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Abstract: Serially-sampled nucleotide sequences can be used to infer demographic history of evolving viral populations. The shape 
of a phylogenetic tree often reflects the interplay between evolutionary and ecological processes. Several approaches exist to analyze 
the topology and traits of a phylogenetic tree, by means of tree balance, branching patterns and comparative properties. The temporal 
clustering (TC) statistic is a new topological measure, based on ancestral character reconstruction, which characterizes the temporal 
structure of a phylogeny. Here, PhyloTempo is the first implementation of the TC in the R language, integrating several other topological 
measures in a user-friendly graphical framework. The comparison of the TC statistic with other measures provides multifaceted insights 
on the dynamic processes shaping the evolution of pathogenic viruses. The features and applicability of PhyloTempo were tested on 
serially-sampled intra-host human and simian immunodeficiency virus population data sets. PhyloTempo is distributed under the GNU 
general public license at https://sourceforge.net/projects/phylotempo/.
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Introduction
The evolutionary and demographic history of a mea-
surable evolving viral population1 can be inferred by 
phylodynamic analysis of longitudinally sampled 
sequences.2 In particular, the shape of a phylogenetic 
tree often reflects the characteristics and the interac-
tions among evolutionary and ecological processes. 
For example, phylogenies of viruses under continuous 
positive selection, such as inter-host influenza or intra-
host human immunodeficiency virus (HIV), usually 
exhibit a marked staircase-like topology.3,4 Pathogens 
under weak or absent positive selection show a more 
balanced tree shape, as it happens within the measles 
serotypes.5 Trees displaying a star-like topology or 
increasing root to tip distance with sampling time are 
typical of an exponentially growing population, whilst 
the opposite pattern can usually be associated to con-
stant or decreasing population sizes, as for example in 
Dengue virus inter-host phylogenies.6 Phylogenetic 
tree shapes can also be coupled with phenotypic traits 
(either numeric or categorical) or geographic corre-
lates (such as geographic origin of sampled strains), 
which can be analyzed via comparative methods in 
terms of evolutionary or spatiotemporal dynamics.7

Several statistical approaches exist for determin-
ing if and how serially sampled sequences evolve 
under a strict or relaxed molecular clock.8,9 However, 
such methods do not give indications about the phy-
logenetic tree shape (eg, staircase- or star-like) and 
the related temporal structure (eg, if sequences sam-
pled at the same time point tend to cluster together 
and to be direct ancestors of sequences sampled at 
later time points).

There are various functions for describing the 
topological features of a phylogenetic tree. Some of 
these measures consider both topology and branch 
lengths of a tree, as well as phenotypic tip traits,10–12 
while others evaluate only the tree topology in rela-
tion to geographic or phenotypic characters associ-
ated with the sampled strains.13–15 Finally, there are 
purely topological measures based on tree symmetry/
balance.16–19

The temporal clustering (TC) is a recently devel-
oped statistic, which takes into account phyloge-
netic tree topology and sampling time of the tips.20 
The TC statistic assesses the temporal structure of 
a phylogenetic tree, by evaluating the order of time 
changes from internal nodes to tips. It is based on 

the maximum parsimony reconstruction of ancestral 
characters implemented in phylogeography,13 but it 
has been modified to prevent the estimation of tempo-
rally impossible state changes in tip dated trees (ie, an 
earlier time point emerging from an ancestor assigned 
to a later time point). It also allows the comparison of 
phylogenies inferred from data sets including different 
number of times points and/or sampled sequences per 
time point. Currently, there is no available software 
implementation of the TC statistic, although it can 
be calculated with a series of manual steps using the 
MacClade program (http://macclade.org/).

In this work, we present PhyloTempo, the first soft-
ware implementation of the TC statistic. PhyloTempo 
is written in R, a free software environment for statis-
tical computing and graphics (http://www.r-project.
org/). Along with the TC implementation, several 
other tree topological measures were integrated in 
PhyloTempo using pre-existing R libraries, in a user-
friendly graphical framework. The program was tested 
on several longitudinally sampled intra-host HIV and 
simian immunodeficiency virus (SIV) population data 
sets. The results showed how the comparison of the 
TC statistic with other topological measures can pro-
vide multifaceted insights on the dynamic processes 
shaping the evolution of pathogenic viruses.

Methods
The original formulation of the TC statistic20 requires 
a phylogenetic tree with n taxa sampled at t differ-
ent discrete time points. A state (ie, time) transi-
tion matrix is then defined, where the cost of going 
from later to earlier time points is infinite (ie, time-
irreversibility). The other costs are usually defined as 
integer linearly increasing with the time points order-
ing. Ancestral tree states are inferred using Fitch’s 
parsimony algorithm.21 A non-normalized TC score 
is then calculated by summing all the state changes 
across the tree branches according to the cost matrix 
weights. A tree with a perfect temporal structure, ie, 
a tree in which all tips sampled at time point ti are 
monophyletic and directly emerge from time point 
ti-1, would have a non-normalized TC equal to t-1. 
Conversely, a tree with the least temporal structure 
would have a maximal non-normalized TC, equal 
to the sum of the n number of taxa multiplied by 
the corresponding w weights of the cost matrix, ie, 
Max = ∑ = n wj jj

t
11 . The normalized TC rescales the 
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non-normalized TC value in the interval [0,1], by 
considering a background distribution of TC statis-
tics obtained by shuffling the time points associated 
to the tree tips (keeping the topology fixed) and re-
estimating the ancestral characters. Specifically, the 
normalized TC statistic is

	
TC

Minmax

=
-
-









max ,
ln( ) ln( )

ln( ) ln( )
0

S S

S
avg obs

where the Savg and Smax are -respectively- the average 
and the maximum non-normalized TC values observed 
in the randomized trees, while Min is the minimum 
theoretical non-normalized TC, equal to t−1. Sobs is the 
observed non-normalized TC value calculated on the 
original tree. The numerator represents the deviation 
from the null hypothesis (ie, no temporal clustering), 
while the denominator represents the range of pos-
sible values for the given number of taxa and time 
points.

Coupled with the TC statistic, PhyloTempo 
includes also the following tree topology measures 
and tests of hypothesis: Aldous’ graphical test and 
lilkelihood ratio test to decide if tree fit the Yule or the 
uniform models;22 Colless’ and Sackin’s shape statis-
tics, both under the Yule or uniform hypotheses;23 
cherry count;24 Pybus’ gamma.25 In addition, a simple 
tree statistic called “staircase-ness” is introduced, 
counting the proportion of sub-trees that are imbal-
anced (ie, sub-trees where the left child contains more 
leaves than the right child, or vice-versa) compared 
against the distribution of such proportions obtained 
from random trees. See the supplementary material 
for the properties of this measure.

Implementation
All the code has been written in the R language. 
Besides the standard core library set of R, the follow-
ing R libraries have been used (including their depen-
dencies): “ape”, “ade4”, “phybase”, “phylobase”, 
“phangorn”, “doBy”, “infotheo”, “apTreeshape”, 
“diversitree” (http://www.r-phylo.org).

The required input of PhyloTempo is a phyloge-
netic tree file in “newick” format and a two-column 
text file in which each tip name present in the phylo-
genetic tree is associated with its corresponding time 
of sampling (a numeric value such as days or years).

The input phylogenetic tree is preliminarily 
checked for polytomies, which are resolved 
randomly. If present, negative branch lengths are 
set to zero and then all branch lengths are added 
a 10–5 value. The tree is rooted on the tip that 
gives the highest linear correlation between the 
root-to-tip distance and the sampling time of the 
tip, and finally it is ladderized. The vector of sam-
pling times is then discretized into time intervals by 
using an equal-frequency binning, where the opti-
mal number of bins is the square root of the vec-
tor size. The maximum allowed number of discrete 
time intervals is nine, and each time bin needs to 
contain at least two tips.

The TC statistic calculation is made upon the pre-
vious theoretical description. However, in this new 
implementation the ancestral characters are estimated 
using maximum likelihood26 rather than parsimony. 
A major advantage of maximum likelihood is that it 
also allows for an optimized estimate of the weights 
of the transition cost matrix.

The number of tip randomizations is set to 300 by 
default, but the value can be modified by the user. All 
the other tree statistics are assembled by combining 
existing R functions.

Both graphical and text output are produced, 
where figures are plotted in multiple windows, 
text is printed in the R command-line window and 
results are saved in a tabulated file. The graphical 
plots include: the phylogenetic tree with ancestral 
character state probabilities drawn with pie charts 
at internal nodes; the TC statistic compared versus 
the randomized background distribution; a linear 
correlation plot between the sampling times of tips 
and root-to-tip distances; a Kruskal-Wallis test com-
paring distribution of root-to-tip distances with the 
discretized time points; the staircase-ness, Aldous’, 
Sackin’s and Cherry count statistics with the corre-
sponding background randomizations. The text out-
put reports the aforementioned results as well as the 
P-values from the statistical tests. Also, a script that 
allows the analysis of multiple trees in “nexus” for-
mat, from an a posteriori, eg, trees as output from 
MrBayes,27 or bootstrap analysis has been made 
available.

PhyloTempo is distributed under the GNU general 
public license and is available at https://sourceforge.
net/projects/phylotempo/ for download.
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Results
PhyloTempo has been tested on different viral data 
sets. The first data set included intra-host HIV-1 
phylogenetic trees, inferred from serially sampled 
envelope (env) C2-V5 sequences, from nine untreated 
subjects with fast disease progression,4 named as the 
“Shankarappa” data set after the first author of the 
paper. The second data set included intra-host SIV 
trees, inferred from env gp120  sequences sampled 
longitudinally from four experimentally infected 
Rhesus macaques that were CD8-depleted before 
infection and progressed to AIDS within 75–118 days 
post infection.28 The third data set included intra-
host HIV-1 gag p24 trees from six untreated subjects 
enrolled in the OPTIONS cohort29 all carrying the 
HLA-B*5701 allele strongly associated with slower 
disease progression, that were followed longitudi-
nally from early infection up to seven years.30

In Table  1 the text output of PhyloTempo 
is reported, after running the program on each 

proof-of-concept data set (note that for simplicity 
not all indicators output by PhyloTempo are shown). 
When comparing the former calculation of the TC 
statistic based on parsimony with the new one based 
on maximum likelihood, in general we found a high 
degree of linear ρ correlation (ρ ≈ 0.8, combining 
the three data sets, data not shown). On average, the 
TC exhibited a weak linear ρ correlation with any 
of the other tree topology measures implemented in 
PhyloTempo (average ρ  =  0.10, standard deviation 
0.17), including also dN/dS values (estimated via the 
Nei-Gojobori method averaging across all positions). 
The maximum value obtained was ρ = 0.42, found 
with respect to the root-to-tip-distance vs. sampling 
time correlation.

The average TC statistic for the Shankarappa data 
set was 0.29 (st.dev 0.10), for the SIV data set was 
0.11 (st.dev 0.09). The OPTIONS data set, based on 
the highly conserved HIV-1 gag p24 gene, allowed 
us to evaluate the effect of including or excluding 

Table 1. Summary of PhyloTempo output from different proof-of-concept data sets.

Data set Time range  
(post-infection)

No. time  
intervals

No. tips RTD vs.  
ST ρ

Staircase- 
ness

dN/dS TC

OPTIONS P1 all seqs. 91–1872 days 4 84 0.81 0.75 0.26 0.41
OPTIONS P1 unique seqs. 91–1872 days 4 48 0.89 0.64 0.21 0.35
OPTIONS P2 all seqs. 126–1348 days 3 79 0.88 0.73 0.15 0.31
OPTIONS P2 unique seqs. 126–1348 days 3 65 0.80 0.75 0.17 0.29
OPTIONS P3 all seqs. 91–2234 days 7 186 0.93 0.82 0.17 0.22
OPTIONS P3 unique seqs. 91–2234 days 6 74 0.84 0.70 0.15 0.36
OPTIONS P4 all seqs. 77–2180 days 5 128 0.78 0.80 0.30 0.20
OPTIONS P4 unique seqs. 77–2180 days 5 54 0.66 0.72 0.27 0.33
OPTIONS P5 all seqs. 91–2129 days 5 124 0.94 0.83 0.31 0.37
OPTIONS P5 unique seqs. 91–2129 days 3 55 0.95 0.74 0.18 0.72
OPTIONS P6 all seqs. 70–2602 days 6 140 0.92 0.73 0.24 0.13
OPTIONS P6 unique seqs. 70–2602 days 5 85 0.80 0.65 0.12 0.13
Shankarappa #1 14–133 days 9 137 0.90 0.66 1.00 0.30
Shankarappa #2 14–161 days 9 231 0.93 0.68 1.24 0.20
Shankarappa #3 42–154 days 9 106 0.92 0.72 1.63 0.50
Shankarappa #5 14–567 days 9 236 -0.01 0.68 0.74 0.25
Shankarappa #6 77–154 days 8 130 0.93 0.64 0.89 0.37
Shankarappa #7 35–126 days 7 138 0.92 0.68 1.14 0.22
Shankarappa #8 63–168 days 8 150 0.92 0.69 1.23 0.24
Shankarappa #9 21–357 days 9 120 0.32 0.71 1.71 0.21
Shankarappa #11 35–154 days 6 52 0.94 0.69 0.90 0.32
SIV D03 plasma 22–75 days 3 58 0.50 0.67 0.27 0.03
SIV D04 plasma 22–91 days 3 66 0.52 0.62 0.44 0.22
SIV D05 plasma 22–89 days 3 67 0.35 0.70 0.42 0.05
SIV D06 plasma 22–118 days 3 68 0.52 0.66 0.40 0.13
Correlation with TC 0.05 -0.17 0.42 0.23 0.04 1.00

Abbreviations: Seqs, sequences; RTD, root-to-tip distance; ST, sampling time; ρ, Pearson’s linear correlation; SC, staircase-ness; dN/dS, ratio between 
non-synonymous and synonymous substitutions; TC, temporal clustering statistic.
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Figure 1. PhyloTempo graphical output showing the ancestral character estimation on an input phylogenetic tree. 
Notes: Pie charts in the internal nodes of the tree represent probabilities of ancestral states. Left panel shows a tree from the OPTIONS data set (patient 
P5, unique sequences) with a high TC statistic (0.7); right panel shows a tree from the SIV data set (subject D03) with a poor TC statistic (0.1).

identical sequences and resulted in a TC value of 0.27 
(st.dev 0.11) and 0.36 (st.dev 0.19) when analyzing 
all sequences or only unique sequences, respectively.

Figures 1 and 2 illustrate the PhyloTempo graphi-
cal output. In detail, Figure  1  shows two of the 
trees analyzed (OPTIONS and the SIV data sets, 
respectively), and includes the maximum likelihood 
estimate of the ancestral time states, with state prob-
abilities reported as pie charts at each internal node. 
Figure 2 reports the placement of the TC statistic, as 
well as all the other tests, with respect to background 
random distributions or null hypotheses. In addition, 
the correlation plot between the root-to-tip distances 
and the sampling time is shown, along with the box-
plots of the root-to-tip distances stratified by the time 
intervals.

On average, the running time of PhyloTempo 
on an input phylogenetic tree with 100–150 leaves 
(3–4 time points and 300 randomizations) takes less 
than 5  minutes using a standard desktop computer. 
Running times for trees of 300 or 400 tips increase to 
half or one hour.

Discussion
In this paper we presented PhyloTempo, a set of scripts 
in the R language that calculates the TC clustering sta-
tistics and other measures of phylogenetic tree shape, 

with a comprehensive text and graphical output. The 
choice of the R software environment gives to the 
tool the advantage to be available for many platforms 
(Microsoft Windows, Mac, or Linux) and, since R 
features a plethora of libraries both for phylogenetic 
analysis and graphics, to be ready for the inclusion of 
other functions related to the analysis of phylogenetic 
tree shape and comparative statistics.

Although other programs that calculate tree shape 
statistics are available, such as the java application 
TreeStat (http://tree.bio.ed.ac.uk/software/treestat/), 
and Path-O-Gen (http://tree.bio.ed.ac.uk/software/
pathogen/), as well as several command-line functions 
in R, this is the first that implements the TC statistic 
merging in a user-friendly interface both graphical 
and text outputs. In addition, PhyloTempo is capable 
of generating an a posteriori TC statistic, reading a 
tree ensemble in “nexus” format, such as the output 
by MrBayes (http://mrbayes.sourceforge.net/). As a 
future perspective in the context of Bayesian analy-
sis, a theoretical approach to derive an analytical for-
mula for the TC statistic is advisable, allowing the 
avoidance of the time-consuming tree randomization 
for each tree.

Two interesting biological insights are evident 
from the present analysis. First, TC does not corre-
late with any previously described topological tree 
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http://tree.bio.ed.ac.uk/software/treestat/
http://tree.bio.ed.ac.uk/software/pathogen/
http://tree.bio.ed.ac.uk/software/pathogen/
http://mrbayes.sourceforge.net/


Norström et al

266	 Evolutionary Bioinformatics 2012:8

measure implying that the new statistic evaluates 
aspects of the evolutionary process not captured by 
other methods. Second, TC does not correlate with 
estimated dN/dS ratios in different data sets. Several 
studies have interpreted temporally structured phy-
logenies as evidence of sequential viral popula-
tion bottlenecks driven by continuous selection 
pressure.2,4,31,32 The trees inferred from the OPTIONS 
data sets include HIV-1 sequences from patients with 
the HLA-B*5701 allele that has been associated with 
slower disease progression, possibly due to strong 
positive or purifying selection driving viral escape 
from cytotoxic T lymphocyte recognition.33

Interestingly, the TC calculated for the OPTIONS 
data sets are not significantly different (P = 0.21 from a 
t-test) from those calculated for the Shankarappa data 

sets. The finding suggests that temporally structured 
genealogies may reflect intra-host evolutionary pro-
cesses that are similar in two groups of patients char-
acterized by different rates of disease progression and 
that may not be related to selection pressure. How-
ever, it is important to point out that the subjects in 
the Shankarappa data set were followed for a shorter 
period of time than the OPTIONS subjects, and that the 
intervals between longitudinal samples were overall 
shorter in the first data set (data not shown). The low 
TC values for the Shankarappa data set may simply 
reflect an incomplete turnover of the viral quasispe-
cies, which can require up to 22  months,34 causing 
an intermix of sequences sampled at different time 
points. Moreover, archival viral strains expressed 
in cellular reservoirs would decrease the temporal 
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Figure 2. PhyloTempo graphical output summarizing phylogenetic tree shape statistics. 
Note: A tree from the OPTIONS data set (patient p5, unique sequences) with a high TC statistic (0.7) was used.
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structure of serially sampled genealogies, because 
sequences from later time points may share a most 
recent common ancestor with sequences collected 
much earlier in infection.35 Therefore, the TC statistic 
could be a powerful tool to investigate the extent and 
impact of latent viral reservoirs in intra-host HIV-1 
evolution. Finally, it is interesting to note that the SIV 
data sets show the lowest TC values. This may be the 
result of the relatively short time of infection in these 
animals, as well as a consequence of the depletion of 
CD8+ T cells right after infection.28

In conclusion, the present work describes a prac-
tical and user-friendly implementation of a novel 
statistic to evaluate the shape of phylogenetic trees, 
inferred from longitudinal samples of measurably 
evolving viral populations, which can provide signif-
icant insights on underlying evolutionary processes 
linked to infection dynamics and pathogenesis.
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Figure S1. Distribution of staircase-ness values from random trees (5,000 simulations), by varying tree size (from 3 to 2,000 leaves). 
Notes: Upper panels show results for formulation (i), whilst lower panels for formulation (ii). Left panels represent the scatterplot of all staircase-ness val-
ues depending on the tree size, with a global average and standard deviation indicated in red. Central panels show the boxplots of staircase-ness values 
by stratifying for tree sizes (5 equal-width intervals spanning tree sizes between 3 and 2,000), with the corresponding stratified average and standard 
deviation. The right panels show the histograms for all staircase-ness values, and compares them with simulated distributions whose parameters have 
been fit on the empirical data (Gaussian and Gamma functions).

Supplementary Material
On the properties of the staircase-ness 
measure
The staircase-ness measure counts the (i) proportion 
of sub-trees that are imbalanced (ie, sub-trees where 
the left child contains more leaves than the right 
child, or vice-versa). An alternative formulation 
(ii) is to make the average of all the min(l,r)/max(l,r) 
values of each sub-tree, where l and r are the num-
ber of leaves in the left and right children of a sub-
tree. In this work we compared the staircase-ness 
values against the distribution of such proportions 
obtained from random trees. However, there are also 
a few properties of this measure that are worth to be 
analyzed analytically. First of all, the staircase-ness 
of perfectly balanced binary trees is always zero, 
whichever formulation is used. On the other hand, 
the staircase-ness of perfectly imbalanced trees (ie, 
ladder-like trees) is always one when counting the 
proportions (ie, formulation i), whilst depends on 
the number of leaves when performing the average (ie, 
formulation ii). Specifically, the staircase-ness values 

for perfectly imbalanced trees using formulation  
(ii) is S n in i

n= ∑ =
1 1

1 , where n is the number of sub-
trees. This formula tends to zero as n increases 
since the limit of the series limn n i

nS n i→∞ == ∑1 1
1  

converges to zero, as previously demonstrated 
by E. Cesàro (http://en.wikipedia.org/wiki/
Ces%C3%A0ro_mean.

The distribution of the staircase-ness values 
obtained by simulating random trees (function 
rtree(number_of_tips, branch_length  =  runif(1)) 
of the R library “ape”) does not pass the Shapiro-
Wilk normality test (P,,0.0001, even by consider-
ing only trees with a number of tips .300), neither 
resembles a Gamma distribution, whose parameters 
had been fit on the actual data (P,,0.0001, using 
a Kruskal/Wallis test on simulations). However, the 
average values of both definitions values look stable 
across all the tree sizes (Fig. S1), while the standard 
deviation seems to decrease by increasing the tree 
size. The limits of the average staircase-ness values 
for formulation (i) and (ii) are close to 0.61 and 0.64, 
respectively.
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