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Designing buildings with a very high safety factor is one of the 

main purposes of a civil engineer. Since in the structural design 

process, there are several no-confidence; we cannot achieve a 

perfect safe design. In these cases, we face amount of the 

probability of failure. So the theory of reliability used to assess 

the uncertainty. This theoretical for expression the safety of a 

system uses the reliability index, so it can be said that the 

calculation of reliability index is an important part of the theory. 

By the theory of structural reliability, uncertainties arising from 

the nature of the statistical parameters can be written 

mathematical equations and considerations of safety and 

performance of the structure into the design process. Since 

classical methods are not capable of solving complex functions, 

metaheuristic algorithms used. In fact, a metaheuristic algorithm 

is a set of concepts, which significantly able to solve many 

complex issues, which they can reach an optimal solution in a 

short time. In this paper, the particle swarm algorithm combined 

with Firefly and to assess the reliability theory has been used. 

Reliability index is calculated by searching the shortest distance 

between the origin and the closed point of Limit State Surface in 

the Standard normalized space.Mathematical and engineering 

studies on the issues indicated; Hybrid Firefly and particle 

swarm algorithm are with great accuracy and speed. 

Keywords: 
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1. Introduction 

Reliability theory is the science of estimating the probability of system failure due to uncertainty 

in design parameters. The definition of reliability varies with the context, but according to the 

most commonly used definition, reliability is the probability that a component will function 

properly for a specified period of time under specified conditions. The performance of a building 

can be described as a function of its safety, serviceability and cost-effectiveness. However, the 
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information available about input variables such as these is rarely, accurate, complete and 

definite. With such uncertainties, it is impossible to acquire an absolute estimation about building 

safety. The structural systems reliability theory allow us to use statistical concepts to formulate 

the uncertainty of parameters and complete the design with safety and performance 

considerations accounted for quantitatively. According to this theory, one should carefully study 

not only the probability of failure in each single element, but also the probability of failure of the 

entire structural system as a whole. To do so, after ensuring the safety of every single element, 

one needs to examine the combined effect of their interactions on the system safety. 

Engineering problems are typically associated with a wide range of uncertainties. The nature of 

these uncertainties varies with the nature of the problem and the type of analysis. The most 

common types of uncertainty that engineers encounter during structural design and construction 

include physical uncertainty, uncertainty in modeling, and uncertainty in statistics. These 

uncertainties are particularly important for metal structures such as bridges, tanks, and 

spaceframe structures, as uncertainties in the features of the site, nature of the applied loads, and 

durability of the materials are more likely to lead to their failure or unserviceability. Structural 

design should be able to account for a variety of uncertainties in -for example- the loads, 

strengths, and geometric properties. This issue can be viewed as a statistical problem subject to 

multiple uncertainties, which can be analyzed based on the principles of probability and 

reliability theories. Such reliability analysis assigns each structural member with a certain 

probability of failure, which allows us to evaluate its functionality or non-functionality and 

decide when it should be repaired or replaced accordingly [1]. 

A question that regularly arises in regard to existing structures -even those that are in operation 

for a long time- is that how safe this building is? Clearly, this question is completely different 

from the question that a designer must answer when planning a new building. Evidence also 

suggests that checking the safety uncertainties of an existing structure with the building codes by 

which it has been designed may not be helpful. This is because design codes and regulation have 

been devised such as to account for certain uncertainties in the design and construction, but for a 

built structure, these uncertainties are all identified (i.e. completely determined) and can no 

longer be considered uncertainty. Also, determining the actual value of structural parameters of 

an existing building is never easy and can have its own uncertainties [2]. 

The uncertainty in the safety of structures can be addressed more logically with the help of 

probabilistic methods. Naturally, the main objective of structural safety assessments and 

undertakings is to ensure the proper functionality of the building over its useful life. Some of the 

parameters involved in this assessments are not constant but rather a sample from a set of 

probable values. In other words, these parameters can be considered as stochastic variables. 

Basically, the variable nature of these parameters is not completely known, and it is suggested 

that safety factors should be employed to account for their variations. Structural reliability 

analysis is a method for achieving this objective [3]. 

Progress and development of the reliability theory has about 80 years of history consisting of 

multiple periods. The first period from 1920 to 1960 was the era of gradual emergence of the 

structural reliability theory. In 1924, Forsell described the optimal design as a design that 
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minimizes the sum of expected costs, including the cost of initial construction and the expected 

cost of failure [4]. 

In 1947, the principles of structural safety of members under random loads were introduced, and 

this provided a foundation for future works of structural engineers [5]. In 1953, Johnson 

published the first comprehensive formulation of structural reliability and economic design 

theory, including the statistical theories of strength [6]. In 1974, Hasofer & Lind introduced an 

efficient method for determination of reliability index through a search for the design point, that 

is, the point of minimum distance from the limit state function to the origin of the standard 

normal coordinate system [7]. In 1991, reliability problems were analyzed with the help of 

gradient method [8]. Then, Melchers suggested a probabilistic model for assessing the reliability 

of steel structures against marine corrosion [9]. In 2007, a series of studies investigated the utility 

of genetic algorithms for structural reliability analysis by solving complex reliability functions 

[10]. In 2011, a study on the reliability of wooden structures with ductile behavior introduced a 

new evaluation method for this purpose [11]. In 2013, Jahani et al. developed an extremely 

effective sampling methodology for solving the reliability problems [12]. In the same year, a 

method was proposed for estimating the reliability of RC beams against fire [13]. Then, in a 

study by Xiao et al., they proposed an efficient and effective method based on truncated random 

variables for estimating the reliability of structural systems [14]. In 2015, several studies 

investigated the utility of artificial neural network modeling in the reliability analysis of steel 

structures [15]. Recently, a new generation of the reliability index has been defined by Ghasemi 

and Nowak (2016-2017). The advantage of Ghasemi-Nowak formula is to measure the safety 

level of a non-normal limit state function using the simplified convolution concepts [16, 17]. For 

evaluation of the required reliability index of a structures, there is a need for expression of the 

optimum safety level, which is known as a target reliability. Ghasemi and Nowak (2017) and 

Yanaka et al. (2016) proposed several approaches to estimate the target reliability for bridges 

with respect to the minimization of the cost [18, 19]. 

2. Structural reliability 

Reliability relationship is defined based on two major parameters: structural strength and load. 

Accordingly, the limit state function is written as follows [3]: 

(1)   G R, Q   R  Q 
 

Where G (R, Q) is the limit state function of structural strength and load. In the above equation, 

strength function R and load function Q both consists of several random variables with different 

probability distribution functions that depend on the structural dimensions, the type of materials, 

and the loads exerted on the structure. 

In the reliability analysis, the failure is expressed by the concept of limit state function, which 

represents the extent of functionality. A limit state function that is equal to zero (g(x) = 0) 

represents a state that lies on the boundary of functionality (safety) and dysfunctionality 

(unsafety). Accordingly, g (x)> 0 has been defined as the safety region and g (x) <0 as the 

unsafety region. 
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2.1. Classification of Reliability Methods 

There are various methods for idealizing the models of structural reliability, and various ways to 

combine the idealized models for a design problem. Given this high degree of diversity, these 

methods have been classified as follows. 

Level-I methods: In these methods, only one characteristic value (usually the mean value) of 

each uncertain parameter is used. The allowed stress methods are examples of this group. 

Level-II methods: these methods rely on two characteristic values (usually the mean and 

variance) and the correlation between them (usually covariance). The reliability index methods 

are examples of this group. 

Level-III methods: These methods use the probability of failure as a measure, and thus require 

the joint distribution of all uncertain parameters. 

Level-IV methods: these methods analyze our expectations from the structure with a measure of 

acceptability defined based on the probabilistic conditions and in accordance with the principles 

of engineering economics analysis, i.e. the cost and benefit of construction, maintenance, repair, 

failure consequences, etc. This approach is suitable for structures of great economic importance 

such as highway bridges, power transmission towers, nuclear installations, offshore platforms 

and ship and airplanes structures, but is still in development. 

2.2. Cornell reliability index 

In 1969, Cornell defined the reliability index as follows: 

(2)  
[ ]

[ ]
c

E M

D M
 

 

Cornell’s reliability index provides a reasonable estimation of reliability by measuring the 

distance from E[M] to the failure surface as a multiple of uncertainty parameter D[M] (E[M] and 

D[M] are the mean and standard deviation of the safety margin). 

In Cornell’s initial formulation, the failure function was expressed as the difference between 

strength R from the effect of load S. 

(3)   ,    G R S R S 
 

The safety margin corresponding to the above relationship is: 

(4)    M R S   

Assuming that R and S are independent, the reliability index can be calculated as follows: 

(5)  
[ ] [ ]

[ ] [ ]
c

E R E S

Var R Var S





  

If the limit state function is a first-order function, we have: 
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(6)  0

1
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n
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Thus, the reliability index is given by: 

(7)  
[ ]

T

T

x

a a E X

a c a






 

Where E[16] denotes the expected value of the main variables and the matrix Cx is their 

covariance. This reliability index will remain constant under any linear transformation. When the 

limit state function is not linear, it is impossible to formulate linear safety margin based on the 

main variables, because the mean and variance of the main variables are not enough to derive the 

expected value and variance of the safety margin. 

2.3. Hasofer & Lind reliability index 

As mentioned earlier, Hasofer & Lind [7] have introduced an efficient method for determination 

of reliability index. In this method, reliability index is obtained through a search for the point of 

minimum distance from the limit state function to the origin of the standard normal coordinate 

system. The distance of the failure surface from the origin is called the reliability index function 

and has been defined as follows. 

(8)  
0.5

( ) min( . )
T

c
U U U 

 

(9)   U G U 0 
 

Where G(U) is the limit state function in the standard normal domain of the base random 

variables (U). Given the above relation and the definition of HL, the reliability index for has been 

defined as follows. 

(10)  
0.5

( ) min( . )
T

c
U U U 

 

(11)   Subject  to :  G U  0
 

In the above equation, which is known as the first-order reliability equation, the point 

U*(u
*

1,u
*
2,…,u

*
n) on the failure surface G(U)=0 is called the design point. 

2.4. Reliability Index & Probability of Failure 

The most important application of reliability index is the estimation of failure probability. The 

relationship between the two can be expressed as follows: 

(12)  
1 1
(1 ) ( ) ( )

f f f
p p p    

 
      

 

Where Pf is the failure probability,   is the safety index, and Ø is the standard normal 

distribution function. As mentioned,   can be determined by various methods, and then, the 

probability of failure can be calculated by the above equation. 
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3. Proposed algorithm 

Firefly algorithm is a meta-heuristic optimization algorithm inspired by the simple 

communication behavior of fireflies. A firefly can understand its environment through its sensors 

and comminute with the environment using the light produced from its lower abdomen. Studies 

have shown that fireflies are social insects living in colonies and that their behavior is governed 

by the desire for the survival of the self as well as the colony. One of the most interesting facts 

about fireflies is their behavior during search for food, and in particular, how they find the 

shortest route between food and the nest. For this purpose, each individual firefly moves to the 

point where it has had the best experience of finding food. The light produced by firefly acts as a 

signal that attracts other fireflies or preys. Firefly colony can be view as a natural manifestation 

of swarm intelligence, in which the cooperation (or competition) of simpler and less intelligent 

members generates a higher degree of intelligence unattainable by any individual member. 

Recently, the social behavior of fireflies and their swarm intelligence have fascinated and 

inspired scientists working in other fields. 

Inspired by the aforementioned social behavior, in 2009 Yang developed the firefly algorithm 

with the following assumptions [17]: 

1- Fireflies are unisexual, therefore all fireflies will be attracted to each other. The attraction 

intensity (I) has been defined as follows: 

(13)  
2

r

0
I r   I(  e)




 

Where I0 is the initial light intensity, γ is the constant light absorption coefficient, and r is the 

distance between the two fireflies. 

Since attractiveness of a firefly is proportional to its light intensity as viewed by others, the 

attractiveness function β(r) has been defined as follows: 

(14)   
2

r

0
r   e


 




 

In this function, β0 is the attractiveness at r = 0. 

2- Attractiveness of a firefly is proportional to its brightness. Thus for any two fireflies, the 

less bright one will move toward the brighter one. But the perceived brightness and 

attractiveness is inversely proportional to distance. Thus, as distance increases, perceived 

brightness decreases, and so does the attractiveness.  

The distance between the fireflies i and j located at xi and xj is given by the following equation: 

(15)   
d

2

ij i j i ,k j ,k

k 1

r | x  x |  x  x



   
 

Where xi,k is the k-th spatial coordinate of firefly i, and d is the number of problem variables. 
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3- The brightness of each firefly is determined by the objective function defined for the 

problem. 

Finally, each firefly (i) moves toward the most attractive firefly in its view (j) in accordance with 

the following equation: 

(16)   t t t t

i i j i
x x x  x

2

i , j
r1 t

0 i
 e  



 


   
 

In this equation, the second term represents the relocation resulting from attraction and the third 

term introduces some randomness into the movement. The coefficient α is the motion 

randomization parameter, and εi is a random vector with normal distribution in the interval [0, 1]. 

In most optimization problems, β0 = 1. 

The value of the parameter γ plays a critical role in algorithm’s rate of convergence and its 

behavior. Although in theory , in practice, γ must be between 0.1 and 10. 

The primary merit of firefly algorithm (FA) is its very good accuracy in solving optimization 

problems, but it is rather slow when implemented with large populations. In contrast, the particle 

swarm optimization algorithm (PSO), which is inspired by the collective behavior of bird 

swarms, exhibits higher speed in solving complex optimization problems. 

In the proposed hybrid algorithm, first, firefly algorithm will be run for a specified number of 

iterations (FAiter), and the best solution among all iterations will be registered. Then, this best 

solution will be imported into PSO to calculate the velocity of each particle and update its 

position accordingly. The output of PSO function for the new position will be compared with the 

current best solution and if a better solution is found, the best solution will be updated 

accordingly (standard PSO procedure). This PSO will be run for a specified number of iterations 

(PSOiter). Finally, all of the above steps will be repeated for a specified number of iterations 

(HYBiter). This algorithm is designed such that the ratio of combination of two algorithms and 

their population are adjustable. In this algorithm, the best solution is the minimum distance 

between the failure surface of the limit state function and the origin of the standard normal 

coordinate system. In summary, the reliability index and the failure probability are obtained by 

the use of Hasofer-Lind definition of the reliability index and the search for the optimal solution 

by the algorithm. 

The pseudocode of the proposed FA-PSO hybrid algorithm is presented in Figure (1). 

4. Problem 

This section is divided into two parts, one dedicated to mathematical problems and the other 

dedicated to reference engineering problems. In each part, we use the proposed hybrid algorithm 

to solve a number of typical problems already solved through different methods and with 

different algorithms. 

 γ 0, 
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Fig. 1. Proposed pseudocode FA-PSO. 

4.1. Numerical Examples 

The accuracy and performance of the proposed algorithm are expressed by the following 

mathematical functions. These function are used for comparison with other methods according to 

the number of involved statistical parameters and variables. 

(17)  
2

1 2 1 2
( , ) 5 0.5( 0.1)G X X X X   

 

(18)  1 2 1 2
( , ) exp (0.2 1.4)G X X X X     

(19)        1 21, 2 exp 0.4 2 6.2 exp 0.3 5 200G X X X X       

The results concerning the reliability index and the failure probability function for the above 

mathematical functions are presented in Table (1). For mathematical problems, the reliability 
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index is obtained through Hasofer-Lind method. Comparison of the results demonstrate the good 

accuracy and performance as well as the high speed of the proposed algorithm. 

Table 1. Comparison of results in numerical examples. 

Limit Function Variable Algorithm U
* µ σ  Pf 

Eqe. 17 
X1 

X2 

PSO [20] ( 0.9625،-2.7416) 

0 1 

2.905 0.00183 

CSS [21] (0.9607 ،-2.7408) 2.906 0.00183 

FA-PSO ( 0.9241،2.7551) 2.905 0.00183 

18 
X1 

X2 

PSO [20]  (-1.6882, 2.8931) 

0 1 

3.497 0.000405 

CSS [21] (-1.6797, 2.8981) 3.35 0.000404 

FA-PSO (-1.6826, 2.8964) 3.349 0.000404 

19 
X1 

X2 

PSO [20] (-2.5477, 0.9235) 

0 1 

2.709 0.00337 

CSS [21] (-2.5396, 0.9453) 2.71 0.00336 

FA-PSO (-2.5783, 0.8407) 2.709 0.00330 

 

4.2. Engineering Problems 

4.2.1. Simply-Supported Beam 

In this problem instance, a simple beam is subjected to a point load (Figure 2). For this problem 

the limit state function is defined as: 

(20)  
2( , , ) 48 100G E I P EI PL   

 

Fig. 2. Simply-Supported Beam. 

The beam has a length of 6 meters. The mean values and standard deviations of variables P, E, 

and I are given in Table (2). 
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Table 2. Random variable for Simply-Supported Beam. 

Variable Mean Standard Deviation Distribution  

P (kN) 2 0.6 normal 

E (kN/m
2
) 2×10

7
 3×10

6
 normal 

I (m
4
) 2×10

5 2×10
-6

 normal 

 

In Table (3), the optimum value of the reliability index β and the failure probability Pf as 

calculated by the proposed algorithm are compared with the results of previous methods. 

Table 3. Comparison between Risk Analysis and FA-PSO algorithms. 

Method Optimum Point   Pf 

Risk Analysis [20] - - - - 3.15 0.00081 

FA-PSO 

P = 3.12 

E = 1.316×10
7

 

I = 1.77×10
5 

3.148 0.00082 

 

As shown in Table (3), the results obtained from the Modified algorithm are highly accurate and 

give a conservative estimation of beam failure probability. The convergence diagram of the 

proposed algorithm is plotted in Figure (3). 

 

Fig. 3. The convergence diagram of the algorithm. 
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4.2.2. three-span continuous beam 

In this problem instance, a three-span beam of 15 meters in length (5 meters per span) is 

subjected to a distributed load (Figure 4). 

 

Fig.4. 3-span continuous beam subjected to a distributed load 

In accordance with AISC regulations, the allowable displacement in this beam is L/360, and its 

limit state function is: 

(21)  
4

( , , ) 0.0069
360

L wL
G w E I

EI
 

 

This problem involves three variables w, E, and I, which all have a normal distribution function. 

Table 4. Random variable for continuous beam. 

Variable Mean Standard Deviation Distribution  

w   (kN/m) 10 0.4 normal 

E   (kN/m
2
) 2×10

7
 0.5×10

-7
 normal 

I   (m
4
) 8×10

-4
 1.5×10

-4
 normal 

 

The results obtained for this problem instance are presented in Table (5). 

Table 5. Comparison between the HL-RF and FA-PSO algorithms. 

Method Optimum Point  Pf 

HL-RF [22] 
w = 10.044 

3.1805 0.000735 E =  4368200 

I = 7.139×10
-4

 

FA-PSO 
w = 10.043 
E = 4374200 

I = 7.128×10
-4 

3.1805 0.000735 

The convergence diagram of the proposed algorithm is shown in Fig. 5. 
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Fig.5. the convergence diagram of the algorithm 

5. Conclusion 

This paper introduces a hybrid algorithm consisting of firefly algorithm (FA) and particle swarm 

optimization algorithm (PSO) for determination of reliability index and failure probability. The 

good optimization performance of both FA and PSO has been acknowledged in many 

publications, thus, a combination of these two can be remarkably effective in reliability analysis. 

In the proposed algorithm, FA-PSO combination ratio is adjustable, and can therefore be fine-

tuned to optimize the runtime and accuracy according to problem requirements and 

characteristics. The capability of the proposed algorithm in solving reliability theory problems 

without the limitations of classical approach is verified with the help of a set of mathematical and 

structural problems. The satisfactory performance and accuracy and acceptable speed of the 

proposed algorithm are demonstrated by comparing its results with those of alternative methods. 
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