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Abstract: In this paper, logarithmically improved regularity criteria for the Boussinesq equations are

established under the framework of Besov space B, . We prove the solution (u, 6) is smooth up to
time 7' > 0 provided that

2

T=r

T e, DI
B o
f - dt < oo
o Togle+ lutz )l )

forsome 0 <r<1or
<1.

lluC, Ol

This result improves some previous works.
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1. Introduction and main result

This paper is concerned with the regularity criterion of the 3D Boussinesq equations with the in-
compressibility condition :
o+ u-Vu—Au+ Vr = e,
00 +u-Vo—A0 =0,
Vou=0, (1.1)
(1, 0)(x, 0) = (g, O)(x), x € R?,
where u = u(x,t) and 6 = 6(x,t) denote the unknown velocity vector field and the scalar function

temperature, while 1, 8y with V-u, = 0 in the sense of distribution are given initial data. e3 = (0, 0, DT,
n = n(x,t) the pressure of fluid at the point (x,7) € R? x (0, 00). The Boussinesq equation is one
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of important subjects for researches in nonlinear sciences [14]. There are a huge literatures on the
incompressible Boussinesq equations such as [1-4,6,8-10, 17, 19-22] and the references therein.

When 6 = 0, (1.1) reduces to the well-known incompressible Navier-Stokes equations and many
results are available. Besides their physical applications, the Navier-Stokes equations are also mathe-
matically significant. From that time on, much effort has been devoted to establish the global existence
and uniqueness of smooth solutions to the Navier-Stokes equations.

However, similar to the classic Navier-Stokes equations, the question of global regularity of the
weak solutions of the 3D Boussinesq equations still remains a big open problem and the system (1.1)
has received many studies. Based on some analysis technique, some regularity criteria via the velocity
of weak solutions in the Lebesgue spaces, multiplier spaces and Besov spaces have been obtained
in [5,17,19,20,22,23].

More recently, the authors of the present paper [7] showed that the weak solution becomes regular
if .

luC, O+ 16, Dl

T B B
> =2 dt <o forsome0<r<1 and s>
fo 1 +log(e + [lu(:, Ollgs + 16C, Dllgs)

S

-r
—r

1
=, 1.2
St
where B;,roo denotes the homogeneous Besov space. Definitions and basic properties of the Sobolev
spaces and the Besov spaces can be find in [18]. For concision, we omit them here.

The purpose of this paper is to improve the regularity criterion (1.2) in the following form.

Theorem 1.1. Let (u, 0) be a smooth solution to (1.1) in [0, T) with the initial data (uy, 6y) € H>(R?) x
H3(R?) with div uy = 0 in R3. Suppose that the solution (u, 6) satisfies

2
T llua(-, l)||;'_’r
— dt < oo forsomer with 0 <r<1. (1.3)
j(: log(e + “”("t)”B;,’w) f

Then it holds

sup (IluC-, DIl + 16C, )7 < oo,
0<t<T

That is, the solution (u,0) can be smoothly extended after time t = T. In other word, if T, is the
maximal time existence of the solution, then

2
N[00 )

f = dt < oo
o Togle+ uC.0ll, )

Then the solution can be smoothly extended aftert = T.

Remark 1.1. The condition (1.3) can be regarded as a logarithmically improved version of the as-
sumption

T 2
f ||u(-,t)||;‘_’, dt < co for somer with 0 <r < 1.
0 00,00
For the case r = 1, we have the following result.
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Theorem 1.2. Let (1, 6) be a smooth solution to (1.1) in [0, T) with the initial data (ug, 6y) € H>(R?) x
H3R3) with div ug = 0 in R>. Suppose that there exists a small positive constant n such that

llu:, Dl (1.4)

. <
LB @y =P
then solution (u, 0) can be smoothly extended after time t = T.

Remark 1.2. Theorem 1.2 can be regarded as improvements and limiting cases of those in [7]. It is
worth to point out all conditions are valid for the usual Navier-Stokes equations. We refer to a recent
work [7] and references therein.

Remark 1.3. For the case r = 0, see [23].
2. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by the standard energy method.

Proof. Let T > 0 be a given fixed time. The existence and uniqueness of local smooth solutions can
be obtained as in the case of the Navier-Stokes equations. Hence, for all 7 > 0 we assume that (u, 0) is
a smooth solution to (1.1) on [0, T') and we will establish a priori bounds that will allow us to extend
(u, 0) beyond time T under the condition (1.3).

Owing to (1.3) holds, one can deduce that for any small € > 0, there exists Ty = T(€) < T such that

2
T ||M(',l)||1;‘_';
— dt <e<<l1. 2.1)
fro log(e + ||u(:, t)IIB;jw)

Thanks to the divergence-free condition V - u = 0, from (1.1),, we get immediately the global a
priori bound for 6 in any Lebesgue space

16C-, D)ll;0 < Cll6ll;« forall g €[2,00] and all ¢ € [0, T].
Now, multiplying (1.1), by 6 and using integration by parts, we get
1d
2 16117, +11V6l7, = 0.

Hence, we obtain
0 L™ (0.T: L*®)) N L? (0, T; H'(RY)). (2.2)

Next, multiplying (1.1); by u, we have after integration by part,

1d
37 a7 + (IVull7, = f(9€3) “udx < 16l|2 [lellp2 < C lull 2
R3

which yields
uelL® (o, T: LZ(R3)) N L2 (o, T: HI(R3)), (2.3)

AIMS Mathematics Volume 2, Issue 2, 336-347



339

where we used (2.2) and

1 1
f(u~Vu)~udx=Ef(wV)uzdx:—EI(V-u)uzdx:O
R3 R3 R3

by incompressibility of u, thatis, V - u = 0.
Now, apply V operator to the equation of (1.1); and (1.1),, then taking the inner product with Vu
and V@, respectively and using integration by parts, we get

1d
EZI(IIVMII; +1IVEI2) + IAully, + A7,

= —fV(u.V)u-vudHfV(9e3)-vudx—fV(u-V)e-vedx
R3 R3 R3
= JI1+1,+1;. 2.4)

Employing the Holder and Young inequalities, we derive the estimation of the first term 7 as

I, (u-Vyu-Audx < ||V - (u® u)l|;2 [|Aull;2
R3

Cllullyr 1Vull - llAul]2
1- 1
Cllell-r NIVull 2" N1Aul] 3"

IA

IA

12

IA

1 2 = 2
5 lAu|l;, + C ||M||;;:w IVl
1 2
< 5 ||AM||iz + C [Jul gfr (||VM||iz + ”VQ”iz),

00,00

where we have used the inequality due to [16] :
lw@ull, v < Cllull- NIVull
and the interpolation inequality
Wil = [l W], < Il I9wll}, forall 0<s<1.

The term 75 can be estimated as

IA

13 CIVullz2 167,
ClIVull2 (VO] -+ 1|AG]2

ClIVullz 1610 11AG]]2

IA

IA

IA

1
;mw;+cwﬁuww;

1
3 IAGIIZ, + C 6117 (IVullZ, + IVOII7.),

IA

where we have used
Vol <Clélly < Cliell-.
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The term 7, can be estimated as
1
I, < |[Vull2 [[VOll2 < E(IIVulliz + [IVOII7.).
Plugging all the estimates into (2.4) yields that

d
E(IIVulliz +[IVOIIZ.) + l1Aull7, + 1A6I17,

1 = 2 2 2
< C(E + ||u||Bi’,. + 161Vl + 1IVO]72).

00,00

Hence, we obtain

d
2 IvuC. DI7 + IV6C, D7) + 1Aully, + A6,

[ 2 .
3+l + el
C lOg(e :YlTulll_r ) (”Vu“iz + ”Vglliz)log(e + ”u”B:w)

Boo,oo

IA

[ 1 = 2 ]
§+||M||Bi’r + 11607

|\ oo s sy IVl + IVIL:) log (e + luly + 61l
Bwyoo

IA

y N _
%+||u||l.‘; + 1612
o+ 1l ) (IVullZ, + IV6I%.) log (¢ + (1))

BDO,oo

IA

where «(?) is defined by

k(t) = sup (JluC:, Dllgs +1160C¢, Dllgs)  forall To <t <T.

To<t<t

It should be noted that the function «(7) is nondecreasing. Moreover, we have used the following fact :
il < C Nl
Integrating the above inequality over [T, #] and applying Gronwall’s inequality, we have

t
IVu-, D7, +1IV6C, DIl + f AU, D17 + IA6C, DI, dr
T.

< (IVut, To)llj. + IVOC, To)ll7)

2
t ||u||;_—:
xexp|C == log (e + k(7)) dt
P fTo log(e + ””("T)“B;’w) e @)

IA

(IVu(-, Tollz + 1IV6C, To)ll7»)
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2

ul|!
/ I ||B

|
L3

r

8

00

Cl t
x exp | Clog (e + k(1)) 1o Tog(e + T, ) T

< Eexp (Celog (e + k(1)) = C (e + k()¢ (2.5)
where Cis a positive constant depending on ||Vu(-, To)lliz, IVé(., To)lliz, Ty, T and 0.
H?-norm. Next, we start to obtain the H>—estimates under the above estimate (2.5). Applying

A3 = (=A)? to (1.1),, then taking L? inner product of the resulting equation with A%, and using
integration by parts, we obtain

%%IIA%(-J)H;+||A4u(-,r)||i2:— fR N (V) Nudx + fR NOes) Nudx (2.6)

Similarly, applying A3 = (—~A)? to (1.1),, then taking L? inner product of the resulting equation with
A6, and using integration by parts, we obtain

1d
2 dt ||A39(" t)”; + ||A49(" t)”iz = —f A (u- V) - N*6dx, (2.7)
R3
Using V - u = 0, we deduce that

1d
5 ZnuC ol + A% o[l + [[Auc. ol + [atec. o,

- f [A3(u-Vu)—u-A3Vu]~A3udx+ f A3(Be3) - Nudx
R3 R3

3
- f [A3(u-V9)—u-A3V9]-A30dx
R

3

I, + I, + 115. (2.8)

To bound I1;, we recall the following commutator estimate due to [12]:

IA" (£2) = FA“gll < C (A" 8|,y IV A1l + A Flls2 1822 ) (2.9)

L1 1

fora>1,and L = L + + L. Hence I1, can be estimated as
p P1 q1 P2 q2

IA

1T, ClIVull 3 1A ull7;

3 1 1 5
T
CIVUl L IA IV al L IA ),

IA

1oa BiA3.5
EIIA ully, + ClIVull HIA I,

IA

(2.10)

where we used (2.9) witha =3, p = %, P1 = q1 = p2 = q» = 3, and the following Gagliardo-Nirenberg
inequalities

L2 2.11)

3 1
IVulls < IVl IIARull?

1 5
1A% ullzs < ClIVulls A,
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If we use the existing estimate (2.1) for Ty <t < T, (2.10) reduces to
1 -~ 3,13
I, < §||A4u||§2 + C(e + k(1))2+2 <, (2.12)

Using (2.11) again, we get
I

IA

C(IVull 2 IA%6l s + Vel ull2) A%,
CAIVulls + IVell)(|A%u] + || A%

IA

IA

SAs, + Al + Be + aptEee

For I1,, we have .
I < (A%, +[|A%][1) < Cle + (o))

Inserting all the inequalities into (2.8) and absorbing the dissipative terms, one finds
d 2 2 ~ 3:Bce | A
E(||A3u(~, D\, +||A%0C, 1)) < Cle + k)25 + Cle + k(1) (2.13)
with together with the basic energy (2.2)-(2.3) yields
d ~ 3.Bce =
(e Dl + 160G 1132 < Cle + (05 + Cle + (o)) (2.14)

Choosing € sufficiently small provided that %Ce < % and applying the Gronwall inequality to (2.14),
we derive that N
sup (I, DI + 116¢, DI ) < C < oo, (2.15)

To<t<t
where C depends on [[Vu(-, To)2, and [|VO(-, To)|1%,.
Noting that the right-hand side of (2.15) is independent of ¢ for Ty < t < T , we know that

(u(-,T7),6(-,T)) € H'R?) x H*(R®). Consequently, (u,6) can be extended smoothly beyond t = T.
This completes the proof of Theorem 1.1. O

3. Proof of Theorem 1.2

In order to prove Theorem 1.2, we first recall the following local existence theorem of the three-
dimensional Boussinesq equations.

Lemma 3.1. Suppose (u,0) € L* (R3), for some @ > 3 and V - u = 0. Then, there exists Ty > 0 and a
unique solution of (1.1) on [0, T) such that
(u.0) € BC ([0, To): L* (R®)) n L* ([0, To): L' (RY)), frue BC ([0, Tp): L" (%)) (3.1)
Moreover, let (0, T*) be the maximal interval such that (u, 0) solves (1.1) in C ((O, T%); L” (R3)), a > 3.
Then for any t € (0,T™)
C C
G Ollpe 2 ———= and  ||0C. Dllpe 2 ———»
(T - D% (T =%

with the constant C independent of T* and a.
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Let (u, 6) be a strong solution satisfying
2 3
,0) € L*((0,7); I# (R’)) for =+==1 and B> 3.
(.)€ L (O.Ti L (&) for Z+2=1 and >

Then (u, 6) belongs to C® (R3 x (0, T)) )

Proof. For all T > 0, we assume that (u, 6) is a smooth solution to (1.1) on [0, 7)) and we will establish

a priori bounds that will allow us to extend (u, #) beyond time 7 under the condition (1.4).

Similar to the proof of Theorem 1.1, we can show that
(u,0) € L™ (0, T; L*(RY)) N L* (0, T; H'(R?)).

The proof of Theorem 1.2 is divided into steps.

(3.2)

Step I. H'—estimation. In order to get the H'—estimates, we apply V operator to the equation of

(1.1); and (1.1),, multiply by Vu and V86, respectively to obtain
1d
5 7, IVuc, DI + IVOC, DI + AU, OII7> + 1AOC, D7

= —f V(u-V)u-Vudx+f V(0e3) - Vudx—f Vwu-V)0-Vodx
R3 R3 R3
= _Zl + Iz + I3.
Next we estimate 7, 7, and J3 in another way. Hence,

I,

IA

3 2
IVl < C IVl = 14wl

A

< Cllull 1Al
where we have used the following interpolation inequality due to [16] :

2 1
Wl < CHVW Dl

00,00

By means of the Holder and Young inequalities, the term 75 can be estimated as

13

IA

CIVullz2 IV6I
ClIVull2 [IVOll -+ 1IAB]] 2

IA

IA

CI|9||20 IAGIIZ, + C [IVull7,

IA

Cll6IZ 14017 + C lIVully ,
where we have used the following interpolation inequality due to [16] :
IVl < ClIVOIl -+ A6l .

The term J, can be estimated as

1
I < |[Vullp2 VOl 2 < E(IIVulliz +[V6II7.).

(3.3)
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Plugging all the estimates into (3.3) yields that

1d
5 77 UIvuC D72 + IVOC, DII7) + 1AuC, D7 + 1A6C, 7
< Cllull -+ Aully, + ClI6IIZ 146N, + CAIVully, + [IVOIZ,)-

Under the assumption (1.4), we choose 1 small enough so that

| =

C ”M”B—l <
Hence, we find that
d
E(IIVulliz +IVOIZ,) + lAullZ, + 1AGI17, < C(IVull;, +[IVAl7,).

Integrating in time and applying the Gronwall inequality, we infer that

T
IVuC, DlI7, + IVOC, DI, + f (lAuC, D)IZ + 1A6C, Dl7)dr < C.
0

(3.4)

Step II. H*>—estimation. Next, we start to obtain the H*—estimates under the above estimate (3.4).
Applying A to (1.1);, then taking L? inner product of the resulting equation with Au, and using inte-

gration by parts, we obtain

1d
S AU DI + [|AuC, 0 = - f A(u-Vu) - Audx + f A(0es) - Audx
2dt R3 R3

(3.5)

Similarly, applying A to (1.1),, then taking L? inner product of the resulting equation with A6, and

using integration by parts, we obtain
L a0 i, + N0 0l = = [ Aw-v0)- a6
5 7, 186G, DIz + [|A%C, . = - Al V6)- Abdx.
Adding (3.5) and (3.6), we deduce that

1d
5 (IAUC,OI: +1A6C, DI + [A%uC. o7, + 4% o),

= —fA(u-Vu)-Audx+fA(Heg)-Aua’x—fA(u-VQ)-Ade
R3 R3

R3

= 7(1 +7(2+(]<3.

Using Holder’s inequality and Young’s inequality, K can be estimated as

K

f A ®u) - AVudx < ||A (u ® w)|;2 [[AVul|2
R3

IA

3
C el 118wl 2 || AP

IA

1
S 1A% + €l 8wl

(3.6)

(3.7
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Here we have used the bilinear estimates due to Kato-Ponce [12] and Kenig-Ponce-Vega [13] :

IA" (fNr < C (A gl o Wfllor + A fllp 18l 02)

fora >0,andi =L +1 =L 4L
L Popra P 9 e s . ) .
From the incompressibility condition, Holder’s inequality and Young’s inequality, one has

1

G = fA(u@)-AV@dxs||A(u6)||Lz||AV9||Lz
R3

IA

C(llull A8z + 11611 1Aull,2) || A8,

IA

1 2
5 A%l + CliEe + 101U, + 1AGIE).

For K, we have

1
%K, < E(IIAulliz + [1A6I17,).

Inserting all the inequalities into (3.7) and absorbing the dissipative terms, one finds

d 2 2
— AU, L +1AOC, DIIE) + [[A%uC, D + A%, o]
< C(lull7e + 10l7)IAUl > + 1A6I[7). (3.8)

Using the following interpolation inequality

1 3
1l < CIAIL IAAL

together with the key estimate (3.4) yield that

T
f (luC-, DI + 16, Dllf)dr < C < oo
0

Applying the Gronwall inequality to (3.8), we derive that

T
2 2
IAuC, D)7, + 1A6C, DI + fo (|A%uC, o)), +[|A%6C. o)||,,)dr < C. (3.9)
By estimates (3.4) and (3.9) as well as the following Gagliardo-Nirenberg’s inequality

1 1
Il < CIAL NIAFI »

it is easy to see that
(u,0) € L*0,T; L°(RY)),

from which and Lemma 3.1 the smoothness of (u, 8) follows immediately. This completes the proof of
Theorem 1.2. O
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