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Abstract: Phylogentic analyses are often incorrectly assumed to have stabilized to a single optimum. However, a set of trees from 
a phylogenetic analysis may contain multiple distinct local optima with each optimum providing different levels of support for each 
clade. For situations with multiple local optima, we propose p-support which is a clade support measure that shows the impact optima 
have on a final consensus tree. Our p-support measure is implemented in our PeakMapper software package. We study our approach on 
two published, large-scale biological tree collections. PeakMapper shows that each data set contains multiple local optima. p-support 
shows that both datasets contain clades in the majority consensus tree that are only supported by a subset of the local optima. Clades 
with low p-support are most likely to benefit from further investigation. These tools provide researchers with new information regarding 
phylogenetic analyses beyond what is provided by other support measures alone.
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Introduction
Consensus trees are one of the most popular methods 
for summarizing a phylogenetic analysis. Oftentimes, 
these trees are annotated with values (eg, bootstrap 
replicate percentages) to show the support for each 
consensus branch (or clade). Support values, in 
general, indicate the level of corroboration for each 
region of the tree. Less corroborated regions are 
more likely to be overturned by subsequent data 
whereas highly corroborated clades are more robust 
to consideration of further data.1 Since we cannot 
ensure that a phylogenetic analysis has converged 
to a single global optimum without exhaustively 
exploring tree space, tree sets from a phylogenetic 
analysis may contain trees from multiple regions of 
tree space. We define a peak as a set of good-scoring 
trees with similar tree topologies. In essence, the trees 
in each peak are similar to one another but contain 
significant difference to trees in other peaks. In this 
way, the peaks are an estimation of the local optima 
that were found by the phylogenetic search.

If trees from multiple peaks are represented in a 
set of trees, each clade in the consensus tree may not 
be highly supported across the peaks. Using clade 
frequency as the sole basis for a support measure can 
result in misleading conclusions regarding the stability 
of evolutionary relationships found by a phylogenetic 
analysis. Thus, we develop a new support measure 
called p-support that incorporates information about 
these distinct sets of trees in order to estimate the 
confidence levels of inferred relationships more 
robustly than traditional approaches.

Definition of p-support
We define the p-support of a clade as the percentage 
of p peaks with majority support for that clade. 
A p-support value of 100% means that a clade was 
supported by each peak whereas 0% implies that the 
clade was not strongly supported by any of the p peaks. 
p-support can be viewed as a measure of precision 
at the peak level much the same way that bootstrap 
and jackknife support are measures of precision at the 
character and taxa level. High p-support values signal 
that a clade is in high agreement across the peaks and 
therefore is less likely to be overturned by additional 
analysis. Similarly to other common support measures, 
p-support can be useful in identifying the areas of a 
tree that may benefit the most from additional data and 

analysis. In this way, support measures are a useful 
tool in illuminating new problems and hypotheses.2

The most critical feature to the p-support measure 
is the identification of the p peaks which are the input 
to the p-support calculation. We have developed 
the PeakMapper algorithm to determine how many 
distinct sets of trees are contained in a data set as 
well as which trees are contained in peak. While 
our technique uses clustering to identify the peaks 
among the trees, p-support is independent of our 
PeakMapper algorithm. Any method that identifies 
distinct sets of trees can be used with our p-support 
measure. For instance, if tree islands3 were detected 
and labeled in a data set that information could 
be used to compute p-support. Our PeakMapper 
software identifies peaks in a tree collection and 
annotates majority and strict consensus trees with 
p-support values that can be viewed in standard tree 
viewing packages such as FigTree. Furthermore, 
our PeakMapper software is designed for analyzing 
large-scale tree collections (eg, tens of thousands 
of trees).

Comparison to common support 
measures
Bremer support, also known as the decay index, support 
index, or simply SI4 measures how many steps from 
the most parsimonious trees it takes to lose a branch 
in the consensus of the near-most-parsimonious trees. 
A branch in one of the most parsimonious trees is 
strongly supported if it is also contained in the near-
most-parsimonious trees. There are similarities in 
the intuition behind Bremer support and p-support. 
Both methods consider the prevalence of a clade 
across sets of trees. Where Bremer support creates 
subsets of trees by iteratively relaxing the threshold 
for near-most-parsimonious trees to be included 
into the consensus, p-support considers distinct sets 
of trees. Where Bremer support seeks to compute the 
the point at which the clade stops appearing in the 
consensus of the subset of trees, p-support computes 
the prevalence of each clade in each peak. In both 
cases highly supported clades are highly corroborated 
in the data set. While Bremer support is effective only 
in parsimony analyses, p-support is not limited by the 
method which the trees are computed. p-support can 
be used in any analysis which contains distinct sets 
of trees.
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Bootstrap support5 is computed by running a set of 
analyses with the input sequence alignment resampled 
such that some characters are include twice or more 
and others are not included at all. This simulates the 
effect that reweighting or revising the data might 
have on the output trees. Hence, the rate that a clade 
appears in the resulting trees is a measure of how 
robust a clade is to changes in the sequence alignment. 
Bootstrap support is similar to taxa jackknifing6,7 
which samples the taxa set to generate input data for 
a set of phylogenetic analyses. The resulting trees are 
used to compute a consensus tree to identify areas of 
disagreement among the trees. This is a measure of 
stability in regards to the deletion of taxa.

Each of these measures defines the support of a 
clade based on its stability under different methods 
of perturbation of the input sequence data. These 
methods are very complementary to p-support which 
is the only support measure of corroboration across 
peaks in the data set. In fact, there is no strict guarantee 
that the trees generated from a bootstrap or jackknife 
analysis fall into a peak themselves. Thus, measuring 
the p-support of the trees resulting from a bootstrap or 
jackknife analysis may provide further information.

Summary of experimental results
Using our PeakMapper approach, we analyze two 
published Bayesian studies on 150 taxa of desert algae 
and green plants8 and 567 taxa of angiosperms9 data 
sets. The 150 taxa data set consists of 20,000 trees 
from two runs of the MrBayes phylogenetic heuristic. 
The 567 taxa data set contained 33,306 trees from 12 
Bayesian runs. Both of these tree collections have high 
majority consensus resolution rates. Our approach 
shows that both tree sets contain multiple peaks—
there are two and six peaks found for the 150 and 567 
taxa data sets, respectively. Hence, high consensus 

resolution rates do not exclude the possibility of a tree 
set containing multiple peaks. These data sets present 
two interesting cases: the number of trees in the peak 
in the 150 taxa data set are of equal size while they 
are disproportional in the 567 taxa data set. These 
cases show how the distribution of trees across peaks 
can impact the resulting majority consensus tree and 
also show how p-support can provide previously 
unavailable information about the distribution of the 
clades. We show that the 150 taxa data set contains 
three clades that appear in the majority consensus tree 
but are only supported by one of the two peaks. The 
567 taxa data set contains seven clades in the majority 
consensus tree with supported by only three of the 
six peaks and a clade in the majority consensus tree 
supported by only two of the six peaks.

Overall, our work presents systematists with a new 
measure called p-support for quantifying the robust-
ness of inferred relationships in an evolutionary tree. 
We hope that p-support can provide researchers and 
the community at large with more information about 
the results of phylogenetic analyses—especially in 
regards to which regions of the tree may benefit most 
from further investigation.

Material and Methods
Tree collections
The biological trees used in this study were obtained 
from two recent Bayesian analysis, which we describe 
below. All trees in our collections are unique. Table 1 
provides statistics concerning our tree collections.

•	 Data set #1: 20,000 trees obtained from a Bayesian 
analysis of an alignment of 150 taxa (23 desert taxa 
and 127 others from freshwater, marine, ands oil 
habitats) with 1,651 aligned sites.8 Two independent 
runs consisting of 25 million generations (trees were 

Table 1. Detailed information for the two biological datasets studied in this paper. For each data set, we list the number of 
trees, resolution rates of the majority and strict consensus trees, and run labels of the trees.

Size Resolution rate Runs (%)
Taxa Trees Majority Strict

Data set #1 567 33,306 92.6% 51.8% R0 (9.4%) R1 (9.4%) R2 (9.4%)  
R3 (9.4%) R4 (8.9%) R5 (8.9%)  
R6 (8.9%) R7 (8.9%) R8 (6.5%)  
R9 (6.5%) R10 (6.5%) R11 (6.5%)

Data set #2 150 20,000 85.7% 34.0% R0 (50%), R1 (50%)
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sampled every 1,000 generations) were performed 
using the GTR+I+Γ model in MrBayes with four 
independent chains. The authors constructed a 
majority consensus tree in their study using the 
20,000 trees from the last 10 million generations 
from each of the two runs. The resolution rates of 
the majority and strict consensus trees are 85.7% 
and 34.0%, respectively. The total number of 
clades across the 20,000 trees is 2,940,000, where 
1,168 of them are unique.

•	 Data set #2: 33,306 trees obtained from an analysis 
of a three-gene, 567 taxa (560 angiosperms, seven 
outgroups) dataset with 4,621 aligned characters, 
which is one of the largest Bayesian analysis 
done to date.9 Twelve runs, with four chains each, 
using the GTR+I+Γ model in MrBayes ran for at 
least 10 million generations. Trees were sampled 
every 1,000 generations. The authors discuss the 
difficulties with combining trees from multiple 
runs. To obtain our collection of 33,306 trees, 
we discard the trees from the first 8  million 
generations. The resolution rates of the majority 
and strict consensus trees are 92.6% and 51.8%, 
respectively. The total number of clades across the 
33,306 trees is 18,784,584, where 2,444 of them 
are unique.

Our PeakMapper approach
In our PeakMapper approach, we use clustering 
techniques to determine the p peaks found in a set 
of t trees, which can come from a Bayesian or boot-
strap analysis for example. These p peaks are then 
used to compute and visualize p-support across a 
collection of trees. The presence of p peaks is based 
on placing the trees into k different distinct clusters 
(or partitions). For a particular cluster Ci, the trees 
within that cluster represent a peak. Clustering has 
been long used as part of phylogenetic analysis but 
most commonly as a method to build trees. Dis-
tance-based methods such as UPGMA10 are based 
on hierarchical clustering of the data. In addition 
to us, Stockham et  al11 have used clustering as a 
post-processing tool. The authors suggest present-
ing multiple consensus trees which more accurately 
reflect the distribution of clades in a set of trees 
as compared to a single consensus tree. They use 
clustering to select the optimum grouping of trees 
to best fit the distribution of clades in the original 

data tree set. However, our use of clustering dif-
fers from their approach in that we are interested 
in computing the number of peaks in the dataset in 
order to compute p-support. Furthermore, we focus 
on developing methods suitable for fast analysis of 
tens of thousands of trees.

Step 1: Creating the clade matrix.—Initially, the 
Newick-formatted trees are represented by a feature 
matrix for further processing. The feature matrix is 
a t × c binary matrix, where each of the t trees in the 
data set is represented as a row in the matrix and each 
column represents a unique feature (or clade). In other 
words, there are c unique clades for a set of t trees. 
Hence, the two tree collections can be represented by 
a 20, 000 × 1, 168 and a 33, 306 × 2, 444 clade matrix, 
respectively. The state of clade i for tree j is contained 
in cell (i, j). We mark the state of each clade for each 
tree as either present or absent, which we represent as 
‘1’ and ‘0’ respectively. For fully resolved trees of n 
taxa, there are n–3 clades present in each tree. Clade 
matrices are created using a variation of the HashCS12 
algorithm, which is based on using a hash table to 
identify the c unique clades across the t trees over n 
taxa.

Step 2: Clustering the clade matrix.—Given a t × c 
clade matrix, we use CLUTO,13 a freely-available, 
high-performance software package for clustering 
large high-dimensional data. CLUTO was chosen for 
it’s ability to cluster very large data sets efficiently. 
CLUTO has been successfully used to cluster 
multiple types of data including text documents14 
and gene expression data.15 As input, CLUTO takes 
either a distance matrix or a set of vectors and the 
number of desired clusters. The user can also set 
CLUTO to use different methods of clustering such 
as agglomerative clustering or by repeated bisections 
and optimize on different criteria to maximize internal 
similarity or minimize external differences. We have 
chosen to use the default settings which clusters our 
clade matrix (represented as vectors) by repeated 
bisection, computes the distance between the vectors 
as the cosine, and maximized the internal similarity 
as the fitness function. For the large data sets we 
analysis in this paper, CLUTO has a ten-fold increase 
in performance over R. However, in the future for 
smaller data sets, we plan to incorporate clustering 
analyses from these packages into our PeakMapper 
software.
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Since the true number of clusters represented by 
the data is unknown, we tested a range of clusters, k, 
varying from 2 to 24 and evaluated the results. The 
best k that fits the data (ie, clade matrix) represents 
the number of peaks p found by the phylogenetic 
analysis. For clustering approaches such as CLUTO, 
we cannot generate a fitness score for situations 
where k = 1, which represents a single cluster. This 
is because fitness is measured as a ratio of internal 
and external similarity between clusters. With a 
single cluster, there is no external similarity that can 
be computed. Instead, we check whether any of the 
clusterings fit the data. If not, we reject the hypothesis 
that there are multiple peaks since a single peak best 
represents the data.

We have chosen to examine k values of 2 through 
24. Assuming each of the twelve runs of our largest 
data set converged to completely different peaks we 
would require a k value of 12 to handle this case. We 
have tested k values up to 24 which is double the 
maximum number of runs in our largest data set and 
used k values of 2 through 24 for each data set we 
studied as a measure of consistency. This range was 
shown to be more than sufficient for our data set.

We have also applied clustering methods to the 
all-to-all Robinson-Foulds (RF) distance matrices,16 
a popular distance measure to compare phylogenetic 
trees,11,17 to each of our two data sets. Instead of a t × c 
feature matrix, using distance matrices require a t × t 
matrix. Our two data sets required a 20,000 × 20,000 
and 33,306 × 33,306 RF matrices, which we computed 
using HashRF.18 Both methods of clustering produced 
similar results, however, the clade matrix is a smaller 
representation of the data than the corresponding 
distance matrix and results in a significantly shorter 
clustering time in CLUTO. By using the clade matrix 
representation instead of the RF matrix representation 
we decreased our running time by over an order of 
magnitude.

Step 3: Determining the number of peaks, p.—Once 
we have computed the clusterings of our data with 
k ranging from from 2 to 24, we select the number 
of clusters that maximizes the similarity among the 
trees of interest while minimizing the total number 
of clusters. The optimal clustering represents the 
number of peaks, p, found in the data. CLUTO’s 
internal similarity measures (ISim and ESim) are our 
primary measure for determining the appropriate 

k value. ISimave (intra-cluster similarity) is the average 
similarity between trees of each cluster a value which 
we would like maximized. On the other hand, ESimave 
(inter-cluster similarity) is the average similarity 
of the trees of each cluster to the tress outside the 
cluster a value which we would like minimized. We 
use the ISimave/ESimave ratio as the basic measure of 
quality for a clustering of a clade matrix. In selecting 
a P value, we use the elbow criteria which advocates 
choosing P so that adding additional peaks does not 
add sufficient information. In other words, we choose 
a P value such that increasing it does not increase the 
ISimave/ESimave ratio significantly.

Step 4: Visualizing the P peaks.—We use multi
dimensional-scaling (MDS) plots to see the relative 
positions of the trees within their peaks. We used 
a freely available software package called High-
Throughput Multi-dimensional Scaling (HiT-MDS-2)19 
for reducing the dimensionality of large data sets. 
HiT-MDS-2 allows the user to input data in high 
dimensional space and map it to a low dimensional 
space. HiT-MDS-2 took our t × c clade matrix and 
reduced it to a t  ×  2  matrix in order to visualize 
the result as a scatter plot. Remember that the c clades 
represent features of the t trees. So, in MDS, the c 
features of each tree are reduced to 2 features (f1 and 
f2) by Hit-MDS-2. In our scatter plots, we plot f1 on 
the x-axis and f2 on the y-axis. Given that our data sets 
consist of 20,000 and 33,306 trees, plotting such a 
large number of points would result in an unreadable 
scatter plot. To enable useful inferences from our 
visualizations of the clustered data, we visualize the 
data based on a 10% sample (without replacement) 
of the collection of t trees. As a result, in our MDS 
visualizations, we plot a s × 2 matrix, where s = 0.1 ⋅ t. 
Hence, for our MDS plots, we have two tree samples 
of 2,000 and 3,331 trees consisting of 150 taxa and 
567 taxa, respectively. Multiple samples and MDS 
runs have shown the plots are good representations 
of the data.

Aside from this study, other systematists have 
used MDS in phylogenetics.5 However, they do not 
use MDS it in the context of analyzing the distinct set 
of tree in tree space as it relates to clade support.

Step 5: Computing and visualizing p-support. 
Once the p optima have been identified, we can 
compute the p-support value for each clade in our 
data set. In order to visualize the p-support values 
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for all c unique clades in the data set, we developed 
the p-map. Our visualization technique compares 
the range of p-support values on the y-axis to the 
percentage of total support on the x-axis. To increase 
readability, jitter is applied along the y-axis only, 
allowing overlapping points to form into lanes. 
The position on the x-axis is absolute meaning that 
any point on the right side of the line marking 50% 
support is a clade that would appear in the majority 
consensus trees. Each point in a p-map is to represent 
the standard deviation in support for a clade between 
clusters. Points shaded in blue are equally supported 
across clusters were as points shaded in red are highly 
supported in some clusters and barely supported in 
others. These plots are used later in our analysis as 
shown in Figures 3 and 5.

In addition to p-maps, our PeakMapper package 
takes as input a tree and annotates its branches with 
their respective p-support values. Since the Bayes-
ian analyses studied in this paper were summarized 
as consensus trees, we take their strict and majority 
representations and annotate with p-support.

Results and Discussion
Data set #1: 20,000 trees over 150 taxa
Figure 1 suggests that the optimal number of clusters 
is at k = 2. Thus, P = 2 since the data set contains two 
peaks, P0 and P1. What is the composition of the two 
peaks in this data set? Table 2 and Figure 2 show that 
both peaks are composed of half of the 20,000 total 

trees, and each peak is composed of trees from a single 
run. Peak P0 is composed of trees from run R1 from the 
Bayesian analysis. Peak P1 consists of trees from run 
R0. There is no overlap of trees between the two peaks 
as each run is contained within a single peak.

Summarizing this collection of 20,000 trees as a 
consensus tree without acknowledging the presence 
of the two peaks ignores the distinct competing 
hypotheses that exist in this data set. We represent 
the influence of these hypotheses by annotating the 
resulting consensus tree with the p-support values 
of each branch in the consensus. For example, in a 
majority consensus tree, our annotation illuminates 
majority clades that are supported by a subset of the 
peaks. Figure 3 shows that there are three clades that 
would appear in the majority consensus tree but are 
only supported by one of the two peaks. These clades 
have a high standard deviation of p-support meaning 
that they are supported by one peak much more than 
the other. Since there is disagreement among the 
peaks, these clades more likely to be overturned by 
further runs of the search heuristic than those agreed 
on by all of the peaks.

Data set #2: 33,306 trees over 567 taxa
Even though the 567 taxa data set is more demanding 
in terms of having more trees and runs than the 150 
taxa data set, we approach it with the same process to 
compute its p-support values. Examining Figure 6(a) 
with the elbow criteria in mind suggests a range 

0 5 10 15

Number of clusters

A B

IS
im

av
e/

E
S

im
av

e

20

150 Taxa

567 Taxa

25 0 5 10 15

Number of clusters
20 25

1.02

1.025

1.03

1.035

1.04

1.045

1.05

1.055

1.06

1.065

IS
im

av
e/

E
S

im
av

e

1.02

1.025

1.03

1.035

1.04

1.045

1.05

1.055

1.06

1.065

Weighted ESimave

ISimave Unweighted ESimave

ISimave

150 Taxa

567 Taxa

Figure 1. Selecting the appropriate number of clusters, k. Larger ISimave/ESimave values are preferred since they indicate a better clustering of the data. 
The resolution rate reported in this table is a measure of how resolved the consensus tree is. If the consensus tree was completely binary we would have 
a value of 100% whereas if it was a star phylogeny it would have a value of 0%.
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of potentially useful k values from k  =  5 to k  =  8. 
However Figure 1(b) suggests that k = 6 is the optimal 
clustering for the data set. Since k  =  6 is potential 
solution in both of the analysis of the ISimave/ESimave 
ratio and the clear peak in unweighted analysis we 
will select the P = 6 as the number of peaks for this 
phylogenetic analysis.

We now explore the composition of the peak 
and ask “What are the traits of the six peaks in the 
data set?” Table  3 provides statistics regarding the 
composition of the six peaks for the 567 taxa trees. 
The information in Table  3 is represented visually 
in Figure  4. The trees in runs R0, R6, and R11 are 
each fully contained in a single peak, P3, P1, and P2 
respectively. These trees are placed in these peaks 
alone with no other trees from other runs. Hence we 
can say that the trees from each run are contained in 
their own peaks with no mixing or overlap with trees 
from other runs. Hence, these runs settled into distinct 
areas of tree space.

Alternatively, peaks P4 and P5 contain trees from 
multiple runs. Peak P4 contains trees from runs R1, 
R5, R7, and R8. These runs appear wholly in P4, and 
in no other peak. We can say that these four runs have 
stabilized to the same peak but do not overlap with 
the runs in any other peaks. Peak P5 is very similar 
to peak P4 in that it is mainly composed of runs that 
wholly are contained with in the peak. Runs R2, R4, 
R9 and R10 are all contained in this peak. The one 
exception is the placement of run R3. This run is split 
between two peaks. About half the run appears in peak 
P4 with four other runs and the other half of run R3 
appears in peak P0 by itself. This shows that run R3 
is split between two different peaks. It is the only run 
in either of our data sets to exhibit this behavior. This 
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Table 2. Detailed information for the two peaks found 
for the 150 taxa trees. For each peak, we list the number of 
trees, resolution rates of the majority and strict consensus 
trees, and run labels of the trees.

Peak Size Resolution rate Runs (%)
Trees % Majority Strict

P0 10,000 50% 90.5% 34.7% R1 (100%)
P1 10,000 50% 89.1% 37.4% R0 (100%)
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Figure 3. p-map. p-support values plotted against the percent of trees 
containing the clade for the 150 taxa data set with a P value of 2. Points 
greater than 50% on the x-axis would appear in a majority consensus 
tree. The points are shaded to reflect the standard deviation in the support 
values from the different peaks. Dark blue points mean the clade was 
equally supported among the peaks whereas red points mean there 
was a large difference in the amount of support for a clade among the 
peaks.
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Table 3. Detailed information for the six peak found by our PeakMapper approach on the 567 taxa trees. For each peak, we 
list the number of trees, resolution rates of the majority and strict consensus trees, and run labels of the trees.

Peak Size Resolution rate Runs (%)
Trees % Majority Strict

P0 1,537 4.6% 94.2% 68.4% R3 (100.0%)
P1 2,986 9.0% 95.6% 64.7% R6 (100.0%)
P2 2,164 6.5% 95.6% 66.8% R11 (100.0%)
P3 3,177 9.5% 95.4% 65.1% R0 (100.0%)
P4 11,312 34.0% 94.0% 61.0% R1 (28.1%) R5 (26.4%)  

R7 (26.4%) R8 (19.1%)
P5 12,130 36.4% 92.4% 58.3% R2 (26.2%) R3 (13.5%) R4 (24.6%)  

R9 (17.8%) R10 (17.8%)
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Figure 4. 567 taxa, P = 6: Each plot shows a single peak with the trees in the peak colored to represent the Bayesian runs they came from. The MDS values 
are computed as a Euclidean embedding of the data points. The r value for this MDS analysis is 0.84, where r = correlation (original, reconstruction).
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behavior may be the result of the phylogenetic search 
settling into one peak for the first part of the search 
only to find a better peak as the search progressed.

In this data set our analysis shows six peaks each 
distinct from one another. The only mixing in terms 
of runs appearing in multiple peaks occurs with R3 
appearing in two peaks. Knowledge of these trends 
in the data has the potential to inform the process 
of summarizing of the trees For instance since the  
behavior exhibited by run R3 could be explained that 
it found one peak early in the search only to abandon 
it later for another peak, it may be useful to remove 
the section of R3 contained in the lesser scoring of the 
two peaks from the summarization. This same idea 
could be applied to whole sets of peaks. Given that 
we have six peaks and know which trees make up 
each peak it becomes possible to select the peak with 
the best overall likelihood scores and set aside the 
trees representing the less likely peaks.

Figure 5 shows the p-support values plotted against 
the percentage of trees containing each clade. Notice 
that there are a number of clades which would appear 
in a majority consensus tree but are supported by only 
a subset of the peaks found in the search. For instance, 
there are seven clades which appear in the majority 
consensus tree but, they are only supported by 50% of 
the peaks. There is even a clade which is only supported 
by 2 of the 6 peaks yet it has over 50% majority support 
and therefore appears on the majority consensus tree. 

Due to size disparity between peaks there are some 
clades supported by only half the peaks but are still 
able to achieve over 70% majority support. These 
clades are also interesting due to the high standard 
deviation in p-support. Some peaks heavily support 
those clades while other peaks barely support them if 
at all. The clades with low p-support are the ones most 
likely to be effected by further analysis or new data. 
Clades that are common to all six peaks are likely to 
appear in future runs of the heuristic search algorithm 
while clades supported by a subset of peaks are less 
likely to be present in a future run. To this end it may 
be appropriate to collapse clades with low p-support.

Detecting single peak tree collections
We have shown the effectiveness of our algorithm in 
detecting when a data set has stabilized to multiple 
peaks instead of a single peak. Since neither data set 
we analyzed contained only a single peak, we chose 
to create such a data set in order show how our algo-
rithm would perform given this case. To represent 
this case we used a single run from our 150 taxa data 
set to create a 10,000 tree data set with a single peak.

We begin with by clustering our data set using k = 2 
through k = 24. We then examine the ISimave/ESimave 
ratio in Figure 6. Applying the elbow criteria can be 
a little tricky in this case. There is no obvious place 
where the gains in the ISimave/ESimave ratio taper off. 
There is a fairly steady increase in the ISimave/ESimave 
ratio as the k values increase. This is a strong sign that 
the most appropriate clustering is actually k = 1. As 
we increase k to its maximum value of n (number of 
trees) we expect the ISimave/ESimave ratio to rise. We are 
looking for a peak in these values before it it becomes 
a continual rise. Since this isn’t found, we assume a 
k value of one and therefore a P value of one.

Computational time
Since the two data sets studied here were obtained 
by using MrBayes, we compare the time of our 
PeakMapper algorithm to analyze the trees in the data 
sets with the time required by MrBayes to produce 
consensus trees. Our purpose is to show that for 
the time a systematist is willing to spend obtaining 
a consensus tree, our PeakMapper algorithm can 
produce a richer and more detailed perspective of the 
quality of the underlying data set by computing and 
visualizing p-support.

0

0
—
6

1
—
6

2
—
6

3
—
6

4
—
6

5
—
6

6
—
6

0

6

12

18

24

30

36

42

48

54

10 20 30 40 50

% trees support Standard deviation

p
-s

u
p

p
o

rt

60 70 80 90 100

Figure 5. p-support values plotted against the percent of trees containing 
the clade for the 567 taxa data set with a P value of 6. Points greater 
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Figure  7  shows that our 567 taxa tree collection 
required 2  hours 22  minutes and 20  seconds and a 
maximum of 2.7 GB of memory to complete the 
creation of the clade matrix, MDS analysis, clusterings 
for the range of k values where 2 # k # 24, and plotting 
the results. We also computed the strict and majority 
consensus trees for each of the 6 clusters and for the 
data set as a whole for a total of 14 consensus trees. This 
computation took a total of 5 minutes and 42 seconds. 

Creating a tree annotated with p-support took an addi-
tional 30 seconds. Table 4 shows the total computational 
time for the analysis presented in the paper is 2 hours, 
28 minutes, and 32 seconds. This is compared to comput-
ing the strict and majority consensus tree using MrBayes 
which took 4  hours 14  minutes and 31  seconds. Our 
analysis produced much more information including, an 
analysis of the peaks in the data set, in less time than it 
took to create two consensus trees with MrBayes.
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Figure 7. This plot shows the time in seconds that PeakMapper spent to compute the different components of the p-support analysis.Clustering the data 
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For our single peak data set with 150 taxa and 
10,000 trees, we completed our analysis in under 
19  minutes. This included the creation of the clade 
matrix, clustering, MDS and computing consensus 
trees. Since there was only a single peak we halted 
our analysis after the selection of k = 1 as the best k. 
Hence no time was spent annotating a consensus tree 
with p-support values. The whole process including 
generation of the clade matrix, MDS including 
clustering and plotting for each k value took just over 
45 minutes and under 2GB of memory. We then selected 
k = 2 as the best k. To explore the those two peaks we 
computed the strict and majority consensus trees for 
each cluster as well as for the whole data set took an 
additional 50 seconds. Creating a tree annotated with 
p-support took an additional 7 seconds. Table 4 shows 
the total computational time for the whole analysis 
which is 46 minutes and 5 seconds. As a comparison, 
summarizing the same data set using MrBayes’ sumt 
command for both the strict and majority consensus 
takes a total of 11 minutes and 2 seconds. PeakMapper 
computes both of these consensus trees but also the strict 
and majority consensus trees for each of the 2 clusters, 
for a total of 6 consensus trees in only 50 seconds.

Figure  7  shows that our 567 taxa tree collection 
required 2  hours 22  minutes and 20  seconds and a 
maximum of 2.7 GB of memory to complete the 
creation of the clade matrix, MDS analysis, clusterings 
for the range of k values where 2 # k # 24, and plotting 
the results. We also computed the strict and majority 
consensus trees for each of the 6 clusters and for 
the data set as a whole for a total of 14 consensus 
trees. This computation took a total of 5 minutes and 
42 seconds. Creating a tree annotated with p-support 
took an additional 30  seconds. Table  4  shows the 
total computational time for the analysis presented 
in the paper is 2 hours 28 minutes 32 seconds. This 
is compared to computing the strict and majority 
consensus tree using MrBayes which took 4  hours 

14 minutes and 31 seconds. Our analysis produced a 
much more information including an analysis of the 
peaks in the data set in less time than it took to create 
two consensus trees with MrBayes.

Conclusions
While p-support introduces new ideas to produce 
a novel clade support measure, it is intended to 
be compatible with the methods current used in 
phylogenetic analyses. Our measure neither changes 
nor replaces any of the ways that trees are currently 
produced or summarized. Furthermore, p-support is 
indifferent to the method on which the trees were 
gathered allowing it to be used with parsimony, 
likelihood, Bayesian or even to examine a combination 
of methods. p-support is intended to be an additional 
tool to be used along side existing measures. The peak 
detection methods described in this paper may be 
used to verify that there is only a single peak present. 
In other cases where the peaks are already known 
or computed by a different process (tree islands), 
p-support may be of value while the peak detection 
phase of the algorithm can be skipped.

It has been assumed that when multiple Bayesian 
analyses converge that there is a single peak present 
in the data set. We have shown that this is an 
assumption that should be investigated further. Not 
only is it possible for multiple peaks to be present 
it is possible for a single run of a search algorithm 
to contain multiple peaks. For data sets that contain 
multiple peaks, we provide methods to visualize and 
report their presence and impact on the final tree at a 
clade level. p-support allows the impact of peaks to 
be quantified on the reported tree and acts a measure 
of clade stability across multiple heuristic searches. 
p-support identifies clades which may most benefit 
from further analysis. Areas with low p-support could 
be improved potentially through further analysis with 
increased sequence data or by tuning the parameters 

Table 4. Time to compute the a single consensus tree of the whole data set using the sumt command in MrBayes. This time 
only includes the creation of the consensus tree and not the phylogenetic search or any other MrBayes functionality.

Data set MrBayes sumt command PeakMapper
Taxa Trees Strict consensus Majority consensus Total time
150 10,000 2 m:42 s 2 m:43 s 18 m:54 s
150 20,000 5 m:32 s 5 m:30 s 46 m:5 s
567 33,306 2 h:07 m:17 s 2 h:07 m:14 s 2 h:28 m:32 s
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of the search algorithm. In sum, we hope that our work 
shows the importance of developing new and novel 
data analysis tools for understanding phylogenetic 
tree sets and the analyses that produced them.
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