
http://www.aimspress.com/journal/Math

AIMS Mathematics, 2(3): 479-544
DOI:10.3934/Math.2017.2.479
Received: 31 August 2017
Accepted: 31 August 2017
Published: 6 September 2017

Research article

The Cahn–Hilliard equation and some of its variants

Alain Miranville∗
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1. Introduction

The Cahn–Hilliard system ∂u
∂t = κ∆µ, κ > 0,
µ = −α∆u + f (u), α > 0,

(1.1)

and, equivalently, the Cahn–Hilliard equation

∂u
∂t

+ ακ∆2u − κ∆ f (u) = 0 (1.2)

play an essential role in materials science as they describe important qualitative features of two-phase
systems related with phase separation processes, assuming isotropy and a constant temperature. This
can be observed, e.g., when a binary alloy is cooled down sufficiently. One then observes a partial
nucleation (i.e., the apparition of nuclides in the material) or a total nucleation, known as spinodal
decomposition: the material quickly becomes inhomogeneous, resulting in a very finely dispersed
microstructure. In a second stage, which is called coarsening, occurs at a slower time scale and is less
understood, these microstructures coarsen. Such phenomena play an essential role in the mechanical
properties of the material, e.g., strength, hardness, fracture toughness and ductility. We refer the reader
to, e.g., [58, 60, 255, 259, 276, 277, 311, 313] for more details.

Here, u is the order parameter (one usually considers a rescaled density of atoms or concentration of
one of the material’s components which takes values between −1 and 1, −1 and 1 corresponding to the
pure states; the density of the second component is 1 − u, meaning that the total density is a conserved
quantity) and µ is the chemical potential. Furthermore, f is the derivative of a double-well potential F
whose wells correspond to the phases of the material. A thermodynamically relevant potential F is the
following logarithmic function which follows from a mean-field model:

F(s) =
θc

2
(1 − s2) +

θ

2
[(1 − s) ln(

1 − s
2

) + (1 + s) ln(
1 + s

2
)], s ∈ (−1, 1), 0 < θ < θc, (1.3)

i.e.,

f (s) = −θcs +
θ

2
ln

1 + s
1 − s

, (1.4)

although such a function is very often approximated by regular ones, typically, F(s) = 1
4 (s2 − 1)2, i.e.,

f (s) = s3 − s; more generally, one can take F(s) = 1
4 (s2 − β2)2, β ∈ R. The logarithmic terms in (1.3)

correspond to the entropy of mixing and θ and θc are proportional to the absolute temperature (assumed
constant during the process) and a critical temperature, respectively; the condition θ < θc ensures that
F has indeed a double-well form and that phase separation can occur. Also note that the polynomial
approximation is reasonable when the quench is shallow, i.e., when the absolute temperature is close
to the critical one. Finally, κ is the mobility and α is related to the surface tension at the interface.

We assume in this article that the mobility is a strictly positive constant. Actually, κ is often ex-
pected to depend on the order parameter and to degenerate at the singular points of f in the case of a
logarithmic nonlinear term (see [59, 138, 139, 178, 370]; see also [373] for a discussion in the context
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of immiscible binary fluids). Note however that this essentially restricts the diffusion process to the
interfacial region and is observed, typically, when the movements of atoms are confined to this region
(see [330]). In that case, the first equation of (1.1) reads

∂u
∂t

= div(κ(u)∇µ),

where, typically, κ(s) = 1 − s2. In particular, the existence of solutions to the Cahn–Hilliard equation
with degenerate mobilities and logarithmic nonlinearities is proved in [138]. The asymptotic behav-
ior, and, more precisely, the existence of attractors, of the Cahn–Hilliard equation with nonconstant
mobilities is studied in [342, 343].

From a phenomenological point of view, the Cahn–Hilliard system can be derived as follows. One
considers the following (total) free energy, called Ginzburg–Landau free energy:

ΨΩ(u,∇u) =

∫
Ω

(
α

2
|∇u|2 + F(u)) dx, (1.5)

where | · | denotes the usual Euclidean norm and Ω ⊂ Rn, n = 1, 2 or 3, is the domain occupied by the
material.

We can note that the gradient term in the Ginzburg–Landau free energy accounts for the fact that
the interactions between the material’s components are assumed to be short-ranged. Actually, this
term is obtained by approximation of a nonlocal term which also accounts for long-ranged interactions
(see [60]). The Cahn–Hilliard equation, with a nonlocal term, was derived rigorously by G. Giacomin
and J.L. Lebowitz in [188, 189], based on stochastic arguments, by considering a lattice gas with long
range Kac potentials (i.e., the interaction energy between two particles at x and y (x, y ∈ Zn) is given
by γnK(γ|x − y|), γ > 0 being sent to 0 and K being a smooth function). In that case, the (total) free
energy reads

ΨΩ(u) =

∫
Tn

[ f (u(x)) + u(x)
∫
Tn
K(|x − y|)(1 − u(y)) dy] dx, (1.8)

where Tn is the n-dimensional torus. Furthermore, rewriting the total free energy in the form

ΨΩ(u) =

∫
Tn

[ f (u(x)) + k1(x)u(x)(1 − u(x)) +
1
2

∫
Tn
K(|x − y|)|u(x) − u(y)|2 dy] dx,

where k1(x) =
∫
TnK(|x− y|) dy, one can, by expanding the last term and keeping only some terms in the

expansion, recover the Ginzburg–Landau free energy (this is reasonable when the scale on which the
free energy varies is large compared with γ−1; the macroscopic evolution is observed here on the spatial
scale γ−1 and time scale γ−2). Such models were studied, e.g., in [2,23,162,168] (see also [72,216–218]
for the numerical analysis and simulations).

One then has the mass balance

∂u
∂t

= −divh, (1.6)

where h is the mass flux which is related to the chemical potential µ by the following (postulated)
constitutive equation which resembles the Fick’s law:
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h = −κ∇µ. (1.7)

The usual definition of the chemical potential is that it is the derivative of the free energy with respect
to the order parameter. Here, such a definition is incompatible with the presence of ∇u in the free
energy. Instead, µ is defined as a variational derivative of the free energy with respect to u, which
yields (assuming proper boundary conditions)

µ = −α∆u + f (u), (1.8)

whence the Cahn–Hilliard system.
The Cahn–Hilliard system/equation is now well understood, at least from a mathematical point of

view. In particular, one has a rather complete picture as far as the existence, the uniqueness and the
regularity of solutions and the asymptotic behavior of the associated dynamical system are concerned.
We refer the reader to (among a huge literature), e.g., [4, 31, 53, 88, 91, 116, 123, 132, 134, 138, 140,
143, 163, 164, 172, 245, 258, 264, 274, 301, 302, 305, 307–311, 313, 326, 329, 335, 349, 368, 376]. As far
as the asymptotic behavior of the system is concerned, one has, in particular, the existence of finite-
dimensional attractors. Such sets give information on the global/ all possible dynamics of the system.
Furthermore, the finite dimensionality means, very roughly speaking, that, even though the initial phase
space is infinite-dimensional, the limit dynamics can be described by a finite number of parameters.
We refer the interested reader to, e.g., [15, 92, 125, 303, 349] for more details and discussions on this.
One also has the convergence of single trajectories to steady states.

Now, it is interesting to note that the Cahn–Hilliard equation and some of its variants are also
relevant in other phenomena than phase separation in binary alloys. We can mention, for instance,
dealloying (this can be observed in corrosion processes, see [145]), population dynamics (see [95]),
tumor growth (see [14, 244]), bacterial films (see [253]), thin films (see [315, 350]), chemistry (see
[354]), image processing (see [24, 25, 66, 73, 124]) and even the rings of Saturn (see [353]) and the
clustering of mussels (see [271]).

In particular, several such phenomena can be modeled by the following generalized Cahn–Hilliard
equation:

∂u
∂t

+ ακ∆2u − κ∆ f (u) + g(x, u) = 0, α, κ > 0 (1.9)

(here, α and κ do not necessarily have the same physical meaning as in the original Cahn–Hilliard
equation). The above general equation contains, in particular, the following models:

(i) Mixed Allen–Cahn/Cahn–Hilliard system. In that case, we consider the following system of equa-
tions: ∂u

∂t = ε2D∆µ − µ, D, ε > 0,
µ = −∆u +

f (u)
ε2 ,

which can be rewritten, equivalently, as

∂u
∂t

+ ε2D∆2u − ∆(D f (u) + u) +
f (u)
ε2 = 0
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and is indeed of the form above. In particular, without the term ε2D∆µ in the first equation, we
have the Allen–Cahn equation and, without the term −µ, we have the Cahn–Hilliard equation. These
equations were proposed in order to account for microscopic mechanisms such as surface diffusion and
adsorption/desorption (see [238, 240, 241, 281]) and were studied in [232–235, 239].
(ii) Cahn–Hilliard–Oono equation (see [287, 314, 355]). In that case,

g(x, s) = g(s) = βs, β > 0.

This function was proposed in [314] in order to account for long-ranged (i.e., nonlocal) interactions
in phase separation, but also to simplify numerical simulations, due to the fact that we do not have to
account for the conservation of mass (see below), although it seems that this equation has never been
considered in simulations. A variant of this model, proposed in [90] to model microphase separation
of diblock copolymers, consists in taking

g(x, s) = g(s) = β(s −
1

Vol(Ω)

∫
Ω

u0(x) dx), β > 0,

where u0 is the initial condition. In that case, we have the conservation of mass and efficient simu-
lations, based on multigrid solvers, were performed in [13]. This variant of the Cahn–Hilliard–Oono
equation can also be coupled with the incompressible Navier–Stokes equations to model a chemically
reacting binary fluid (see [228, 229]; see also [43] for the mathematical analysis).
(iii) Proliferation term. In that case,

g(x, s) = g(s) = λs(s − 1), λ > 0.

This function was proposed in [244] in view of biological applications and, more precisely, to model
wound healing and tumor growth (in one space dimension) and the clustering of brain tumor cells (in
two space dimensions); see also [354] for other quadratic functions with chemical applications and [14]
for other polynomials with biological applications.
(iv) Fidelity term. In that case,

g(x, s) = λ0χΩ\D(x)(s − h(x)), λ0 > 0, D ⊂ Ω, h ∈ L2(Ω),

where χ denotes the indicator function, and we consider the following equation:

∂u
∂t

+ ε∆2u −
1
ε

∆ f (u) + g(x, u) = 0, ε > 0.

Written in this way, ε corresponds to the interface thickness. This function g was proposed in [24, 25]
in view of applications to image inpainting. Here, h is a given (damaged) image and D is the inpainting
(i.e., damaged) region. Furthermore, the fidelity term g(x, u) is added in order to keep the solution
close to the image outside the inpainting region. The idea in this model is to solve the equation up to
steady state to obtain an inpainted (i.e., restored) version u(x) of h(x).

The generalized equation (1.9) was studied in [288, 292] (see also [148]) under very general as-
sumptions on the additional term g, when endowed with Dirichlet boundary conditions. In that case,
one essentially recovers the results (well-posedness, regularity and existence of finite-dimensional at-
tractors) known for the original Cahn–Hilliard equation. The case of Neumann boundary conditions
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is much more involved, due to the fact that one no longer has the conservation of mass, i.e., of the
spatial average of the order parameter, when compared with the original Cahn–Hilliard equation with
Neumann boundary conditions (see [73, 74, 85, 148, 149]).

Another variant of the Cahn–Hilliard equation, which we will not address in this review, is con-
cerned with higher-order Cahn–Hilliard models. More precisely, G. Caginalp and E. Esenturk recently
proposed in [57] (see also [70]) higher-order phase-field models in order to account for anisotropic
interfaces (see also [254, 348, 363] for other approaches which, however, do not provide an explicit
way to compute the anisotropy). More precisely, these authors proposed the following modified free
energy, in which we omit the temperature:

ΨHOGL =

∫
Ω

(
1
2

M∑
i=1

∑
|k|=i

ak|D
ku|2 + F(u)) dx, M ∈ N, (1.10)

where, for k = (k1, k2, k3) ∈ (N ∪ {0})3,

|k| = k1 + k2 + k3

and, for k , (0, 0, 0),

Dk =
∂|k|

∂xk1
1 ∂xk2

2 ∂xk3
3

(we agree thatD(0,0,0)v = v). The corresponding higher-order Cahn–Hilliard equation then reads

∂u
∂t
− ∆

M∑
i=1

(−1)i
∑
|k|=i

akD
2ku − ∆ f (u) = 0. (1.11)

For M = 1 (anisotropic Cahn–Hilliard equation), we have an equation of the form

∂u
∂t

+ ∆

3∑
i=1

ai
∂2u
∂x2

i

− ∆ f (u) = 0

and, for M = 2 (sixth-order anisotropic Cahn–Hilliard equation), we have an equation of the form

∂u
∂t
− ∆

3∑
i, j=1

ai j
∂4u

∂x2
i ∂x2

j

+ ∆

3∑
i=1

bi
∂2u
∂x2

i

− ∆ f (u) = 0.

We studied in [81] the corresponding higher-order isotropic model, namely,

∂u
∂t
− ∆P(−∆)u − ∆ f (u) = 0, (1.12)

where

P(s) =

M∑
i=1

aisi, ak > 0, M ≥ 1, s ∈ R,
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and, in [82], the anisotropic higher-order model (1.11) (there, numerical simulations were also per-
formed to illustrate the effects of the higher-order terms and of the anisotropy). Furthermore,
these models contain sixth-order Cahn–Hilliard models. We can note that there is currently a
strong interest in the study of sixth-order Cahn–Hilliard equations. Such equations arise in sit-
uations such as strong anisotropy effects being taken into account in phase separation processes
(see [352]), atomistic models of crystal growth (see [24, 25, 144, 173]), the description of grow-
ing crystalline surfaces with small slopes which undergo faceting (see [341]), oil-water-surfactant
mixtures (see [200, 201]) and mixtures of polymer molecules (see [115]). We refer the reader to
[68, 208, 213–215, 227, 256, 257, 278, 279, 287, 289–291, 293, 316, 317, 322, 323, 356, 357, 367] for
the mathematical and numerical analysis of such models.

We can also note that the variant (1.9) can be relevant in the context of higher-order models (we can
mention, for instance, anisotropic effects in tumor growth). We refer the reader to [83] for the analysis
and numerical simulations of such models.

Our aim in this article is to review and discuss some of the aforementioned Cahn–Hilliard models
(1.9). More precisely, we will focus on the last three examples mentioned above. We also discuss
the original Cahn–Hilliard equation, with an emphasis on the thermodynamically relevant logarithmic
nonlinear terms.

2. The Cahn–Hilliard and Cahn–Hilliard–Oono equations

The Cahn–Hilliard system, in a bounded and regular domain Ω of Rn, n = 1, 2 or 3, usually is
endowed with Neumann boundary conditions, namely,

∂µ

∂ν
= 0, on Γ, (2.1)

meaning that there is no mass flux at the boundary (note that h.ν = −κ ∂µ
∂ν

), and

∂u
∂ν

= 0, on Γ, (2.2)

which is a natural variational boundary condition (it also yields that the interface is orthogonal to the
boundary). Here, Γ = ∂Ω and ν is the unit outer normal to the boundary. In particular, it follows from
the first boundary condition that we have the conservation of mass, i.e., of the spatial average of the
order parameter, obtained by (formally) integrating the first equation of (1.1) over Ω,

〈u(t)〉 =
1

Vol(Ω)

∫
Ω

u(t, x) dx = 〈u(0)〉, ∀t ≥ 0. (2.3)

If we have in mind the fourth-order in space Cahn–Hilliard equation, we can rewrite these boundary
conditions, equivalently, as

∂u
∂ν

=
∂∆u
∂ν

= 0, on Γ. (2.4)

Remark 2.1. We can also consider periodic boundary conditions (in which case Ω = Πn
i=1(0, Li), Li >

0, i = 1, ..., n).
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As mentioned in the introduction, the Cahn–Hilliard equation is now well understood from a math-
ematical point of view. This is in particular the case for the usual cubic nonlinear term f (s) = s3 − s,
but also for more general regular nonlinear terms.

Now, the case of the thermodynamically relevant logarithmic nonlinear terms is more difficult. In-
deed, in order to prove the existence of a solution, one generally approximates the singular nonlinear
term by regular ones (e.g., by polynomials as in [116]; we also mention [4,301] for different approach-
es, based on semigroup theory and a regularization by the viscous Cahn–Hilliard equation proposed
in [310], respectively) and one then passes to the limit. But then, when passing to the limit, one must
make sure that the order parameter stays in the physically relevant interval ((−1, 1) in our case); other-
wise the equations would not make sense. From a physical point of view, this separation property says
that, in the phase separation process, one never completely reaches the pure states.

Remark 2.2. It would be interesting to see whether, for a regular nonlinear term and, in particular,
for the usual cubic one, the order parameter also remains in the physically relevant interval. This is
however not the case and one can construct simple counterexamples, already in one space dimension
(see [324]).

We now give a proof of existence of a solution which is based on proper approximations of the
logarithmic nonlinear term and which can be easily extended to more general singular nonlinear terms
(see also [140]).

We actually consider the following more general initial and boundary value problem:

∂u
∂t

+ βu = ∆µ, β ≥ 0, (2.5)

µ = −∆u + f (u), (2.6)

∂u
∂ν

=
∂µ

∂ν
= 0, on Γ, (2.7)

u|t=0 = u0. (2.8)

When β = 0, we recover the original Cahn–Hilliard equation, and, when β > 0, we have the Cahn–
Hilliard–Oono equation (here, we have set the other parameters equal to 1).

Remark 2.3. (i) As mentioned in the introduction, the term βu, β > 0, models nonlocal interaction-
s. In particular, short-ranged interactions tend to homogenize the system, whereas long-ranged ones
forbid the formation of too large structures; the competition between these two effects translates into
the formation of a micro-separated state (also called super-crystal) with a spatially modulated order
parameter, defining structures with a uniform size (see [355] for more details and references).

(ii) Actually, it can be surprising that nonlocal interactions can be described by such a simple linear
term. This can be seen by noting that the equations are obtained by considering the free energy

ψ = |∇u|2 + F(u) +

∫
Ω

u(y)g(y, x)u(x) dy, (2.9)
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where the function g describes the long-ranged interactions. In particular, in Oono’s model and, e.g.,
in three space dimensions, one takes

g(y, x) =
4πβ
|y − x|

, β > 0. (2.10)

Note that the long-ranged interactions are repulsive when u(y) and u(x) have opposite signs and thus
favor the formation of interfaces (see [355] and the references therein). We finally write, as in the
derivation of the classical Cahn–Hilliard equation,

∂u
∂t

= ∂uψ, (2.11)

where ∂u denotes the variational derivative with respect to u. Noting that − 1
|y−x| is the Green function

associated with the Laplace operator and defining µ as above, we obtain (2.5)-(2.6) (see [355] and the
references therein for more details).

Remark 2.4. It is easier to prove the existence of a weak solution to the Cahn–Hilliard system with
the degenerate mobility κ(s) = 1 − s2 and the thermodynamically relevant logarithmic nonlinear term
(1.4). Indeed, one uses the fact that κ(s) f ′(s) is bounded (see [138] for details). Here, we can adapt the
techniques in [138] to the Cahn–Hilliard–Oono equation.

As far as the nonlinear term f is concerned, we assume more generally that

f ∈ C1(−1, 1), f (0) = 0, (2.12)

lim
s→±1

f (s) = ±∞, lim
s→±1

f ′(s) = +∞. (2.13)

In particular, it follows from these assumptions that

f ′ ≥ −c0, c0 ≥ 0, (2.14)

− c1 ≤ F(s) ≤ f (s)s + c2, c1, c2 ≥ 0, s ∈ (−1, 1), (2.15)

where F(s) =
∫ s

0
f (r) dr (in particular, in order to obtain the second of (2.15), we can study the

variations of the function s 7→ f (s)s − F(s) + c0
2 s2, whose derivative has, owing to (2.14), the sign of

s).

Remark 2.5. In particular, the thermodynamically relevant logarithmic functions (1.4) satisfy the
above assumptions.

Next, we define, for N ∈ N, the approximated functions fN ∈ C
1(R) by

fN(s) =


f (−1 + 1

N ) + f ′(−1 + 1
N )(s + 1 − 1

N ), s < −1 + 1
N ,

f (s), |s| ≤ 1 − 1
N ,

f (1 − 1
N ) + f ′(1 − 1

N )(s − 1 + 1
N ), s > 1 − 1

N .

We thus have
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f ′N ≥ −c0 (2.16)

and, setting FN(s) =
∫ s

0
fN(r) dr,

− c3 ≤ FN(s) ≤ c4 fN(s)s + c5, c4 > 0, c3, c5 ≥ 0, s ∈ R, (2.17)

fN(s)s ≥ c6| fN(s)| − c7, c6 > 0, c7 ≥ 0, (2.18)

where the constants ci, i = 3, ..., 7, are independent of N (see [305]). Actually, there holds, more
generally, for N large enough (see [301], Proposition A.1, and [305] for details),

fN(s + m)s ≥ c′m(| fN(s + m)| + FN(s + m)) − c′′m, (2.19)

c′m > 0, c′′m ≥ 0, s ∈ R, m ∈ (−1, 1),

where the constants c′m and c′′m are independent of N and depend continuously and boundedly on m.
We finally introduce the approximated problems

∂uN

∂t
+ βuN = ∆µN , (2.20)

µN = −∆uN + fN(uN), (2.21)

∂uN

∂ν
=
∂µN

∂ν
= 0, on Γ, (2.22)

uN |t=0 = u0. (2.23)

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. We further set ‖ ·
‖−1 = ‖(−∆)−

1
2 · ‖, where (−∆)−1 denotes the inverse minus Laplace operator associated with Neumann

boundary conditions and acting on functions with null spatial average. More generally, ‖ · ‖X denotes
the norm on the Banach space X.

We set, for v ∈ L1(Ω),

〈v〉 =
1

Vol(Ω)

∫
Ω

v dx,

and, for v ∈ H1(Ω)′,

〈v〉 =
1

Vol(Ω)
〈v, 1〉H1(Ω)′,H1(Ω).

We note that

v 7→ (‖v − 〈v〉‖2−1 + 〈v〉2)
1
2

is a norm on H1(Ω)′ which is equivalent to the usual norm. Similarly,

AIMS Mathematics Volume 2, Issue 3, 479-544



489

v 7→ (‖v − 〈v〉‖2 + 〈v〉2)
1
2

and

v 7→ (‖∇v‖2 + 〈v〉2)
1
2

are norms on L2(Ω) and H1(Ω), respectively, which are equivalent to their usual norms.
We further set

W = {v ∈ H1(Ω), 〈v〉 = 0}

and note that, on W, the generalized Poincaré’s inequality

‖v‖ ≤ c‖∇v‖

holds. Moreover, we have the continuous embedding H−1(Ω) ⊂ W ′.
In what follows, the same letters c, c′ and c′′ denote (generally positive) constants which may vary

from line to line and which are independent of N.

2.1. A priori estimates

Our aim in this subsection is to derive a priori estimates for the solutions uN and µN to (2.20)-(2.23).
These a priori estimates are independent of N and are formal, i.e., we assume that uN and µN are as
smooth as needed. The crucial step, to prove the existence of a solution, consists in deriving an a priori
estimate independent of N on fN(uN) in L2((0,T ) ×Ω), T > 0.

Classically, these a priori estimates allow us to obtain the existence of a solution to (2.20)-(2.23) by
implementation of a Galerkin approximation (see, e.g., [287] for more details). This will also allow us
to pass to the limit N → +∞ in the approximated system (2.20)-(2.23).

From now on, we assume that

‖u0‖L∞(Ω) ≤ 1 − δ, δ ∈ (0, 1), (2.24)

where δ is a fixed constant.
First, integrating (2.20) over Ω, we find

d〈uN〉

dt
+ β〈uN〉 = 0, (2.25)

which yields

〈uN(t)〉 = e−βt〈u0〉, t ≥ 0. (2.26)

We thus deduce from (2.26) that

|〈uN(t)〉| ≤ |〈u0〉|, t ≥ 0, (2.27)

whence, in view of (2.24),
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|〈uN(t)〉| ≤ 1 − δ, t ≥ 0, (2.28)

i.e., 〈uN〉 is strictly separated from the pure states ±1.
Then, setting, for a function ϕ defined in Ω, ϕ = ϕ − 〈ϕ〉, we can rewrite (2.20) in the equivalent

form

∂uN

∂t
+ βuN = ∆µN , (2.29)

µN = −∆uN + fN(uN), (2.30)

owing to (2.25).
In a next step, we multiply (2.29) by µN . Integrating over Ω and by parts, we obtain

‖∇µN‖
2 + ((

∂uN

∂t
, µN)) + β((uN , µN)) = 0. (2.31)

Furthermore, it follows from (2.30) that

((
∂uN

∂t
, µN)) + β((uN , µN)) =

1
2

d
dt
‖∇uN‖

2 +
d
dt

∫
Ω

FN(uN) dx (2.32)

−((
d〈uN〉

dt
, fN(uN))) + β‖∇uN‖

2 + β((uN , fN(uN))).

Noting that it follows from (2.25) that

− ((
d〈uN〉

dt
, fN(uN))) = β((〈uN〉, fN(uN))), (2.33)

we finally deduce from (2.18) and (2.31)-(2.33) the differential inequality

d
dt

(‖∇uN‖
2 + 2

∫
Ω

FN(uN) dx) (2.34)

+c(‖∇uN‖
2 + ‖ fN(uN)‖L1(Ω) + ‖∇µN‖

2) ≤ c′, c > 0.

We then multiply (2.30) by uN and find, owing to (2.19) (taking s = uN and m = 〈uN〉) and to the
Poincaré inequality on W,

‖∇uN‖
2 + c(‖ fN(uN)‖L1(Ω) +

∫
Ω

FN(uN) dx) ≤ c′ + ((µN , uN)) = c′ + ((µN , uN))

≤ c′ + c′′‖∇uN‖‖∇µN‖,

where the constants c, c′ and c′′ depend on δ, but are independent of N, at least for N large enough,
whence

‖∇uN‖
2 + c(‖ fN(uN)‖L1(Ω) +

∫
Ω

FN(uN) dx) ≤ c′ + c′′‖∇µN‖
2, c > 0. (2.35)

Summing (2.34) and ξ1 times (2.35), where ξ1 > 0 is small enough, we have the differential inequal-
ity
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dEN

dt
+ c(EN + ‖ fN(uN)‖L1(Ω) + ‖∇µN‖

2) ≤ c′, c > 0, (2.36)

where

EN = ‖uN‖
2 + ‖∇uN‖

2 + 2
∫

Ω

FN(uN) dx. (2.37)

We now rewrite (2.29) in the equivalent form

(−∆)−1∂uN

∂t
+ β(−∆)−1uN = −µN (2.38)

(note indeed that 〈∂uN
∂t 〉 = 0). Multiplying (2.38) by ∂uN

∂t , we obtain

β

2
d
dt
‖uN‖

2
−1 + ‖

∂uN

∂t
‖2−1 = −((µN ,

∂uN

∂t
)). (2.39)

We note that, thanks to the Poincaré inequality on W,

|((µN ,
∂uN

∂t
))| ≤ c‖

∂uN

∂t
‖−1‖∇µN‖ (2.40)

≤
1
4
‖
∂uN

∂t
‖2−1 + c‖∇µN‖

2.

It thus follows from (2.39) that

β
d
dt
‖uN‖

2
−1 + ‖

∂uN

∂t
‖2−1 ≤ c‖∇µN‖

2. (2.41)

Next, we note that it follows from (2.30) that

µN = −∆uN + fN(uN). (2.42)

Multiplying (2.42) by −∆uN , we find, owing to (2.16),

‖∆uN‖
2 ≤ c0‖∇uN‖

2 − ((µN ,∆uN))

≤ c0‖∇uN‖
2 +

1
2
‖∆uN‖

2 + c‖∇µN‖
2,

which yields

‖∆uN‖
2 ≤ 2c0‖∇uN‖

2 + c‖∇µN‖
2. (2.43)

Summing (2.36) and ξ2 times (2.43), where ξ2 > 0 is small enough, we have the differential inequal-
ity

dEN

dt
+ c(EN + ‖uN‖

2
H2(Ω) + ‖ fN(uN)‖L1(Ω) + ‖∇µN‖

2) ≤ c′, c > 0. (2.44)

We also note that (2.42) implies
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‖ fN(uN)‖ ≤ c(‖uN‖H2(Ω) + ‖∇µN‖), (2.45)

which, combined with (2.44), yields

dEN

dt
+ c(EN + ‖uN‖

2
H2(Ω) + ‖ fN(uN)‖L1(Ω) + ‖ fN(uN)‖2 + ‖∇µN‖

2) (2.46)

≤ c′, c > 0.

Finally, taking s = uN and m = 〈uN〉 in (2.19) and integrating over Ω, we obtain, owing to (2.28),∫
Ω

| fN(uN)| dx ≤ c|
∫

Ω

fN(uN)uN dx| + c′,

where the constants c and c′ only depend on δ (and are, in particular, independent of N), so that

|〈 fN(uN)〉| ≤ c|
∫

Ω

fN(uN)uN dx| + c′

and

|〈 fN(uN)〉| ≤ c‖uN‖‖ fN(uN)‖ + c′. (2.47)

Since

‖ fN(u)‖2 ≤ c(‖ fN(uN)‖2 + |〈 fN(uN)〉|2),

it follows from (2.47) that

‖ fN(uN)‖L2((0,T )×Ω) (2.48)

≤ c(‖ fN(uN)‖L2((0,T )×Ω) + ‖uN‖L∞(0,T ;L2(Ω))‖ fN(uN)‖L2((0,T )×Ω)) + c′, T > 0.

Now, Poincaré’s inequality and (2.46) imply that

‖ fN(uN)‖2L2((0,T )×Ω) ≤ cEN(0) + c′T

and

‖uN‖
2
L∞(0,T ;L2(Ω)) ≤ c‖∇uN‖

2
L∞(0,T ;L2(Ω)n) ≤ c′EN(0) + c′′T.

It thus follows from (2.48) that

‖ fN(uN)‖L2((0,T )×Ω) ≤ cT,δ(‖u0‖
2
H1(Ω) + 1), T > 0, (2.49)

where the constant cT,δ is independent of N, at least for N large enough. Here, we have used the fact
that, owing to (2.24), if N is large enough, FN(u0) = F(u0), so that we can handle the term

∫
Ω

FN(u0) dx
which appears in the right-hand side when integrating (2.46) with respect to time.

We also note that (2.46) and Gronwall’s lemma imply the dissipative estimate

EN(t) ≤ e−ctEN(0) + c′, c > 0, t ≥ 0, (2.50)
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which yields

‖uN(t)‖H1(Ω) ≤ cδe−c′t(‖u0‖H1(Ω) + 1) + c′′, c′ > 0, t ≥ 0. (2.51)

Finally, noting that 〈µN〉 = 〈 fN(uN)〉, it follows from (2.46) and (2.49) that

‖µN‖L2(0,T ;H1(Ω)) ≤ cT,δ(‖u0‖
2
H1(Ω) + 1), T > 0. (2.52)

2.2. Existence of solutions

We have the

Theorem 2.6. We assume that u0 is given such that u0 ∈ H1(Ω) and ‖u0‖L∞(Ω) < 1. Then, (2.5)-(2.8)
possesses at least one (weak) solution such that, ∀T > 0,

u ∈ C([0,T ]; H1(Ω)w) ∩ L2(0,T ; H2(Ω)),

∂u
∂t
∈ L2(0,T ; H1(Ω)′),

µ ∈ L2(0,T ; H1(Ω)),

where the subscript w stands for the weak topology, and

d
dt

((u, q)) + β((u, q)) = −((∇µ,∇q)),

((µ,Ξ)) = ((∇u,∇Ξ)) + (( f (u),Ξ)),

a.e. t ∈ [0,T ], ∀q, Ξ ∈ C∞c (Ω),

u(0) = u0.

Furthermore, u ∈ C([0,T ]; H1−η(Ω)), ∀η > 0, and −1 < u(t, x) < 1, a.e. (t, x).

Proof. We consider a solution (uN , µN) to the approximated problem (2.20)-(2.23) (the proof of exis-
tence of such a solution having the above regularity can be obtained by a standard Galerkin scheme).

Furthermore, since the estimates derived in the previous section are independent of N, this solution
converges, up to a subsequence which we do not relabel, to a limit function (u, µ) in the following
sense:

uN → u in L∞(0,T ; H1(Ω)) weak star and in L2(0,T ; H2(Ω)) weakly,

∂uN

∂t
→

∂u
∂t

in L2(0,T ; H1(Ω)′) weakly,

uN → u a.e. (t, x) and in L2((0,T ) ×Ω),
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µN → µ in L2(0,T ; H1(Ω)) weakly.

Here, we have used (2.41), (2.51)-(2.52) and classical Aubin–Lions compactness results.
The only difficulty, when passing to the limit, is to pass to the limit in the nonlinear term fN(uN).
First, it follows from (2.46) that fN(uN) is bounded, independently of N, in L1((0,T ) × Ω). Then, it

follows from the explicit expression of fN that

meas(EN,M) ≤ ϕ(
1
N

), N ≤ M,

where

EN,M = {(t, x) ∈ (0,T ) ×Ω, |uM(t, x)| > 1 −
1
N
}

and

ϕ(s) =
c

max(| f (1 − s)|, | f (s − 1)|)
.

Here, the constant c is independent of N and M. Note indeed that there holds∫ T

0

∫
Ω

| fM(uM)| dx dt ≥
∫

EN,M

| fM(uM)| dx dt ≥ c′meas(EN,M)
1

ϕ( 1
N )
, (2.53)

where the constant c′ is independent of N and M. We can pass to the limit M → +∞ (employing
Fatou’s lemma, see (2.53)) and then N → +∞ (noting that lims→0 ϕ(s) = 0) to find

meas{(t, x) ∈ (0,T ) ×Ω, |u(t, x)| ≥ 1} = 0,

so that

− 1 < u(t, x) < 1, a.e. (t, x). (2.54)

Next, it follows from the above almost everywhere convergence of uN to u, from (2.54) and the
explicit expression of fN that

fN(uN)→ f (u), a.e. (t, x) ∈ (0,T ) ×Ω. (2.55)

Finally, since, owing to (2.49), fN(uN) is bounded, independently of N, in L2((0,T ) ×Ω), it follows
from (2.55) that fN(uN)→ f (u) in L2((0,T )×Ω) weakly, which finishes the proof of the passage to the
limit.

�

Remark 2.7. We consider the particular case of the physically relevant nonlinear term (1.4). In that
case, it is not difficult to see that the function F(s) =

∫ s

0
f (r) dr is bounded on (−1, 1). Noting then that

the function FN(s) =
∫ s

0
fN(r) dr is given by

AIMS Mathematics Volume 2, Issue 3, 479-544



495

FN(s) =



F(−1 + 1
N ) + f (−1 + 1

N )(s + 1 − 1
N )

+1
2 f ′(−1 + 1

N )(s + 1 − 1
N )2, s < −1 + 1

N ,

F(s), |s| ≤ 1 − 1
N ,

F(1 − 1
N ) + f (1 − 1

N )(s − 1 + 1
N )

+1
2 f ′(1 − 1

N )(s − 1 + 1
N )2, s > 1 − 1

N ,

elementary computations show that FN is also bounded on (−1, 1). Therefore, we can relax the as-
sumptions of Theorem 2.6 and assume that u0 only satisfies −1 < u0(x) < 1, a.e. x ∈ Ω, and |〈u0〉| < 1.
Indeed, we deduce from the above that

∫
Ω

FN(u0) dx is bounded independently of N and we do not need
the strict separation property (2.24) to derive the a priori estimates on uN , namely, when integrating
(2.46) with respect to time.

Remark 2.8. (i) It is not difficult to prove the uniqueness of solutions. Indeed, let u1 and u2 be two
solutions with initial conditions u1

0 and u2
0, respectively, such that 〈u1

0〉 = 〈u2
0〉. Then, we have, setting

u = u1 − u2 and u0 = u1
0 − u2

0 and noting that 〈u〉 = 0,

(−∆)−1∂u
∂t

+ β(−∆)−1u − ∆u + f (u1) − f (u2) − 〈 f (u1) − f (u2)〉 = 0, (2.56)

∂u
∂ν

= 0, on Γ, (2.57)

u|t=0 = u0. (2.58)

Multiplying (2.56) by u, we obtain, in view of (2.14),

1
2

d
dt
‖u‖2−1 + β‖u‖2−1 + ‖∇u‖2 ≤ c0‖u‖2. (2.59)

Employing the interpolation inequality

‖u‖2 ≤ c‖u‖−1‖∇u‖, (2.60)

we deduce that

d
dt
‖u‖2−1 + c‖u‖2H1(Ω) ≤ c′‖u‖2−1, c > 0. (2.61)

It follows from (2.61) and Gronwall’s lemma that

‖u(t)‖H−1(Ω) ≤ cec′t‖u0‖H−1(Ω), t ≥ 0, (2.62)

whence the continuous dependence with respect to the initial conditions (in the H−1-norm) and the
uniqueness (for u; the uniqueness for µ is then straightforward).
(ii) We set

Φm = {v ∈ H1(Ω) ∩ L∞(Ω), −1 < v(x) < 1, a.e. x ∈ Ω, 〈v〉 = m}, m ∈ (−1, 1).
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It follows from the above that we can define the continuous (for the H−1-norm) family of solving
operators

S (t) : Φm ∩ {v ∈ L∞(Ω), ‖v‖L∞(Ω) < 1} → Φm, u0 7→ u(t), t ≥ 0.

Furthermore, it follows from (2.51) and Gronwall’s lemma that S (t) is dissipative on Φm, i.e., it pos-
sesses a bounded absorbing set B0 ⊂ Φm (in the sense that, ∀B ⊂ Φm bounded, ∃t0 = t0(B) such that
t ≥ t0 implies S (t)B ⊂ B0). Note that, in the case of the thermodynamically relevant logarithmic poten-
tials, the family of solving operators S (t), t ≥ 0, forms a continuous (for the H−1-norm) and dissipative
semigroup on Φm. Furthermore, in all cases, it follows from (2.62) that we can extend (in a unique
way and by continuity) S (t) to a semigroup acting on the closure of Φm in the H−1-topology, i.e., on
Lm = {v ∈ L∞(Ω), ‖v‖L∞(Ω) ≤ 1, 〈v〉 = m}, meaning that we can now consider initial data which contain
the pure states; note that S (t) : Lm → Φm, as soon as t > 0.

(iii) We can note that the pure states are not (weak) solutions to our problem. However, in [301], we
were able to prove, by a careful study of the structure of attractors, that, in the case of the original Cahn–
Hilliard equation, the pure states can indeed be considered as weak solutions, by setting S (t)(±1) = ±1.

Remark 2.9. We can also study the limit β goes to 0. In particular, we proved in [287] that, for regular
nonlinear terms, the asymptotic behavior of the Cahn–Hilliard–Oono equation and the limit Cahn–
Hilliard equation are close in some proper sense when β is small. The case of logarithmic nonlinear
terms is much more involved and we only proved in [300] the convergence of solutions on finite time
intervals.

2.3. Further regularity and strict separation

A natural way to obtain further regularity is to first differentiate the equation for u with respect to
time. However, for β > 0, such a technique cannot be applied in a direct way and is more involved.
Indeed, we recall that we have the equation

(−∆)−1∂uN

∂t
+ β(−∆)−1uN = −µN . (2.63)

Differentiating (2.63) with respect to time, we have

(−∆)−1 ∂

∂t
∂uN

∂t
+ β(−∆)−1∂uN

∂t
= −

∂µN

∂t
, (2.64)

where

∂µN

∂t
= −∆

∂uN

∂t
+ f ′N(uN)

∂uN

∂t
. (2.65)

Multiplying (2.64) by ∂uN
∂t , we obtain, owing to (2.65),

1
2

d
dt
‖
∂uN

∂t
‖2−1 + β‖

∂uN

∂t
‖2−1 + ‖∇

∂uN

∂t
‖2 + (( f ′N(uN)

∂uN

∂t
,
∂uN

∂t
)) = 0. (2.66)

We infer from (2.16) that
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(( f ′N(uN)
∂uN

∂t
,
∂uN

∂t
)) ≥ −c0‖

∂uN

∂t
‖2 + (( f ′N(uN)

∂〈uN〉

∂t
,
∂uN

∂t
)),

which yields, owing to a proper interpolation inequality,

d
dt
‖
∂uN

∂t
‖2−1 + 2β‖

∂uN

∂t
‖2−1 + ‖∇

∂uN

∂t
‖2 ≤ c‖

∂uN

∂t
‖2−1 − 2(( f ′N(uN)

∂〈uN〉

∂t
,
∂uN

∂t
)). (2.67)

The problem is that we now need to estimate the term

(( f ′N(uN)
∂〈uN〉

∂t
,
∂uN

∂t
)) = −βVol(Ω)〈uN〉〈 f ′N(uN)

∂uN

∂t
〉

(when β = 0, this term vanishes) and we are not able to estimate it uniformly with respect to N. Note
that, if 〈u0〉 = 0, then 〈u(t)〉 = 0, ∀t ≥ 0, and we do not have this problem.

In order to avoid dealing with this term, we write instead that

(( f ′N(uN)
∂uN

∂t
,
∂uN

∂t
)) = (( f ′N(uN)

∂uN

∂t
,
∂uN

∂t
)) −

∂〈uN〉

∂t
(( f ′N(uN)

∂uN

∂t
, 1))

≥ −c0‖
∂uN

∂t
‖2 −

∂〈uN〉

∂t
d
dt

∫
Ω

FN(uN) dx

= −c0‖
∂uN

∂t
‖2 −

d
dt

(
∂〈uN〉

∂t

∫
Ω

FN(uN) dx) +
∂2〈uN〉

∂t2

∫
Ω

FN(uN) dx.

Setting

Λ =
1
2
‖
∂uN

∂t
‖2−1 −

∂〈uN〉

∂t

∫
Ω

FN(uN) dx,

we infer from (2.66) the differential inequality

dΛ

dt
+ β‖

∂uN

∂t
‖2−1 + ‖∇

∂uN

∂t
‖2 ≤ c0‖

∂uN

∂t
‖2 −

∂2〈uN〉

∂t2

∫
Ω

FN(uN) dx,

which yields, employing a proper interpolation inequality,

dΛ

dt
+ β‖

∂uN

∂t
‖2−1 +

1
2
‖∇
∂uN

∂t
‖2 ≤ c(‖

∂uN

∂t
‖2−1 + |

∂〈uN〉

∂t
|2) −

∂2〈uN〉

∂t2

∫
Ω

FN(uN) dx. (2.68)

Recalling (2.26) and (2.50), we can see that Λ is bounded from below,

Λ ≥
1
2
‖
∂uN

∂t
‖2−1 − c,

for some positive constant c which is independent of N. Similarly, we can easily prove that the last
two terms in the right-hand side of (2.68) are bounded from above. We thus end up with a differential
inequality of the form

dΛ

dt
+ β‖

∂uN

∂t
‖2−1 +

1
2
‖∇
∂uN

∂t
‖2 ≤ c(‖

∂uN

∂t
‖2−1 + 〈u0〉

2 + EN(0)2 + 1), (2.69)
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where the positive constant c is independent of N, and we can conclude by using, e.g., the uniform
Gronwall’s lemma (see, e.g., [349]). We thus see that the additional term βu in the Oono’s model
brings essential difficulties.

Having this, we can go further and prove additional regularity on uN (see, e.g., [132]). Note however
that some corresponding constants may a priori depend on N.

A related question is the strict separation from the pure states, namely, an estimate of the form

‖u(t)‖L∞(Ω) ≤ 1 − δ, δ ∈ (0, 1).

From a physical point of view, this would mean that not only we never have the pure states during the
phase separation process, but we also stay in some sense far from the pure states. From a mathematical
point of view, this would mean that we actually have the same problem, but with a regular nonlinear ter-
m (actually, even better: with a bounded and globally Lipschitz continuous nonlinear term). Studying
further regularity on u and the asymptotic behavior of the problem would then be straightforward tasks.
This strict separation property is however related with the aforementioned question of the additional
regularity; to be more precise, this requires proper estimates on f ′(u) (see [301]).

As mentioned above, in [301], one regularizes the Cahn–Hilliard equation by the viscous Cahn–
Hilliard equation

ε
∂uε

∂t
+ (−∆)−1∂uε

∂t
− ∆uε + f (uε) − 〈 f (uε)〉 = 0, ε > 0, (2.70)

∂uε

∂ν
= 0, on Γ, (2.71)

uε|t=0 = u0. (2.72)

One advantage of the viscous Cahn–Hilliard equation is that one has the strict separation from the pure
states. More precisely, one can prove the

Theorem 2.10. We assume that ε > 0 and u0 ∈ Dε
m, |m| ≤ 1 − η, η ∈ (0, 1), where

Dε
m = {q ∈ H2(Ω),

∂q
∂ν

= 0, on Γ, ‖q‖L∞(Ω) ≤ 1, 〈q〉 = m,

f (q) ∈ L2(Ω),
√
εφ ∈ L2(Ω), φ ∈ H−1(Ω), φ = (εI + (−∆)−1)−1(∆q − f (q) + 〈 f (q)〉)}.

Then, for every ξ > 0, there holds

‖uε(t)‖L∞(Ω) ≤ 1 − δε,η,ξ, ∀t ≥ ξ, (2.73)

where the constant δε,η,ξ ∈ (0, 1) is independent of t and uε. Furthermore, if

‖u0‖L∞(Ω) ≤ 1 − δ0, (2.74)

for some δ0 ∈ (0, 1), then

‖uε(t)‖L∞(Ω) ≤ 1 − δ′ε,η,δ0,‖u0‖Dεm
, ∀t ≥ 0, (2.75)
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where

‖q‖2Dε
m

= ‖q‖2H2(Ω) + ‖ f (q)‖2L2(Ω) + ε‖φ‖2L2(Ω) + ‖φ‖2H−1(Ω)

and the constant δ′ε,η,δ0,‖u0‖Dεm
∈ (0, 1) is independent of t and uε.

Remark 2.11. It follows from the above that, if ‖u0‖L∞(Ω) ≤ 1, then any solution uε to the viscous Cahn–
Hilliard equation is a priori strictly separated from the singularities of f as soon as t > 0. Furthermore,
if the initial datum is strictly separated from ±1, then uε remains uniformly a priori strictly separated
from ±1 for all times.

Remark 2.12. (i) Unfortunately, both constants δε,η,ξ and δ′ε,η,δ0,‖u0‖Dεm
tend a priori to 0+ as ε → 0+,

so that the above theorem does not say anything on strict separation properties for the solutions to the
Cahn–Hilliard equation.

(ii) Actually, we can prove similar strict separation properties for the solutions to the Cahn–Hilliard
equation if we further assume that

| f ′(s)| ≤ c(| f (s)|2 + 1), s ∈ (−1, 1),

for some positive constant c. In particular, this inequality holds if f has a growth of the form ±1
(1−s2)p ,

p ≥ 1 (we can actually improve this and take p > 3
7 , see [301]), close to ±1, but does not hold for the

physically relevant logarithmic potentials.

(iii) In one space dimension, owing to the continuous embedding H1(Ω) ⊂ C(Ω), we can easily prove
the above strict separation properties for the Cahn–Hilliard equation. Furthermore, in two space di-
mensions, using the embedding of H1(Ω) into a proper Orlicz space, we can prove these properties,
provided that

| f ′(s)| ≤ ec| f (s)|+c′ , s ∈ (−1, 1),

for some positive constants c and c′ (see [301] for details). In particular, the physically relevant loga-
rithmic potentials satisfy these assumptions. Now, in three space dimensions, the strict separation from
the singularities is an open problem for the thermodynamically relevant logarithmic nonlinear terms.

An alternative proof, in two space dimensions, based again on the Orlicz embedding and also valid
for the Cahn–Hilliard–Oono equation, was given in [192] (see also [119, 165, 193, 195]). There, in
order to avoid dealing with the the viscous Cahn–Hilliard equation and differentiating the equation for
u with respect to time, we used instead proper truncations and difference quotients. Having the strict
separation property (for, say, t ≥ 2 in our case), we can then prove the existence of finite-dimensional
attractors and the convergence of single trajectories to steady states.

Remark 2.13. We refer the reader to [129] for the study of the Cahn–Hilliard system with a singular
potential in unbounded cylindrical domains (in that case, the equations are endowed with Dirichlet
boundary conditions).
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2.4. Dynamic boundary conditions

The question of how the phase separation process (i.e., the spinodal decomposition) is influenced by
the presence of walls has gained much attention (see [155, 156, 246] and the references therein). This
problem has mainly been studied for polymer mixtures (although it should also be important for other
systems, such as binary metallic alloys): from a technological point of view, binary polymer mixtures
are particularly interesting, since the occurring structures during the phase separation process may be
frozen by a rapid quench into the glassy state; microstructures at surfaces on very small length scales
can be produced in this way.

We also recall that the usual variational boundary condition ∂u
∂ν

= 0 on the boundary yields that the
interface is orthogonal to the boundary, meaning that the contact line, when the interface between the
two components meets the walls, is static, which is not reasonable in many situations. This is the case,
e.g., for mixtures of two immiscible fluids: in that case, the contact angle should be dynamic, due to
the movements of the fluids. This can also be the case in the context of binary alloys, whence the need
to define dynamic boundary conditions for the Cahn–Hilliard equation.

In that case, we again write that there is no mass flux at the boundary (i.e., that (2.1) still holds).
Then, in order to obtain the second boundary condition, following the phenomenological derivation
of the Cahn–Hilliard system, we consider, in addition to the usual Ginzburg–Landau free energy and
assuming that the interactions with the walls are short-ranged, a surface free energy of the form

ΨΓ(u,∇Γu) =

∫
Γ

(
αΓ

2
|∇Γu|2 + G(u)) dσ, αΓ > 0, (2.76)

where ∇Γ is the surface gradient and G is a surface potential. Thus, the total free energy of the system
reads

Ψ = ΨΩ + ΨΓ. (2.77)

Writing finally that the system tends to minimize the excess surface energy, we are led to postulate the
following boundary condition:

1
d
∂u
∂t
− αΓ∆Γu + g(u) + α

∂u
∂ν

= 0, on Γ, (2.78)

i.e., there is a relaxation dynamics on the boundary (note that it follows from the boundary conditions
that

dΨ

dt
= −

1
κ
‖
∂u
∂t
‖2H−1(Ω) −

1
d
‖
∂u
∂t
‖2L2(Γ) ≤ 0),

where ∆Γ is the Laplace–Beltrami operator, g = G′ and d > 0 is some relaxation parameter, which is
usually referred to as dynamic boundary condition, in the sense that the kinetics, i.e., ∂u

∂t , appears ex-
plicitly. Furthermore, in the original derivation, one has G(s) = 1

2aΓs2−bΓs, where aΓ > 0 accounts for
a modification of the effective interaction between the components at the walls and bΓ characterizes the
possible preferential attraction (or repulsion) of one of the components by the walls (when bΓ vanishes,
there is no preferential attraction). We also refer the reader to [26, 157] for other physical derivations
of the dynamic boundary condition, obtained by taking the continuum limit of lattice models within a
direct mean-field approximation and by applying a density functional theory, respectively, to [328] for
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the derivation of dynamic boundary conditions in the context of two-phase fluid flows and to [337,341]
for an approach based on concentrated capacity.

Remark 2.14. Actually, it would seem more reasonable, in the case of nonpermeable walls, to write
the conservation of mass both in the bulk Ω and on the boundary Γ, i.e.,

d
dt

(
∫

Ω

u dx +

∫
Γ

u dσ) = 0.

Indeed, due to the interactions with the walls, one should expect some mass on the boundary. We
assume that the first equation of (1.1) still holds. Then, writing that

µ = ∂uΨ,

where ∂ is the variational derivative mentioned above (note that, in the original derivation, one has
µ = ∂uΨΩ), we obtain the second equation of (1.1), together with the boundary condition

µ = −αΓ∆Γu + g(u) + α
∂u
∂ν
, on Γ.

We now note that, owing to the first equation of (1.1), the above mass conservation reads∫
Γ

(
∂u
∂t

+ κ
∂µ

∂ν
) dσ = 0.

A class of boundary conditions which ensure this mass conservation reads

∂u
∂t

+ βΓ∆Γu + κ
∂µ

∂ν
= 0, on Γ, βΓ ≥ 0.

We can thus see that, when βΓ > 0, we also have a Cahn–Hilliard type system on the boundary. Note
that, when βΓ = 0, it follows from the above that

dΨ

dt
= −κ‖∇µ‖2L2(Ω)n ≤ 0.

We refer the reader to [77, 197] for the study of this problem (see also [282, 291] for higher-order
models and [163, 164, 172] for similar dynamic boundary conditions in the case of semipermeable
walls).

Again, for regular nonlinear terms, the problem is well understood from a mathematical point of
view (see, e.g., [88, 163, 164, 172, 302, 326, 329, 368]).

The first proof of existence of solutions to the Cahn–Hilliard equation with singular (and, in par-
ticular, logarithmic) potentials and dynamic boundary conditions is given in [190] (see also [191]),
assuming that the (regular in our case; see [104, 190] for singular surface nonlinear terms) surface
nonlinearity g has the right sign at the singular points of the bulk nonlinearity f , namely,

± g(±1) > 0 (2.79)

(see also [80] for a similar result for the Caginalp phase-field system; note that the Cahn–Hilliard
equation can also be derived as a singular limit of the Caginalp phase-field system, see [54–56]).
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Roughly speaking, these conditions force the order parameter to stay away from the pure states ±1 on
the boundary.

A first natural question is what happens when the above sign conditions are not satisfied.
An important feature of the Cahn–Hilliard equation with a singular potential and dynamic boundary

conditions is that one can have nonexistence of classical (i.e., in the sense of distributions) solutions
(of course, when the sign conditions (2.79) are not satisfied), already in one space dimension.

We will illustrate this by considering the following simple scalar ODE:

y′′ − f (y) = 0, in (−1, 1), y′(±1) = K > 0. (2.80)

We assume that f is odd and singular at ±1 and that F has finite limits at ±1 (here, F is any
antiderivative of f ). In particular, these assumptions are satisfied by the physically relevant logarithmic
potentials.

Then, when K is small, one has the existence and uniqueness of a (classical) solution to (2.80)
which is separated from the singular values of f (i.e., ‖y‖L∞(−1,1) < 1). Furthermore, it follows from
standard interior regularity estimates that

|y′(x)| ≤ c0, x ∈ (−
1
2
,

1
2

), (2.81)

where the positive constant c0 is independent of K.
Multiplying (2.80) by y′ and integrating over (0, 1), we obtain

|
1
2

K2 − F(y(1))| ≤ c1, (2.82)

where, owing to (2.81), the positive constant c1 is independent of K. Since F is bounded, independently
of K, this shows that the above inequality cannot hold when K is large, meaning that there cannot be a
classical solution to (2.80).

Finally, noting that y is odd, we can rewrite (2.80) in the equivalent form

y′′ − f (y) = 〈y′′ − f (y)〉, in (−1, 1), y′(±1) = K,

which corresponds to the one-dimensional stationary Cahn–Hilliard equation (with κ = α = 1) with
dynamic boundary conditions (with surface potential g ≡ −K; note that, in one space dimension, the
Laplace–Beltrami operator does not make sense and does not appear).

Thus, when the sign conditions are not satisfied, we should expect to have nonexistence of classical
solutions. However, we will see below that, approximating the singular nonlinear term by regular
ones, we can prove that, at least for a subsequence, the corresponding solutions converge to some limit
function.

We first rewrite the problem in the following form (where, for simplicity, we have set all physical
constants equal to 1): 

∂u
∂t = ∆µ, ∂µ

∂ν
|Γ = 0,

µ = −∆u + f0(u) + λu, λ ∈ R,
∂v
∂t − ∆Γv + g0(v) + v + ∂u

∂ν
= 0, on Γ, v = u|Γ,

(2.83)
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where f = f0 + λI and g = g0 + I.
We then make the following assumptions:

f0 ∈ C
2(−1, 1), f0(0) = 0, f ′0 ≥ 0, sgn(s) f ′′0 (s) ≥ 0, s ∈ (−1, 1), (2.84)

lim
s→±1

f0(s) = ±∞, lim
s→±1

f ′0(s) = +∞, (2.85)

g0 ∈ C
2(R), ‖g0‖C2(R) < +∞. (2.86)

We can note that the physically relevant logarithmic functions f (1.4) can indeed be decomposed into
a sum f0 + λI, where f0 satisfies the above assumptions.

We now introduce, as above, the following regular approximations of f0, for N ∈ N:

f0,N(s) =


f0(s), |s| ≤ 1 − 1

N ,

f0(1 − 1
N ) + f ′0(1 − 1

N )(s − 1 + 1
N ), s > 1 − 1

N ,

f0(−1 + 1
N ) + f ′0(−1 + 1

N )(s + 1 − 1
N ), s < −1 + 1

N ,

(2.87)

and we consider (2.83) in which f0 is replaced by f0,N , N ∈ N.
The existence, uniqueness and regularity of the solution uN to this regularized problem is clear,

since the nonlinear term is now regular (see [302]). Furthermore, we have the following estimates, for
N large enough:

‖uN(t)‖2Cη(Ω) + ‖uN(t)‖2H2(Γ) + ‖uN(t)‖2H2(Ωε)
+ ‖uN(t)‖2H1(Ω) + ‖

∂uN

∂t
(t)‖2H−1(Ω) (2.88)

+‖
∂uN

∂t
(t)‖2L2(Γ) + ‖∇DτuN(t)‖2

L2(Ω)(n−1)n + ‖ f0,N(uN(t))‖L1(Ω)

+

∫ t+1

t
(‖
∂uN

∂t
(s)‖2H1(Ω) + ‖

∂uN

∂t
(s)‖2H1(Γ)) ds

≤ c1e−c2t(1 + ‖uN(0)‖2H1(Ω) + ‖uN(0)‖2H1(Γ) + ‖
∂uN

∂t
(0)‖2H−1(Ω) + ‖

∂uN

∂t
(0)‖2L2(Γ))

2 + c3,

where Ωε = {x ∈ Ω, dist(x,Γ) > ε}, ε > 0, DτuN = ∇uN −
∂uN
∂ν
ν is the tangential part of the gradient

(here, ν also denotes a smooth extension of the unit outer normal to the boundary in Ω) and the positive
constants η < 1

4 and ci, i = 1, ..., 3, are independent of N.
The only difficulty, to derive these estimates, is to obtain the estimate on the tangential part of the

gradient and the interior H2-estimate. This is achieved by a proper variant of the nonlinear localization
technique, see [305] for details.

Remark 2.15. Actually, uN also belongs to H2(Ω), but the H2-norm of uN depends a priori on N and
such a regularity does not pass to the limit.

We also have the following (parabolic) regularization property on the solution uN to the regularized
problem:

‖
∂uN

∂t
(t)‖2H−1(Ω) + ‖

∂uN

∂t
(t)‖2L2(Γ) (2.89)
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≤
c
t
(1 + ‖uN(0) − 〈uN(0)〉‖2H−1(Ω) + ‖uN(0)‖2L2(Γ)), t ∈ (0, 1],

where the positive constant c is independent of N.
Finally, for any two solutions u1 and u2 to the regularized problem (for simplicity, we omit the

index N here), with initial data having the same average (note that we still have the conservation of the
average when considering dynamic boundary conditions), there holds

‖u1(t) − u2(t)‖H−1(Ω) + ‖u1(t) − u2(t)‖L2(Γ) (2.90)

≤ cec′t(‖u1(0) − u2(0)‖H−1(Ω) + ‖u1(0) − u2(0)‖L2(Γ)), ∀t ≥ 0,

where the positive constants c and c′ are independent of t, N and u1 and u2.
In particular, it follows from (2.88) that, at least for a subsequence which we do not relabel, uN

converges (at least weakly) to some function u in the corresponding spaces. Now, recalling that one
expects nonexistence of classical solutions in general, u cannot be a (classical) solution to the Cahn–
Hilliard system (2.83) with the original singular nonlinearity f0 in general. However, we will see below
that uN converges to the solution to some variational inequality, derived from (2.83).

Our aim now is to pass rigorously to the limit in the regularized problems associated with (2.83). As
already mentioned, as the limit is not a classical solution to (2.83) in general, we first need to define a
proper weak formulation of the problem. More precisely, this will be done by considering a variational
inequality (see also [197, 209] for a very close approach, but at an abstract level, i.e., based on duality
arguments).

To do so, we first introduce the bilinear form

B(w, z) = ((∇w,∇z))Ω + λ((w, z))Ω + L(((−∆)−1w, z))Ω + ((∇Γw,∇Γz))Γ,

(w, z) ∈ H1(Ω) ⊗ H1(Γ) = {q ∈ H1(Ω), q|Γ ∈ H1(Γ)}, where the positive constant L is chosen such that
the following coercivity relation holds:

‖∇w‖2L2(Ω)n + λ‖w‖2L2(Ω) + L‖w‖2H−1(Ω) ≥
1
2
‖w‖2H1(Ω), ∀w ∈ H1(Ω) such that 〈w〉 = 0.

Furthermore, −∆ denotes again the minus Laplace operator with Neumann boundary conditions and
acting on functions with null average, w = w − 〈w〉 and ((·, ·))Ω and ((·, ·))Γ denote the scalar products
in L2(Ω) and L2(Γ), respectively.

We then rewrite the problem in the following equivalent form:
(−∆)−1 ∂u

∂t − ∆u + f0(u) + λu − 〈µ〉 = 0,
µ = −∆u + f0(u) + λu,
∂v
∂t − ∆Γv + g(v) + ∂u

∂ν
= 0, on Γ, v = u|Γ,

u|t=0 = u0, v|t=0 = v0.

(2.91)

We multiply the first equation of (2.91) by u − w, where w = w(x) is such that

〈u(t) − w〉 = 0, ∀t ≥ 0,

and have, owing to the boundary conditions,
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(((−∆)−1∂u
∂t
, u − w))Ω + ((

∂u
∂t
, u − w))Γ + B(u, u − w) + (( f0(u), u − w))Ω

= L((u, (−∆)−1(u − w)))Ω − ((g(u), u − w))Γ.

Noting that B is positive and f0 is monotone increasing, we finally obtain the following variational
inequality:

(((−∆)−1∂u
∂t
, u − w))Ω + ((

∂u
∂t
, u − w))Γ + B(w, u − w) + (( f0(w), u − w))Ω (2.92)

≤ L((u, (−∆)−1(u − w)))Ω − ((g(u), u − w))Γ

(what is important here, when considering a singular nonlinear term f0, is that this function acts on the
test functions).

We now introduce the phase space

Φ = {(q, r) ∈ L∞(Ω) × L∞(Γ), ‖q‖L∞(Ω) ≤ 1, ‖r‖L∞(Γ) ≤ 1}

and are in a position to give the definition of a variational (weak) solution.

Definition 2.16. Let (u0, v0) belong to Φ. Then, a pair (u, v) is a variational solution to (2.91) if

(i) (u, v) ∈ C([0,+∞); H−1(Ω) × L2(Γ)) ∩ L2(0,T ; H1(Ω) × H1(Γ)), ∀T > 0.

(ii) (∂u
∂t ,

∂v
∂t ) ∈ L2(τ,T ; H−1(Ω) × L2(Γ)), ∀0 < τ < T .

(iii) f (u) ∈ L1((0,T ) ×Ω), ∀T > 0.

(iv) −1 < u(t, x) < 1, for almost every (t, x) ∈ R+ ×Ω.

(v) u(0) = u0, v(0) = v0.

(vi) 〈u(t)〉 = 〈u0〉, ∀t ≥ 0.

(vii) u(t)|Γ = v(t), for almost every t > 0.

(viii) The variational inequality (2.92) is satisfied for almost every t > 0 and for every test function
w = w(x) such that w ∈ H1(Ω) ⊗ H1(Γ), f (w) ∈ L1(Ω) and 〈w〉 = 〈u0〉.

Remark 2.17. Of course, a classical solution is a variational one. Furthermore, the notion of a varia-
tional solution also makes sense when f0 is regular and, in that case, the two notions of solutions are
equivalent (see also [130]).

Remark 2.18. We can note that, in the above definition, u(t)|Γ = v(t) only for t > 0 and this condition
does not necessarily hold for the initial data. However, as soon as t > 0, v can be found, once u is
known. This also justifies that we wrote the variational inequality (2.92) in terms of u only.

We can now write the variational inequality (2.92) with u replaced by (a proper subsequence of)
the solutions uN to the regularized problems (when u0 is not strictly separated from ±1 or u0|Γ , v0,
we approximate the initial data by a sequence of smooth functions which satisfy these conditions) and,
passing to the limit (owing to (2.88); one can proceed as in the proof of Theorem 2.6 to prove the
separation property here), we have the
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Theorem 2.19. For every pair of initial data (u0, v0) ∈ Φ, (2.91) possesses a unique variational solu-
tion (u, v) which is the limit of a sequence of solutions to the regularized problems and which satisfies
(2.88), the regularization property (2.89) and the Lipschitz continuity property (2.90).

This result allows to define a semigroup S (t) acting on the phase space Φ and associated with the
variational solutions to (2.91). Furthermore, this semigroup is Lipschitz continuous in the following
sense:

‖S (t)(u1, v1) − S (t)(u2, v2)‖H−1(Ω)×L2(Γ) ≤ cec′t‖(u1, v1) − (u2, v2)‖H−1(Ω)×L2(Γ), t ≥ 0, (2.93)

∀(u1, v1), (u2, v2) ∈ Φ such that 〈u1〉 = 〈u2〉.

Remark 2.20. We refer the reader to [305] for the study of finite-dimensional attractors for the semi-
group S (t).

Now, as already mentioned several times, a variational solution does not necessarily solve the Cahn–
Hilliard system in the usual sense (this would be true if we had an H2-regularity on u, but, here, we a
priori only have an interior H2-regularity, together with an L2-estimate on the gradient of the tangential
derivatives). Actually, we can be more precise. Indeed, we can prove that a variational solution solves
the bulk equation, namely,

(−∆)−1∂u
∂t
− ∆u + f0(u) + λu − 〈µ〉 = 0,

in the sense of distributions (and almost everywhere). However, it does not necessarily satisfy the
dynamic boundary condition.

Again, we can be more precise. First, it follows from (2.88) (for u) that the trace

[
∂u
∂ν

]int =
∂u
∂ν

exists, say, in L∞(τ,T ; L1(Γ)), 0 < τ < T . Furthermore, the (proper subsequence of the) solutions to
the regularized problems satisfy the dynamic boundary condition

∂vN

∂t
− ∆ΓvN + g(vN) +

∂uN

∂ν
= 0, on Γ, vN = uN |Γ,

in L∞(τ,T ; L2(Γ)), 0 < τ < T . We can then pass to the limit in this equation, which yields that the limit

[
∂u
∂ν

]ext = lim
k→+∞

∂uN

∂ν

exists in L∞(τ,T ; L2(Ω)) weak star, 0 < τ < T , whence, at the limit

∂v
∂t
− ∆Γv + g(v) + [

∂u
∂ν

]ext = 0, on Γ,

almost everywhere, where [∂u
∂ν

]ext and [∂u
∂ν

]int do not necessarily coincide; in particular, a variational
solution is a classical one when these two quantities coincide almost everywhere on the boundary.
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Remark 2.21. Coming back to the scalar ODE considered in the beginning of this subsection, namely,

y′′ − f (y) = 0, in (−1, 1), y′(±1) = K > 0,

we can prove that there exists a critical value K0 of K such that, if K > K0, there is no classical solution.
However, there exists a variational solution which is solution to the ODE

y′′ − f (y) = 0, in (−1, 1), y(±1) = ±1,

and, in that case,

y′|x=±1 , K.

It is now natural and important to find sufficient conditions which ensure that a variational solution
is a classical one (one such sufficient condition being the sign conditions (2.79) mentioned above). We
saw that this is the case when the two quantities [∂u

∂ν
]ext and [∂u

∂ν
]int coincide almost everywhere on Γ. In

particular, this is the case when u(t) belongs to H2(Ω), for almost every t > 0, which, in turn, is related
to the (strict) separation from the singularities. Indeed, we have the following result.

Theorem 2.22. Let (u, v) be a variational solution and set, for δ ∈ (0, 1) and T > 0,

Ωδ(T ) = {x ∈ Ω, |u(T, x)| < 1 − δ}.

Then, u(T ) ∈ H2(Ωδ(T )) and

‖u(T )‖H2(Ωδ(T )) ≤ cδ,T ,

where cδ,T is independent of u.

In particular, it follows from Theorem 2.22 that u(t) is H2-regular in each subdomain in which it is
strictly separated from ±1. Furthermore, a consequence of this result is that, if

|u(t, x)| < 1, for almost every (t, x) ∈ R+ × Γ, (2.94)

then

[
∂u
∂ν

]ext = [
∂u
∂ν

]int, for almost every (t, x) ∈ R+ × Γ,

and a variational solution is a classical one. We thus finally see that the existence of a classical solution
is related to the separation of u from the singularities of the nonlinear term, now on the boundary Γ.

Such a separation holds when f0 has sufficiently strong singularities (see also [78] for a similar
result for the Caginalp phase-field system). More precisely, we have the

Theorem 2.23. We assume that

lim
s→±1

F0(s) = +∞,

where F0 is any antiderivative of f0. Then, (2.94) holds and a variational solution is a classical one.
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In particular, this holds when f0 has a growth of the form

±1
(1 − s2)p , p > 1,

close to the singular points ±1. Unfortunately, for the relevant logarithmic potentials, F0 is bounded,
so that this theorem cannot be applied. In that case, we can have |u(t, x)| = 1 on a set with nonzero
measure on the boundary, or even on the whole boundary (see also the scalar ODE considered above).

We finally recall the

Theorem 2.24. We assume that

±g(±1) > 0.

Then, a variational solution is a classical one.

As already mentioned, the sign conditions force the order parameter to stay away from the pure
states on the boundary.

2.5. Concluding remarks

We mention in this subsection several important generalizations of the Cahn–Hilliard equation.
A first one consists in studying systems of Cahn–Hilliard equations to describe phase separation in

multicomponent alloys (see [51, 91, 107, 139, 140, 146, 178–180, 298]).
We also mention the stochastic Cahn–Hilliard equation (also called the Cahn–Hilliard–Cook equa-

tion) which takes into account thermal fluctuations (see [29, 30, 32, 33, 63, 110, 112, 117, 118, 133, 202,
203, 219]).

Then, an important generalization of the Cahn–Hilliard equation is the viscous Cahn–Hilliard e-
quation which accounts for viscosity effects in the phase separation of polymer/polymer systems
(see [16,65,93,142,310]). The viscous Cahn–Hilliard equation can also be seen as a particular case of
the generalizations proposed by M. Gurtin in [221] (which, in particular, account for anisotropy) and
which are based on a microforce balance, i.e., a new balance law for interactions at a microscopic level
(see [36,37,39,79,130,131,196,206,284–286,294,295,299,304,332–334,364] for the mathematical
analysis); we also refer the reader to yet another approach proposed by P. Podio–Guidugli in [325] and
studied in, e.g., [97–100, 105].

Another important generalization of the Cahn–Hilliard equation is the hyperbolic relaxation of the
equation, proposed in [174–177, 260] to model the early stages of spinodal decomposition in certain
glasses (see also [38, 184, 185, 210–212, 340] for the mathematical analysis and [338, 339] for the hy-
perbolic relaxation of the Cahn–Hilliard–Oono equation in the whole space). Actually, the hyperbolic
relaxation of the equation is a particular case of more general memory relaxations (for an exponentially
decreasing memory kernel) which were studied, e.g., in [106, 109, 186, 187] (see also [327]).

We also mention the convective Cahn–Hilliard equation which describes the dynamics of driven
systems such as faceting of growing thermodynamically unstable crystal surfaces (see [126–128, 198,
267, 361] for the mathematical analysis).

It is important to note that, in realistic physical systems, quenches are usually carried out over a
finite period of time, so that phase separation can begin before the final quenching is reached. It is thus
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important to consider nonisothermal Cahn–Hilliard models. Such models were derived and studied
in [8, 9, 170, 171, 297, 346].

The Cahn–Hilliard equation can be coupled with the Allen–Cahn equation which describes the
ordering of atoms during the phase separation process (see [7]). This problem was studied, e.g., in
[28, 114, 269, 296, 312, 374].

It can also be coupled with the equations for elasticity or viscoelasticity, to account for mechanical
effects (see, e.g., [12, 27, 34, 35, 64, 121, 179–181, 284, 285, 318–321, 331]).

We also mention the coupling of the Cahn–Hilliard equation with the Navier–Stokes equations in
the context of two-phase (multiphase) flows (see, e.g., [1,3,43–47,49,61,62,86,94,158,166,167,169,
195, 222, 236, 247, 250, 252, 268, 273, 372, 375]) and some related models such as the Cahn–Hilliard–
Hele–Shaw and Cahn–Hilliard–Brinkman equations (see, e.g., [42, 108, 119, 120, 153, 193, 225, 359,
360, 365, 371]). Related models can also be used to model tumor growth (see, e.g., [96, 101–103, 113,
159, 182, 237, 272]).

We finally refer the reader to, e.g., [5, 6, 10, 11, 16–22, 40, 46–50, 52, 67, 69, 71, 87, 89, 111, 122,
135–137, 141, 147, 150–152, 154, 159, 161, 183, 199, 204, 205, 207, 220, 223, 224, 226, 230, 231, 242,
243,246–252,261–263,265,266,270,275,280,283,306,330,336,344,345,347,351,358,362,366,369,
377, 378] for the numerical analysis and simulations of the Cahn–Hilliard equation (and several of its
generalizations).

3. The Cahn–Hilliard equation with a proliferation term

We consider the following initial and boundary value problem in a bounded and regular domain Ω

of Rn, n = 1, 2 or 3, with boundary Γ:

∂u
∂t

+ ∆2u − ∆ f (u) + g(u) = 0, (3.1)

∂u
∂ν

=
∂∆u
∂ν

= 0, on Γ, (3.2)

u|t=0 = u0, (3.3)

where f is a smooth function defined on R (as already mentioned, typically, f (s) = s3 − s) and

g(s) =

q∑
i=0

bisi, bq , 0, q ≥ 2. (3.4)

The main feature of (3.1)-(3.2), together with a function g as in (3.4), is that we can have blow up
in finite time.

In order to exhibit blow up in finite time, we look for spatially homogeneous solutions, i.e., solutions
of the form

u(t, x) = y(t),

whence the ODE
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y′ +
q∑

i=0

biyi = 0. (3.5)

Let x0 < x1 < · · · < xk be the real roots of g (we assume in what follows that k ≥ 1, though the case
k = 0 is also contained in Theorem 3.1 below; see also Remark 3.2). We thus have

g(s) = bq

k∏
i=1

(s − xi)αi

r∏
i=1

(s2 + λis + βi)ui (3.6)

and

1
g(s)

=
1
bq

[
k∑

i=1

(
αi∑
j=1

αi, j

(s − xi) j ) +

r∑
i=1

(
ui∑
j=1

bi, js + ci, j

(s2 + λis + βi) j )] (3.7)

(here, we assume, without loss of generality, that r ≥ 1).
Therefore, (3.5) is equivalent to

ψ(y) = bq(−t + κ), (3.8)

where ψ is an antiderivative of bq

g(s) and

κ =
1
bq
ψ(y0), y0 = y(0). (3.9)

Let k̃ be the number of roots of g which have an odd order (i.e., for which αi is odd).
We have the

Theorem 3.1. We assume that k̃ is even. Then, we have blow up in finite time.

Proof. We first note that ψ has finite limits λ± as s tends to ±∞. Indeed, the only terms in (3.7) which
yield infinite limits when taking an antiderivative can be written as

k∑
i=1

αi,1

s − xi
+

r∑
i=1

bi,1s + ci,1

s2 + λis + βi
.

Then, when taking an antiderivative, we need to deal with the function

h(s) =

k∑
i=1

αi,1 ln |s − xi| +

r∑
i=1

bi,1

2
ln(s2 + λis + βi).

Now, noting that it follows from (3.7) that, necessarily,

k∑
i=1

αi,1 +

r∑
i=1

bi,1 = 0 (3.10)

and writing
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h(s) = ln(
k∏

i=1

|s − xi|
αi,1

r∏
i=1

(s2 + λis + βi)
bi,1

2 ),

it follows from (3.10) that

lim
s→±∞

h(s) = 0. (3.11)

Furthermore, since k̃ is even, then ψ is monotone increasing on ]−∞, x1[ and ψ(]−∞, x1[) =]λ−,+∞[.
Similarly, ψ is monotone increasing on ]xk,+∞[ and ψ(]xk,+∞[) =] −∞, λ+[.

Let us first assume that bq > 0. In that case, we take y0 < x1 and there is a local (in time) solution
to (3.5), with initial datum y0 (as long as y(t) < x1). Moreover,

y(t) = ψ−1(bq(−t + κ)) (3.12)

and this solution exists as long as

bq(−t + κ) > λ−,

i.e.,

t < κ −
λ−
bq
, (3.13)

meaning that we have blow up in finite time.
Similarly, if bq < 0, we take y0 > xk and we have a solution as long as

bq(−t + κ) < λ+,

i.e.,

t < κ −
λ+

bq
, (3.14)

whence again blow up in finite time.
�

Remark 3.2. If k = 0, then ψmaps increasinglyR onto ]λ−, λ+[ and we can easily conclude, proceeding
as above and taking y0 arbitrarily.

Now, when k̃ is odd, we have the

Theorem 3.3. We assume that k̃ is odd and bq < 0. Then, we have blow up in finite time.

Proof. Proceeding as above, we see that ψ is monotone decreasing on ] − ∞, x1[ and ψ(] − ∞, x1[) =

] −∞, λ−[. Taking y0 < x1, we have a solution to (3.5) as long as

bq(−t + κ) < λ−,

i.e.,

AIMS Mathematics Volume 2, Issue 3, 479-544



512

t < κ −
λ−
bq
, (3.15)

meaning once more that we have blow up in finite time.
�

Remark 3.4. More generally, we have blow up in finite time whenever g is continuous on an interval
] −∞, x0[ (resp., ]x0,+∞[) and maps increasingly (resp., decreasingly) ] −∞, x0[ (resp, ]x0,+∞[) onto
]λ,+∞[. Here, λ is finite.

Example 3.5. We take

g(s) = λs(s − 1), λ > 0. (3.16)

In that case, (3.1) has applications in wound healing and tumor growth and λ is a proliferation coef-
ficient (see [244]). Here, k̃ = k = 2 and bq = λ > 0. It thus follows from Theorem 3.1 that we can
have blow up in finite time (see also [85]). Furthermore, here, x0 = 0, so that blow up in finite time
occurs when y0 < 0. We can note that, in this example, the biologically relevant interval is [0, 1], so
that a natural question is whether we can have blow up in finite time in (3.1) for initial data u0 such that
u0(x) ∈ [0, 1], a.e. in Ω. Numerical simulations performed in [85] suggest that this can indeed happen.
Actually, what is important here is the choice of the nonlinear term f and, more precisely, the minima
of the double-well potential F (we recall that f = F′).

Example 3.6. We take

g(s) =
λd

2
(1 + s) − λg(1 + s)2(1 − s)2, λd, λg > 0. (3.17)

In that case, (3.1) has biological applications and λd and λg are death and growth coefficients, respec-
tively (see [14]). Furthermore, a study of the function g shows that either k̃ = k = 4 or k̃ = 2 and
k = 2 or 3. Noting that bq = −λg < 0, it follows from Theorem 3.1 that we can have blow up in finite
time which occurs when y0 > 1 (indeed, it is easy to show that, in this example, xk > 1). Here, the
biologically relevant interval is [−1, 1] and, again, a natural question is whether we can have blow up
in finite time for (3.1) when u0(x) ∈ [−1, 1], a.e. in Ω. Numerical simulations suggest that, in that case,
the solutions remain in the biologically relevant interval (see [14, 149]).

Remark 3.7. Another interesting question is whether the solutions to (3.1) remain in the biologically
relevant interval, assuming that the initial condition u0 also belongs to this interval. It was proved
in [85] that, for (3.16), this may not be the case (see also [324] for the Cahn–Hilliard equation). Let us
now consider the function g defined in (3.17) and assume that f (s) = s3 − s. In one space dimension,
(3.1) then reads, with obvious notation,

ut + uxxxx − (u3 − u)xx + g(u) = 0. (3.18)

We take the initial datum u0 such that u0(x) = 1 − 1+λd
24 x4 in a neighborhood of 0 and extend it to a

smooth function defined on (−1, 1) and taking values in [−1, 1]. We note that u0,x(0) = u0,xx(0) = 0,
while u0,xxxx = −1 − λd. It thus follows from (3.18) that ut(0, 0) = 1, so that
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u0,t = 1 + t + o(t).

Therefore, u(0, t) > 1 for t > 0 small, meaning that u does not stay in the biologically relevant interval.

Remark 3.8. The above results also show that we can have blow up in finite time for the reaction-
diffusion equation

∂u
∂t
− ∆u + g(u) = 0, (3.19)

associated with the Neumann boundary condition ∂u
∂ν

= 0, on Γ, which is also relevant in view of
biological applications. Actually, we can say more here. Indeed, let u0 ∈ L∞(Ω) be an initial datum for
(3.19) and let y± be the solutions to the ODE’s

y′± + g(y±) = 0, y±(0) = y±,0, (3.20)

where y−,0 ≤ u0(x) ≤ y+,0, a.e. in Ω. Then, it follows from the comparison principle for second-order
parabolic equations that

y−(t) ≤ u(t, x) ≤ y+(t), (3.21)

meaning that, if u0 is properly chosen, u blows up in finite time. Similarly, the comparison principle
also shows that, when u0 is properly chosen (i.e., when y±,0 yield solutions to (3.5) which do not
blow up in finite time), then we have global (in time) existence; in particular, in the two examples
above, we have global (in time) existence when u0 remains in the biologically relevant interval. Now,
such a comparison principle does not hold for fourth-order parabolic equations, so that the results
obtained in Theorems 3.1 and 3.3 do not say more on the qualitative behavior of the solutions to (3.1)
in general. However, in [85], we were able to obtain a more complete picture in the particular case
(3.16) by studying the evolution equation for the spatial average of u. More precisely, we proved that,
if u is a solution to (3.1)-(3.2), then either u blows up in finite time or u exists globally in time and
0 ≤ 〈u(t)〉 ≤ 〈u0〉 + 1, ∀t ≥ 0. Furthermore, if u is a nonvanishing solution to (3.1)-(3.2) such that
u(t) ∈ [0, 1], ∀t ≥ 0, then u tends to 1 in H1(Ω) as t → +∞. For a more general source term g (even
polynomial), this seems much more complicated and will be studied elsewhere (see also [148, 149]).

Remark 3.9. When k̃ is odd and bq > 0, then we do not have blow up in finite time. Indeed, in that
case, necessarily, q is odd, q ≥ 3, so that (3.5) is dissipative. Indeed, multiplying (3.5) by y, we easily
obtain

d
dt

y2 + bqyq+1 ≤ c, (3.22)

whence, in particular,

d
dt

y2 + cy2 ≤ c′, c > 0. (3.23)

Here and below, the same letters c and c′ (and also c′′) denote constants which may change from line
to line. We thus deduce from (3.23) that
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y2(t) ≤ y2
0e−ct + c′, c > 0, (3.24)

and the solutions to (3.5) are indeed global in time. Furthermore, multiplying (3.1) by u and integrating
over Ω, we find, assuming that the standard dissipativity assumption

f ′ ≥ −c0, c0 ≥ 0, (3.25)

holds, a differential inequality of the form

d
dt
‖u‖2L2(Ω) + ‖∆u‖2L2(Ω) + bq‖u‖

q+1
Lq+1(Ω) ≤ 2c0‖∇u‖2L2(Ω)n + c. (3.26)

It follows from (3.26) that

d
dt
‖u‖2L2(Ω) + c‖u‖2H2(Ω) +

bq

2
‖u‖q+1

Lq+1(Ω) ≤ c′‖u‖2H1(Ω) + c′′, c > 0. (3.27)

Employing the interpolation inequality

‖u‖H1(Ω) ≤ c‖u‖
1
2
L2(Ω)‖u‖

1
2
H2(Ω),

we deduce that

d
dt
‖u‖2L2(Ω) + c‖u‖2H2(Ω) +

bq

2
‖u‖q+1

Lq+1(Ω) ≤ c′‖u‖2L2(Ω) + c′′,

whence, owing to Young’s inequality,

d
dt
‖u‖2L2(Ω) + c‖u‖2H2(Ω) +

bq

4
‖u‖q+1

Lq+1(Ω) ≤ c′, c > 0. (3.28)

This yields that a solution to (3.1)-(3.2) (when it exists) is global in time and is dissipative in L2(Ω) (in
the sense that it follows from Gronwall’s lemma that ‖u(t)‖2L2(Ω) is bounded independently of time and
bounded sets of initial data for t large).

4. The Cahn–Hilliard equation with a fidelity term

We consider in this section the following generalization of the Cahn–Hilliard equation introduced
in [24] in view of applications in image inpainting:

∂u
∂t

+ ∆2u − ∆ f (u) + χΩ\D(x)(u − h) = 0, (4.1)

where f is, for simplicity, the cubic function f (s) = s3 − s and h ∈ L2(Ω) (actually, we will take no
image, h ≡ 0, for simplicity). Here, we have taken all parameters equal to 1. This equation is endowed
with the usual Neumann boundary conditions and the initial condition u|t=0 = u0. Furthermore, D is an
open bounded subset of Ω such that D ⊂⊂ Ω and χ denotes the indicator function.

The first existence and uniqueness result was obtained in [25]. Then, to go further and, in particular,
to prove the existence of finite-dimensional attractors, we need to derive a global in time and dissipative
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estimate. Obtaining such an estimate is not straightforward, due to the fact that we no longer have the
conservation of mass.

Indeed, integrating (4.1) over Ω, we have

d〈u〉
dt

+
1

Vol(Ω)

∫
Ω\D

u dx = 0.

In order to deal with this equation, we write

u = 〈u〉 + v,

where v satisfies the equation

∂

∂t
(−∆)−1v − ∆v + f (〈u〉 + v) − 〈 f (〈u〉 + v)〉

+(−∆)−1(χΩ\D(x)u − 〈χΩ\D(x)u〉) = 0.

Furthermore, we can see that

d〈u〉
dt

+ c0〈u〉 = −
1

Vol(Ω)

∫
Ω\D

v dx, c0 =
Vol(Ω\D)

Vol(Ω)
.

The left-hand side of the above equation is the simplest dissipative ODE and there just remains to
control the right-hand side in order to have a global in time and dissipative estimate. To do so, we
multiply the equation for v by v and integrate over Ω and by parts. However, in order to absorb bad
terms which appear, we need some coercivity on the nonlinear term. More precisely, we write that

(( f (〈u〉 + v) − 〈 f (〈u〉 + v)〉, v)) = (( f (〈u〉 + v) − f (〈u〉), v))

≥
c0

2

∫
Ω

(v4 + v2〈u〉2) dx − ‖v‖2,

where ((·, ·)) again denotes the usual L2-scalar product, with associated norm ‖ · ‖. This then allows to
have a global in time and dissipative estimate on v, then on 〈u〉 and finally on u. Having this, we can
go further and obtain further regularity results and the existence of finite-dimensional attractors. We
refer the reader to [73] for more details.

Remark 4.1. The question of the convergence of single trajectories to steady states is an important
open problem. This question is all the more important that the final inpainting result is expected to be
a steady state of the equation.

Now, again, the case of the thermodynamically relevant logarithmic nonlinear terms is much more
involved. Considering such nonlinear terms is relevant here. Indeed, numerical simulations performed
in [74] suggest better inpainting results as far as the convergence time is concerned. Furthermore, the
final inpainting result is much better, when the inpainting domain D is large.

In what follows, we again take h ≡ 0. However, for a nonvanishing image h, we would need a
condition of the form ∫

Ω\D
h dx = 0,
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meaning that we need some kind of symmetry.
We have the

Theorem 4.2. We assume that u0 ∈ H1(Ω), |〈u0〉| < 1 and −1 < u0(x) < 1, a.e. x ∈ Ω. Then,
there exists T0 = T0(u0) and a solution to the problem on [0,T0] such that u ∈ C([0,T0]; H−1(Ω)) ∩
L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)) and ∂u

∂t ∈ L2(0,T0; H−1(Ω)). Furthermore, −1 < u(t, x) < 1, a.e.
(t, x) ∈ (0,T0) ×Ω.

Proof. The proof is similar to the one performed in Section 2. However, we need to approximate the
logarithmic nonlinear term in a careful way, as we need a coercivity property which is similar to the
one obtained for the usual cubic nonlinear term for the approximated functions; this coercivity also
needs to be uniform with respect to the approximation parameter.

To do so, we write (see (1.3)) F(s) = θc
2 (1 − s2) + F1(s) and f1 = F′1. We then introduce, following

[158] and for N ∈ N, the approximated functions F1,N ∈ C4(R) defined by

F(4)
1,N(s) =


F(4)

1 (1 − 1
N ), s > 1 − 1

N ,

F(4)
1 (s), |s| ≤ 1 − 1

N ,

F(4)
1 (−1 + 1

N ), s < −1 + 1
N ,

(4.2)

F(k)
1,N(0) = F(k)

1 (0), k = 0, 1, 2, 3, (4.3)

so that

F1,N(s) =


∑4

k=0
1
k! F

(k)
1 (1 − 1

N )(s − 1 + 1
N )k, s > 1 − 1

N ,

F1(s), |s| ≤ 1 − 1
N ,∑4

k=0
1
k! F

(k)
1 (−1 + 1

N )(s + 1 − 1
N )k, s < −1 + 1

N .

(4.4)

Setting FN(s) = θc
2 (1 − s2) + F1,N(s), f1,N = F′1,N and fN = F′N , there holds

f ′1,N ≥ 0, f ′N ≥ −θc, (4.5)

FN ≥ −c1, c1 ≥ 0, (4.6)

and (see [158, 305])

fN(s)s ≥ c2(FN(s) + | fN(s)|) − c3, c2 > 0, c3 ≥ 0, s ∈ R, (4.7)

where the constants ci, i = 1, 2 and 3, are independent of N, for N large enough. Furthermore, there
holds, for N large enough,

( fN(s + a) − fN(a))s ≥ c4(s4 + a2s2) − c5, c4 > 0, c5 ≥ 0, s, a ∈ R, (4.8)

where the constants c4 and c5 are independent of N, which is the required coercivity property (see [74]).
We consider, for N ∈ N, the approximated problems

∂uN

∂t
+ ∆2uN − ∆ fN(uN) + χΩ\D(x)uN = 0, (4.9)
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∂uN

∂ν
=
∂∆uN

∂ν
= 0, on Γ, (4.10)

uN |t=0 = u0. (4.11)

We first derive uniform (with respect to N) a priori estimates. In particular, a crucial step is to prove
that, at least locally in time, the spatial average of uN is strictly separated from the pure states ±1 and
fN(uN) is bounded in L2, which will allow to prove the (local in time) existence of a solution. All
constants below are independent of N. Furthermore, the same letters denote constants which may vary
from line to line.

First, integrating (4.9) over Ω, we have

d〈uN〉

dt
+

1
Vol(Ω)

∫
Ω\D

uN dx = 0. (4.12)

Setting uN = 〈uN〉 + vN (so that 〈vN〉 = 0), we can rewrite (4.12) as

d〈uN〉

dt
+ c0〈uN〉 = −

1
Vol(Ω)

∫
Ω\D

vN dx, (4.13)

where, as above, c0 =
Vol(Ω\D)

Vol(Ω) and vN is solution to

∂vN

∂t
+ ∆2vN − ∆( fN(uN) − 〈 fN(uN)〉) + χΩ\D(x)uN − 〈χΩ\D(x)uN〉 = 0, (4.14)

∂vN

∂ν
=
∂∆vN

∂ν
= 0, on Γ, (4.15)

vN |t=0 = v0 = u0 − 〈u0〉. (4.16)

We rewrite (4.14)-(4.15) in the equivalent form

(−∆)−1∂vN

∂t
− ∆vN + fN(uN) − 〈 fN(uN)〉 (4.17)

+(−∆)−1(χΩ\D(x)uN − 〈χΩ\D(x)uN〉) = 0,

∂vN

∂ν
= 0, on Γ. (4.18)

We multiply (4.17) by vN to obtain

1
2

d
dt
‖vN‖

2
−1 + ‖∇vN‖

2 (4.19)

+(( fN(uN) − 〈 fN(uN)〉, vN)) + ((χΩ\D(x)uN , (−∆)−1vN)) = 0.

Noting that

(( fN(uN) − 〈 fN(uN)〉, vN)) = (( fN(uN) − fN(〈uN〉), vN)),
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it follows from (4.8) that

(( fN(uN) − 〈 fN(uN)〉, vN)) ≥ c4(‖vN‖
4
L4(Ω) + 〈uN〉

2‖vN‖
2) − c. (4.20)

Furthermore,

|((χΩ\D(x)uN , (−∆)−1vN))| ≤ c(‖vN‖
2 + |〈uN〉|‖vN‖) (4.21)

≤
c4

2
(‖vN‖

4
L4(Ω) + 〈uN〉

2‖vN‖
2) + c.

We thus deduce from (4.19)-(4.21) that

d
dt
‖vN‖

2
−1 + ‖∇vN‖

2 + c4(‖vN‖
4
L4(Ω) + 〈uN〉

2‖vN‖
2) ≤ c. (4.22)

Next, it follows from (4.13) that

d〈uN〉
2

dt
+ c0〈uN〉

2 ≤ c‖vN‖
2,

whence

d〈uN〉
2

dt
+ c0〈uN〉

2 ≤
c4

2
(‖vN‖

4
L4(Ω) + 〈uN〉

2‖vN‖
2) + c. (4.23)

Summing (4.22) and (4.23), we find a differential inequality of the form

dE1,N

dt
+ c(‖uN‖

2
H1(Ω) + ‖vN‖

4
L4(Ω) + 〈uN〉

2‖vN‖
2) ≤ c′, c > 0, (4.24)

where

E1,N = 〈uN〉
2 + ‖vN‖

2
−1

satisfies

E1,N ≥ c‖uN‖
2
H−1(Ω), c > 0. (4.25)

We then multiply (4.9) by uN and have, owing to (4.5),

d
dt
‖uN‖

2 + ‖∆uN‖
2 ≤ 2θc‖∇uN‖

2 + c‖uN‖
2. (4.26)

Summing (4.24) and (4.26) multiplied by δ1, where δ1 > 0 is chosen small enough, we obtain a
differential inequality of the form

dE2,N

dt
+ c(‖uN‖

2
H2(Ω) + ‖vN‖

4
L4(Ω) + 〈uN〉

2‖vN‖
2) ≤ c′, c > 0, (4.27)

where

E2,N = δ1‖uN‖
2 + E1,N

satisfies
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E2,N ≥ c‖uN‖
2, c > 0. (4.28)

We now rewrite (4.9)-(4.10) in the equivalent form

∂uN

∂t
+ χΩ\D(x)uN = ∆µN , (4.29)

µN = −∆uN + fN(uN), (4.30)

∂uN

∂ν
=
∂µN

∂ν
= 0, on Γ, (4.31)

where, by analogy with the original Cahn–Hilliard equation, µN is called chemical potential.
We multiply (4.29) by µN and (4.30) by ∂uN

∂t to find

1
2

d
dt

(‖∇uN‖
2 + 2

∫
Ω

FN(uN) dx) + ‖∇µN‖
2 = −((uN , χΩ\D(x)µN)). (4.32)

Furthermore, multiplying (4.30) by χΩ\D(x)uN , we have

((uN , χΩ\D(x)µN)) = −((∆uN , χΩ\D(x)uN)) +

∫
Ω\D

fN(uN)uN dx. (4.33)

We deduce from (4.7) and (4.32)-(4.33) that

d
dt

(‖∇uN‖
2 + 2

∫
Ω

FN(uN) dx) (4.34)

+c(‖∇µN‖
2 +

∫
Ω\D
| fN(uN)| dx +

∫
Ω\D

FN(uN) dx) ≤ c′‖uN‖
2
H2(Ω), c > 0.

Summing (4.27) and (4.34) multiplied by δ2, where δ2 > 0 is chosen small enough, we obtain a
differential inequality of the form

dE3,N

dt
+ c(‖uN‖

2
H2(Ω) + ‖vN‖

4
L4(Ω) + 〈uN〉

2‖vN‖
2 (4.35)

+

∫
Ω\D
| fN(uN)| dx +

∫
Ω\D

FN(uN) dx + ‖∇µN‖
2) ≤ c′, c > 0,

where

E3,N = δ2(‖∇uN‖
2 + 2

∫
Ω

FN(uN) dx) + E2,N

satisfies

E3,N ≥ c‖uN‖
2
H1(Ω) − c′, c > 0. (4.36)

Rewriting (4.29)-(4.30) in the equivalent form
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(−∆)−1∂vN

∂t
+ (−∆)−1(χΩ\D(x)uN − 〈χΩ\D(x)uN〉) = −(µN − 〈µN〉), (4.37)

µN − 〈µN〉 = −∆vN + fN(uN) − 〈 fN(uN)〉, (4.38)

we deduce from (4.37) that

‖
∂vN

∂t
‖−1 ≤ c(‖uN‖ + ‖∇µN‖),

whence, owing to (4.13),

‖
∂uN

∂t
‖H−1(Ω) ≤ c(‖uN‖ + ‖∇µN‖). (4.39)

Furthermore, (4.38) yields

‖ fN(uN) − 〈 fN(uN)〉‖ ≤ c(‖uN‖H2(Ω) + ‖∇µN‖). (4.40)

It thus follows from (4.35) and (4.39)-(4.40) that

dE3,N

dt
+ c(‖uN‖

2
H2(Ω) + ‖vN‖

4
L4(Ω) + 〈uN〉

2‖vN‖
2 (4.41)

+‖
∂uN

∂t
‖2H−1(Ω) + ‖ fN(uN) − 〈 fN(uN)〉‖2

+

∫
Ω\D
| fN(uN)| dx +

∫
Ω\D

FN(uN) dx + ‖∇µN‖
2) ≤ c′, c > 0.

We can note that (4.41) is not sufficient to pass to the limit in the nonlinear term fN(uN) (say, in a
variational formulation). To do so, we also need an estimate on |〈 fN(uN)〉| (in order to have an estimate
on ‖ fN(uN)‖). This could be done if we were able to prove that |〈uN(t)〉| ≤ 1 − δ, t ≥ 0, δ ∈ (0, 1)
(see [301]; see also below). Unfortunately, we are not able to prove such a result and, therefore, we
will only be able to obtain a local (in time) result.

We now assume that |〈u0〉| < 1. Then, there exists δ ∈ (0, 1) such that |〈u0〉| ≤ 1 − 2δ. Therefore,
since the function t 7→ 〈uN(t)〉 is continuous, there exists T0 = T0(δ,N) such that, if t ∈ [0,T0], then
|〈uN(t)〉| ≤ 1 − δ.

Actually, we can note that it follows from (4.13) that

〈uN(t)〉 = e−c0t〈u0〉 − e−c0t
∫ t

0
ec0 s ds

∫
Ω\D

vN dx,

so that

|〈uN(t)〉| ≤ |〈u0〉| + ce−c0t
∫ t

0
ec0 s‖uN‖ ds (4.42)

≤ 1 − 2δ + c(1 − e−c0t),
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where we emphasize that c = c(u0) is independent of N (note indeed that it follows from (4.27)-(4.28)
and Gronwall’s lemma that ‖uN‖ is bounded uniformly with respect to time and N). We can thus find
T0 = T0(δ, u0) independent of N such that, if t ∈ [0,T0], then |〈uN(t)〉| ≤ 1 − δ.

Then, noting that we have a similar result for f (see [301]), it is not difficult to prove that, for N
large enough,

fN(s + m)s ≥ c′m| fN(s + m)| − c′′m, c′m > 0, c′′m ≥ 0, s ∈ R, m ∈ (−1, 1), (4.43)

where the constants c′m and c′′m depend continuously on m (see also [305]).
Taking s = vN and m = 〈uN〉 in (4.43), integrating over Ω, noting that 〈vN〉 = 0 and employing

Hölder’s inequality, it follows that, for N ≥ N0 = N0(δ),

|〈 fN(uN)〉| ≤ cδ‖vN‖‖ fN(uN) − 〈 fN(uN)〉‖ + c′δ, t ∈ [0,T0],

whence ∫ T0

0
|〈 fN(uN)〉|2 ds ≤ cδ‖vN‖

2
L∞(0,T0;L2(Ω))‖ fN(uN) − 〈 fN(uN)〉‖2L2((0,T0)×Ω) + c′δ. (4.44)

Therefore, noting that v 7→ (|〈v〉|2 + ‖v − 〈v〉‖2)
1
2 is a norm on L2(Ω) which is equivalent to the usual

L2-norm, (4.40) and (4.44) yield that

‖ fN(uN)‖L2((0,T0)×Ω) (4.45)

≤ cδ(‖uN‖L∞(0,T0;L2(Ω)) + 1)(‖uN‖L2(0,T0;H2(Ω)) + ‖∇µN‖L2((0,T0)×Ω)n) + c′δ.

Noting finally that 〈µN〉 = 〈 fN(uN)〉, we deduce that

‖µN‖L2(0,T0;H1(Ω)) (4.46)

≤ cδ(‖uN‖L∞(0,T0;L2(Ω)) + 1)(‖uN‖L2(0,T0;H2(Ω)) + ‖∇µN‖L2((0,T0)×Ω)n) + c′δ.

Having this, we can now proceed exactly as in Section 2 to pass to the limit and prove the separation
property.

�

Remark 4.3. Actually, a more careful treatment of the equation for the spatial average of the order
parameter allows to prove the global in time existence of solutions (see [194]). Indeed, rewriting (4.1)
as

∂u
∂t

+ ∆2u − ∆ f (u) + u − χD(x)u = 0,

we have, integrating this equation over Ω,

d〈u〉
dt

+ 〈u〉 =
1

Vol(Ω)

∫
D

u dx.

This yields that
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〈u(t)〉 = e−t〈u0〉 +
1

Vol(Ω)
e−t
∫ t

0
es ds

∫
D

u dx.

Then, as long as the solution exists, necessarily, |u(t)| ≤ 1, so that

|〈u(t)〉| ≤ e−t|〈u0〉| +
Vol(D)
Vol(Ω)

e−t
∫ t

0
es ds,

whence

|〈u(t)〉| ≤ e−t|〈u0〉| +
Vol(D)
Vol(Ω)

(1 − e−t).

We now consider the function

ϕ(t) = e−t|〈u0〉| +
Vol(D)
Vol(Ω)

(1 − e−t).

Then,

ϕ′(t) = (−|〈u0〉| +
Vol(D)
Vol(Ω)

)e−t.

If −|〈u0〉| +
Vol(D)
Vol(Ω) ≥ 0, then ϕ is monotone increasing and

ϕ(0) ≤ ϕ(t) ≤ lim
t→+∞

ϕ(t),

that is,

|〈u0〉| ≤ ϕ(t) ≤
Vol(D)
Vol(Ω)

.

Furthermore, if −|〈u0〉| +
Vol(D)
Vol(Ω) ≤ 0, then ϕ is monotone decreasing and

lim
t→+∞

ϕ(t) ≤ ϕ(t) ≤ ϕ(0),

that is

Vol(D)
Vol(Ω)

≤ ϕ(t) ≤ |〈u0〉|.

It thus follows that

|〈u(t)〉| ≤ max(|〈u0〉|,
Vol(D)
Vol(Ω)

),

whence

|〈u(t)〉| ≤ 1 − δ,

where δ = δ(u0) ∈ (0, 1) is independent of time. Therefore, the solutions are indeed global in time.
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Remark 4.4. The uniqueness of solutions, as well as further regularity results, are important open
problems in the case of logarithmic nonlinear terms and will be addressed in [194].

Remark 4.5. The Cahn–Hilliard inpainting model studied in this section was extended to color im-
ages in [75], by considering systems of Cahn–Hilliard equations, and to grayscale images in [76], by
considering a complex version of the Cahn–Hilliard inpainting model; see also [41], where systems of
Cahn–Hilliard equations were used for grayscale images.

Remark 4.6. As far as the numerical simulations are concerned, the authors in [24, 25] proposed a
dynamic two-steps algorithm based on the interface thickness ε. More precisely, one first takes a
large value of ε in order to join the edges (indeed, when the inpainting domain is large, the inpainting
may fail if the interface thickness is too small) and then switches to a smaller value of ε in order to
obtain the final restored image. This algorithm is very efficient as far as the computation time and the
quality of the restored images are concerned. In [73–75], we proposed instead a one-step algorithm
with threshold. Namely, we take an intermediate value of ε and then threshold, i.e., when the order
parameter is larger than some given value, we take it equal to 1 (say, black) and, when it is smaller, we
take it equal to 0 (white); of course, such an algorithm does not make sense for grayscale images. We
observed that we can obtain results which are comparable with those in [24, 25], when the inpainting
domain is not too large, but with a smaller computation time. When the inpainting domain is large, this
algorithm may fail, but, as already mentioned, taking logarithmic nonlinear terms instead of polynomial
ones, improves the simulations.
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Poincaré Anal. Non Linéaire 22 (2005), 165-185.

181.H. Garcke, Mechanical effects in the Cahn-Hilliard model: A review on mathematical results, in
Mathematical methods and models in phase transitions, A. Miranville ed., Nova Sci. Publ., New
York, 43-77, 2005.

182.H. Garcke, K.F. Lam, E. Sitka and V. Styles, A Cahn-Hilliard-Darcy model for tumour growth
with chemotaxis and active transport, Math. Models Methods Appl. Sci. 26 (2016), 1095-1148.

183.H. Garcke and U. Weikard, Numerical approximation of the Cahn-Larché equation, Numer. Math.
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