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1. Introduction
Colorectal cancer (CRC) is the third most common 
cancer worldwide in males and the disease rate is the 
highest in developed countries, including the US, 
Australia, Canada, and Europe. It accounts for 8% to 9% 
of the estimated cancer deaths in the US in 2015 (Siegel 
et al., 2015). Treatment of CRC depends upon the degree 
of progression of the cancer and it can be curative if 
caught at an early stage (Cunningham et al., 2010; Stein 
et al., 2011). Survival rate (5 years) has not changed 
with the recent advances and chemotherapy is still the 
mainstay of treatment (Lucas et al., 2011; Platell et al., 
2011). Fluoropyrimidines, in particular, FUra and its 
nucleoside analogue 5’-fluoro-2’-deoxyuridine (FdUrd), 
are widely used agents and remain a major component 
of many standard regimens for various cancer types 
(Sotos et al., 1994; Milano et al., 2004; Soong and Diasio, 
2005; Soong et al., 2008). FUra and FdUrd inhibit 
thymidylate synthase (TS), which blocks thymidylate 
(dTMP) production (Berger and Berger, 2006; Wyatt 
and Wilson, 2009) and leads to genome damage through 
misincorporation of uracil into DNA, and shuts off DNA 
synthesis and repair, triggering apoptosis (Danenberg, 
1977; Spears et al., 1988; Krokan et al., 2002; Longley et 
al., 2003). It has been suggested that generation of reactive 

oxygen species (ROS) is one of the consequences of TS 
inhibition. ROS production is increased by FUra, and the 
inhibition of ROS reverses its cytotoxicity (Ueta et al., 
1999; Hwang et al., 2001; Laurent et al., 2005; Alexandre 
et al., 2006, Hwang et al., 2007; Shibata et al., 2008). As a 
result of drug treatment, ROS are released and partially 
trigger apoptosis in cancer cells (Gallego et al., 2008). 
Accordingly, a significant strategy involves modulation 
of oxidative stress in cancer cells in order to sensitize 
them to anticancer drugs and generate novel protocols 
for improved clinical responses (O’Dwyer et al., 1996; 
Bougnoux et al., 2009). It is known that the activity of ROS 
generating enzymes like NADPH oxidases is increased to 
kill cancer cells (Lambeth, 2004; Kumar et al., 2008). The 
family of NADPH oxidases (NOX); NOX1-5 and dual 
oxidases (Duox), Duox1 and Duox2 produce ROS as their 
primary and sole function (Lambeth, 2004; Bedard and 
Krause, 2007; Altenhöfer et al., 2012). NOX1 and NOX2 
are potentially important targets of TS inhibitors that 
induce ROS formation, since they are highly expressed 
in colon tissue (Hwang et al., 2001; Juhasz et al., 2009). 
We have previously reported that augmentation of NOX2 
activity via induction of p67phox mRNA expression is 
the proximate cause of oxidative cell death in HCT116 
cells (Ozer et al., 2015). 
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CRC is a malignant disease that results from 
accumulation of genetic and epigenetic alterations that lead 
to derangements in cell proliferation, and differentiation, 
giving rise to transformation of normal colonic epithelium to 
colon adenocarcinoma (Vogelstein et al., 1988). Established 
and characterized cell lines were classified into different 
groups based on their morphological features, growth rate, 
and other functional parameters, implicating a broad range 
of systemic heterogeneity and drug response (Leibovitz et 
al., 1976; Brattain et al., 1981; McBain et al., 1984; Ribas et 
al., 2003; Flatmark et al., 2004; de Anta et al., 2006). 

Heterogeneity is also apparent in apoptosis of different 
colon cancer cells and is a major drawback in identifying 
treatments (Fidler and Goste, 1985). Heterogeneity in 
apoptosis originates from variations in protein expression 
and protein interactions in different colon cancer cells 
(Schmid et al., 2012). In spite of these interesting findings, 
understanding of how these cells indicate diverse response 
to drugs is still lacking. In the present study, we examined 
levels of NOX induced-oxidative stress and -apoptotic 
cell death in response to TS inhibitors in different colon 
cancer cells. We found variations regarding NOX activity, 
expression of NOX2 subunits, and the role of NOX in 
apoptotic response to TS inhibitors.

2. Materials and methods
2.1. Materials
FUra and FdUrd were from Sigma-Aldrich Co. (St. Louis, 
MO, USA). NADPH was purchased from Calbiochem/EMD 
Biosciences (San Diego, CA, USA). Lucigenin and VAS-
2870 were provided by Enzo Life Sciences Inc. (Plymouth 
Meeting, PA, USA). Paraformaldehyde was from Alfa 
Aesar (Ward Hill, MA, USA). Oligonucleotides were from 
Integrated DNA Technologies Inc. (Coralville, IA, USA).
2.2. Cell culture
Human colon tumor cell lines HCT116 (originally obtained 
from Dr. Michael G. Brattain), SW480, HCT15, DLD-
1, LoVo, MOSER, and LS180 (obtained from American 
Type Culture Collection, Manassas, VA, USA) were grown 
in RPMI-1640 medium (Cellgro, Manassas, VA, USA) 
supplemented with 10% heat-activated fetal bovine serum 
(Atlanta Biologicals, Flowery Branch, GA, USA) at 37 °C 
in a humidified 5% CO2 atmosphere. 
2.3. Measurement of apoptotic cell death
TS inhibitors and inhibitory agents were applied to cells 
at the indicated concentrations and times. Apoptotic 
indices were determined by TUNEL assays, performed 
using the In Situ Cell Death Detection Kit, POD (Roche 
Applied Science, Indianapolis, IN, USA). Cells were 
stained according to the manufacturer’s instructions, 
counterstained with hematoxylin, and viewed under a 
light microscope at 400× magnification. Pictures from 
each treatment were taken with camera installed on top of 

the microscope. Apoptotic nuclei were counted manually, 
based on staining and morphology, and the apoptotic 
index was calculated as the ratio of apoptotic/total cells. 
In each determination, at least 1000 cells from several 
microscopic fields were counted.  
2.4. NADPH oxidase assay
For each reaction, 105 cells were suspended in 500 μL of 
reaction buffer [50 mM phosphate buffer (pH 7.0), 1 mM 
EGTA, 150 mM sucrose]. NADPH oxidase activity was 
detected by lucigenin-derived chemiluminescence with 100 
µM NADPH as substrate and 5 µM lucigenin. Cells were 
incubated at 37 °C for 10 min. Chemiluminescence was 
measured using a luminometer (Promega, Madison, WI, 
USA) and expressed as arbitrary light units per 105 cells.
2.5. RNA extraction and RT-PCR
Total RNA was isolated using RNeasy Mini Kit (Qiagen, 
MD, USA) with the addition of RNase Free DNase 
(Qiagen, Hilden, Germany) to eliminate contaminating 
genomic DNA. The RNA concentration was determined 
by measuring the absorbance at 260 nm and 280 nm 
(NanoDrop ND-1000 Spectrophotometer, Thermo 
Fisher Scientific, USA). For each reaction, 1 µg of 
RNA was reverse transcribed using an IScript cDNA 
synthesis kit (Biorad, Hercules, CA, USA) according to 
the manufacturer’s instructions. For quantitative PCR 
(qPCR), cDNA (1 µL) prepared as described above was 
amplified using Power SYBR Green PCR Master Mix 
(Applied Biosystems, Foster City, CA, USA) according to 
the manufacturer’s instructions. The PCR thermal profile 
was one cycle at 95 °C for 10 min followed by 40 cycles of 
95 °C for 15 s, 50 °C for 15 s, and 72 °C for 40 s using an 
Applied Biosystems 7300 Real Time PCR System. Relative 
mRNA levels were normalized to GAPDH, and calculated 
by the 2−ΔΔCt method. Relative changes in expression of 
each gene in response to TS inhibitors were expressed as 
fold-induction compared with the basal level of expression 
in nontreated cells. Gene-specific primer sets (Integrated 
DNA Technologies) used for qPCR are listed in the Table. 
Controls with no reverse transcriptase and no template 
RNA were used to monitor contamination.
2.6. Western blotting
Cells were lysed in M-PER mammalian protein extraction 
reagent (Thermo Scientific, Rockford, IL, USA) and 
protein content was determined colorimetrically using 
the Bradford assay (Bio-Rad, Hercules, CA, USA) with 
BSA as protein standard. Lysates (100 µg) were run on 
12.5% Tris/HCl (Bio-Rad), electrophoresed in running 
SDS-PAGE buffer, transferred to PVDF membranes, 
and probed with anti-p67phox goat polyclonal antibody 
(sc7662, C-19, Santa Cruz, Dallas, TX, USA) at a dilution 
of 1:200 in 3% nonfat milk in PBS/0.05% Tween for 1 h 
at room temperature. The membrane was washed three 
times for 10 min with PBS/0.05% Tween before and after 
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incubation with appropriate secondary antibody for 1 
h at room temperature. An ECL kit (GE Healthcare Life 
Sciences, Amersham ECL, Pittsburgh, PA, USA) was 
used to visualize the antigen–antibody complexes by 
chemiluminescence after washing the membrane.
2.7. Statistical analysis
All data were reported as the mean ± SEM. Statistical 
significance of the mean for each group was determined 
using Student’s t-test. Differences with P ≤ 0.05 were 
considered statistically significant.

3. Results
3.1. Human colon cancer cell lines exhibit different levels 
of NOX activity
Human colon cancer cell lines show a wide range of 
genetic, morphological, and functional heterogeneity 
(Leibovitz et al., 1976; Brattain et al., 1981; McBain et al., 
1984). In order to determine whether these cell lines show 
variations in NOX activity in response to FdUrd, several, 
including HCT116, HCT15, SW480, DLD-1, LoVo, 

and MOSER, were treated with 10 µM FdUrd for 24 h, 
and NOX activity was measured. HCT116 basal activity 
levels were set as 1 and the fold-increase in activity in 
other cell lines in the absence and presence of FdUrd was 
calculated. Basal levels of NOX activity in these cell lines 
range from 1.2- to 4.2-fold. Following FdUrd, the activity 
was increased 1.7- to 4.8-fold in lines. MOSER had the 
highest basal (4.2-fold) and drug-inducible (4.8-fold, P = 
0.0174) activity level among these cells. However, DLD-1 
and LoVo cell lines showed low basal (1.2- and 1.6-fold, 
respectively) and drug-inducible (2.5-fold, P = 0.025 and 
1.7-fold, respectively) activity levels (Figure 1).

In order to verify whether NOX activity was decreased 
by a specific NOX inhibitor, VAS-2870, in cell lines, we 
examined NOX activity in response to FUra and FdUrd 
in human colon cancer cell lines: HCT116, HCT15, and 
SW480. NOX activity was induced (P < 0.05) by drugs 
for all 3 colon cancer lines; furthermore, the activation of 
NOX in all 3 cell types was diminished (P < 0.05) by VAS-
2870 (Figure 2).

Table. Sequence of the primers for quantitative RT-PCR.

Genes Primers (5’ to 3’)

p67phox sense: 5’- ACCAGAAGCATTAACCGAGAC -3’
antisense: 5’- TTCCCTCGAAGCTGAATCAAG -3’

p47phox sense: 5’- GCTGGTGGGTCATCAGGAA -3’
antisense: 5’- GCCCCGACTTTTGCAGGTA -3’

p40phox sense: 5’- GCTTCACCAGCCACTTTGTT -3’
antisense: 5’- TCCTGTTTCACACCCACGTA -3’

GAPDH sense: 5’- TCCCTGAGCTGAACGGGAAG -3’
antisense: 5’- GGAGGAGTGGGTGTCGCTGT -3’

a
f

P

P

P

Figure 1. NOX activity levels vary in human colon cancer cell lines. HCT116, HCT15, SW480, DLD-1, LoVo, and MOSER cell lines were 
grown ± 10 µM FdUrd for 24 h and then were subjected to NOX activity assay. Lucigenin derived chemiluminescence was measured by 
luminometer. Relative fold increase was calculated in reference to HCT116 control, which was set as 1. Bars represent fold increase in 
chemiluminescence ± SEM from 3 experiments. 
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3.2. Apoptotic response to FdUrd varies in human colon 
cancer cells
Heterogeneity arising among tumor cells can lead to 
resistance to chemotherapeutic drugs (de Anta et al., 
2006) and may be a significant impediment in effective 
chemotherapeutic treatments (Fidler and Goste, 1985). 
It has been previously shown that apoptotic protein 
expression and interactions differ in colon cancer cells 
(Schmid et al., 2012). Thus, we determined if apoptotic 
response to FdUrd varies among different colon cancer 
cells. In order to test this, HCT116, HCT15, SW480, and 
LoVo cells were treated with FdUrd for 24 h, and apoptotic 
indices were evaluated by TUNEL assay. We observed that 
drug-mediated cells were swelled and apoptotic cells were 
dark brown (Figure 3A). It was observed that basal levels of 
apoptosis change from cell line to cell line. LoVo exhibited 
3-fold higher (P = 0.009) basal levels relative to HCT116 
cells and HCT15. Drug-mediated increases in apoptotic 
indices were greater in HCT116 and HCT 15 cells (16-
fold, P = 0.0076 and 14-fold, P = 0.0084) respectively than 
SW480 and LoVo cells (8-fold, P = 0.0088 and 6.5-fold, P 
= 0.0092), respectively (Figure 3B). 
3.3. mRNA expressions of NOX2 accessory subunits, 
p67phox, p40phox, and p47phox, differ in human colon 
cancer cell lines
It has previously been demonstrated that expression 
of NOX isoforms and their accessory subunits varies 
in human tumor cells (Juhasz et al., 2009). Given the 
variation in NOX activity levels and apoptotic responses in 
human colon cancer cells, we determined whether mRNA 
levels of NOX2 accessory subunits, p67phox, p40phox, 
and p47phox, vary in different colon cancer cells. Cells 
were treated with FdUrd for 24 h and expression of the 
subunits was assessed by qPCR. Human colon cancer cell 
lines (HCT116, HCT15, SW480, DLD-1, LoVo, MOSER, 

and LS180) showed different basal and drug-inducible 
mRNA levels for p67phox (Figures 4A). LoVo, MOSER 
and LS180 exhibited high basal levels of p67phox (P < 
0.05) while SW480 exhibited intermediate levels (P < 
0.05). HCT116, HCT15 and DLD-1 expressed low basal 
levels of p67phox. FdUrd-induced p67phox levels were 
seen in HCT116 and DLD-1, about 23-fold (P = 0.0045) 
and 9-fold (P = 0.0076), respectively (Figure 4A). Protein 
levels of p67phox subunits in colon cancer cells exhibited 
the same trend as seen in its mRNA expression (Figure 
4B). Low basal levels of p67phox in several lines could not 
be detected by western-blot analysis.

Expression of p40phox was low in HCT15, LoVo, and 
MOSER cells compared to HCT116, SW480, DLD-1, and 
LS180. FdUrd-induced p40phox levels in HCT15 and 
LoVo cells were 8-fold (P = 0.025) and 10-fold (P = 0.021), 
respectively. HCT116 and MOSER cells exhibited low 
levels of drug-induced p40phox levels while SW480, DLD-
1, and LS180 expressed intermediate levels (Figure 5).

Basal and drug-inducible mRNA levels of p47phox 
also vary among the lines. HCT116 and SW480 showed 
similar basal and drug-inducible mRNA levels of p47phox. 
Although MOSER and LS180 exhibited similar basal 
levels of p47phox, drug-induced levels were unchanged in 
MOSER, but were induced 8.5-fold (P = 0.019) in LS180 
cells (Figure 6).

4. Discussion
Cancer laboratories establish a large number of human 
colorectal cancer cell lines from surgical specimens in 
the pathology laboratories. Based on their morphological 
features, growth rate, karyotypes, ability to synthesize 
carcinoembryonic antigen (CEA), etc., these lines were 
classified into different groups (Leibovitz et al., 1976; 
McBain et al., 1984). Well-described colon cancer cells 
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Figure 2. VAS reduces NOX activity increased by drugs in colon cancer cell lines. HCT116, SW480, and HCT15 cells were treated with 
both TS inhibitors (10 µM FUra, 10 µM FdUrd) and 10 µM VAS for 24 h. NOX activity was measured by luminometer. Relative fold 
increase was calculated in reference to HCT116 control, which was set as 1. Bars represent fold increase of chemiluminescence ± SEM 
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ÖZER and WOOD BARBOUR / Turk J Biol

191

Figure 3. FdUrd diversely induces apoptosis in human colon cancer cells. HCT116, HCT15, SW480, and LoVo cells were grown with 
and without 100 µM FdUrd for 24 h. Extents of apoptosis were determined by TUNEL assay. A. Cells were photographed at 400×. B. 
Relative fold increase was calculated in reference to HCT116 control, which was set as 1. Bars represent fold increase of apoptotic indices 
± SEM from 3 experiments.
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Figure 4. mRNA levels of p67phox vary in human colon cancer cell lines. A. qPCR was used to measure mRNA levels of p67phox in total 
RNA isolated from HCT116, HCT15, SW480, DLD-1, LoVo, MOSER, and LS180 cultured for 24 h ± 10 µM FdUrd. Relative fold increase 
was calculated in reference to HCT116 control, which was set as 1. GAPDH was tested as a loading control. Bars represent an average of fold 
increase ± SEM from 3 experiments. B. Protein levels of p67phox were measured for the lines cultured for 24 h ± 10 µM FdUrd. 
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characterized in vivo and in vitro with regard to drug 
response, genetic abnormalities, expression of cancer-
associated genes, etc. display important differences 
in tumor growth and metastatic capacity, leading to 
heterogeneity, possibly in a clinical relevant manner 
(Flatmark et al., 2004). Heterogeneity resulting from 
any system in cancer cells may bring about resistance to 
chemotherapeutic drugs (de Anta et al., 2006). However, 
understanding the mechanism of the heterogeneity creates 
an opportunity to increase the efficacy of drugs in the 
treatment of tumor cells. It is possible that a number of 
biomarkers differing in cell lines might be relevant to 
variations. Knowledge augmentation of heterogeneity in 
cell lines will lead to improved therapy. 

In the present study, we demonstrated that FdUrd 
induced apoptosis 6.5- to 16-fold change in human colon 
cancer cell lines. These different inductions result from 

variation in basal apoptosis levels of cell lines, reflecting 
the heterogeneity in cell lines. Our findings make it clear 
that FdUrd induces cell death in all cell lines, but its effects 
on their survival vary because of different backgrounds. 

We have indicated that increases in NOX activity by TS 
inhibitors were in HCT116, SW480, and HCT15 cell lines 
and VAS2870 attenuated drug-induced activity (Figure 2). 
In order to expand the results, we determined basal and 
drug-increased levels of NOX activity in six different cell 
lines. Here, we demonstrate that they vary in basal NOX 
activity levels, reflecting different backgrounds among 
the lines. In response to FdUrd, increases in NOX activity 
were profoundly exhibited in most cell lines, with DLD-1 
and LoVo showing only slight increases. Thus, cell lines 
differ in the oxidative environment and exhibit, in the 
presence of fluoropyrimidines, different mechanisms to 
modulate it. 
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Figure 5. mRNA levels of p40phox vary in human colon cancer cell lines. qPCR was used to measure mRNA levels of p40phox in total 
RNA isolated from HCT116, HCT15, SW480, DLD-1, LoVo, MOSER, and LS180 cultured for 24 h ± 10 µM FdUrd. GAPDH was tested 
as a loading control. Relative fold increase was calculated in reference to HCT116 control, which was set as 1. Bars represent an average 
of fold increase ± SEM from 3 experiments.
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Figure 6. mRNA levels of p47phox vary in human colon cancer cells. qPCR was used to measure mRNA levels of p47phox in total RNA 
isolated from HCT116, HCT15, SW480, DLD-1, LoVo, MOSER, and LS180 cultured for 24 h ± 10 µM FdUrd. GAPDH was tested as a 
loading control. Relative fold increase was calculated in reference to HCT116 control, which was set as 1. Bars represent an average of 
fold increase ± SEM from 3 experiments.
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Our results are consistent with earlier studies, which 
revealed that human colon cancer cell lines exhibit 
different expression levels for NOX genes (Juhasz et al., 
2009). As shown in Figure 4A, p67phox expression in 
SW480, LoVo, MOSER, and LS180 is much higher than in 
HCT116 while it is lower in DLD-1 and HCT15. Therefore, 
drug inducible expression levels of p67phox are hardly 
seen in SW480 and LoVo. However, p67phox expression 
levels were further induced by FdUrd in MOSER cells 
despite very high basal expression levels. These results are 
not consistent with basal NOX activity levels in cell lines 
(Figure 1), indicating the importance of other subunits 
in the activation. Then we looked at expression of other 
subunits like p40phox and p47phox. Basal p40phox 
expression was much lower in HCT15, LoVo, and MOSER 
cells compared to HCT116 cells. FdUrd-induced p40phox 
levels are easily seen in all cell lines, especially in HCT15 
and LoVo cells, thereby showing a potential contribution 
of p40phox in activation (Figure 5). In MOSER and LS180 
cells, expression of p47phox is lower than in HCT116 cells, 
however; it is higher in HCT15 cells. FdUrd significantly 
induced p47phox expression in only LS180 and HCT116 
cells, implicating the role of p40phox in the activation in 
these cells (Figure 6). The logic behind these experiments 
was profiling various colon cancer cell lines in terms of 
their NOX metabolism. Experiments were done for all 
NOX1 and NOX2 subunits, and variable expression levels 
for each subunit were plotted as shown in Figures 4A, 5, 
and 6. Among all subunits, only NOX2 cytosolic subunits, 
p67phox, p40phox, and p47phox, show alteration in basal 
and FdUrd-inducible levels. Although expression levels of 
subunits are changed differently in colon cancer cell lines, 

they all work for the activation of NOX2 enzyme. Therefore, 
targeting this enzyme may enhance therapeutic approaches 
in FdUrd-mediated cancer therapy. 

CRC cell lines were genetically and epigenetically 
characterized for mutations in oncogenes including KRAS, 
BRAF, PIK3CA, PTEN, and TP53 (Ahmed et al., 2013). 
HCT15, DLD-1, HCT116, LoVo, and SW480 cell lines 
showed no mutations on BRAF and PTEN genes; however, 
KRAS mutations were found in all lines. There were no 
genetic differences in HCT15 and DLD-1 cells derived from 
the same patient. In our study, these cells also show similar 
patterns for NOX activity, protein, and mRNA expression 
levels of p67phox (Figures 1, 4A, and 4B). PIK3CA 
mutations were not found in LoVo and SW480 cell lines, 
while DLD-1, HCT15, and HCT116 were characterized for 
the mutations. Accordingly, basal p67phox expression was 
higher in LoVo and SW480 compared to DLD-1, HCT15, 
and HCT116 cells (Figure 4A).

Based on our results, the antitumor effects of FdUrd 
appear to vary among colon cancer cell lines, reflecting 
phenotypic heterogeneities. Each cell line shows different 
expression levels of regulatory subunits and different levels 
of NOX activity and apoptosis levels. Therefore, deeper 
understanding of phenotypic features of each colon cancer 
cell line could be essential to therapy of this deadly disease.
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