyskeratosis congenita 

(DC; OMIM #305000) 

 0 to 0.015% to input cells with slower kinetics (24–48 days) 

(Ref. 52) 

 No colonies in 21% O2 conditions, but 0.001 to 0.04% in 5% 

O2 conditions (Ref. 54) 

Chromosomal 

Abnormalities 

2.4 Mb duplication in 

chromosome 1 

 Lower Eficiency (Ref. 69) 

Ring 13 chromosome  Higher Efficiency (Ref. 70) 

Mitochondrial 

respiration 

Mitochondrial respiratory 

dysfunction 

 Reprogramming efficiency was significantly decreased in 

patient’s fibroblasts with >90% mutant mtDNA 

(m.3243A>G) that caused severe mitochondrial respiratory 

dysfunction, whereas fibroblasts with less mutant mtDNA 

load had normal reprogramming efficiency (Ref. 71)  

 Only a modest decrease in reprogramming efficiency in 

mutant cells with mitochondrial respiratory defects caused 

by complex I mutations (Ref. 72).  

 Correlation between mitochondrial spare respiratory 

capacity in somatic cells and their reprogramming efficiency 

(Ref. 73) 

BMP signaling  

 

Fibrodysplasia ossificans 

progressiva  

(FOP; OMIM #135100) 

 Only many differentiated colonies from FOP patients’ cells 

with normal culture conditions; however they obtained fully-

reprogrammed iPSCs only when BMP signaling inhibitors 

were treated (Ref. 77) 

 In different culture conditions and cell density, an increased 

efficiency of iPSC generation from FOP patents’ cells (Ref. 90) 
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