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fractional integrodifferential equations by using the weak convergence approach. The compactness
argument is proved on the solution space of corresponding skeleton equation and the weak convergence
is done for Borel measurable functions whose existence is asserted from Yamada-Watanabe theorem.
Examples are included which illustrate the theory and also depict the link between large deviations and
optimal controllability.

Keywords: Fractional differential equations; Large deviation principle; Stochastic integrodifferential

equations
Mathematics subject classification: 34A08, 45J05, 60F10, 60H10

1. Introduction

The subject of fractional calculus deals with the investigations of derivatives and integrals, of any
arbitrary real or complex order, which unify and extend the notions of integer-order derivative and
n-fold integral. It can be considered as a branch of mathematical analysis which deals with integrod-
ifferential operators and equations where the integrals are of convolution type and exhibit (weakly
singular) kernels of power-law type. It is strictly related to the theory of pseudo-differential opera-
tors. Fractional order models have the tendency to capture non-local relations in space and time, thus
forming an improvised model for analyzing complex phenomena. It is a successful tool for describing
complex quantum field dynamical systems, dissipation and long-range phenomena that cannot be well
illustrated using ordinary differential and integral operators. For an introductory study on fractional
calculus and fractional derivatives, see the literatures [19, 21, 25].

Inducing randomness into the model helps us to analyze better by taking into consideration the effect
of uncertainty, thus leading to stochastic fractional differential equations (refer [24] and references
therein). The theory of existence, controllability and stability of fractional differential equations has
been studied by many authors (for instance, see [1, 2, 15, 16]). However there seems to be possibly
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limited literature to the study of large deviations for stochastic fractional differential equations.

Large deviation theory is a branch of probability theory that deals with the study of rare events.
Though the probability of occurrence of rare events is too small, their impact may be large and so it is
significant to study such rare events. Large deviation theory finds its application in many areas such
as mathematical finance, statistical mechanics and various fields ranging from physics to biology. The
origin of large deviations dates back to the 1930s where there was a necessity to solve the problem of
total claim exceeding the reserve fund set aside in an insurance company. The solution was discovered
by the Swedish mathematician Cramer via refinement of the central limit theorem. Subsequent devel-
opments has been made since then and there was major breakthrough into the subject after Varadhan
[31] established a general framework for large deviation principle and formulated the Varadhan’s lem-
ma in 1966. In 1970, Wentzell and Freidlin [13] developed a theory to enhance the large deviation
principle for differential equations with small stochastic perturbations, which involves time discretiza-
tion of the original problem and then analyzing the large deviation principle in the limit. Fleming [12]
developed a stochastic control approach to establish large deviation principle and then Dupuis and El-
lis [11] combined the weak convergence approach with the theory of Fleming. These developments
indeed explore the close association of large deviation theory with optimal controllability problems.

Using the weak convergence approach, the large deviations for homeomorphism flows of non-
Lipschitz Stochastic Differential Equations (SDEs) was studied by Ren and Zhang [27]; the large
deviations for two-dimensional stochastic Navier-Stokes equations by Sritharan and Sundar [28], and
for stochastic evolution equations with small multiplicative noise by Liu [18]. For more references
on this approach, one may refer [5, 6, 11, 14, 26]. By using the approximating method, Mohammed
and Zhang [23] established a Freidlin-Wentzell type large deviation principle for the stochastic delay
differential equations. Mo and Luo [22] also studied the large deviations for the stochastic delay dif-
ferential equations by employing the weak convergence approach. Bo and Jiang [4] analyzed the large
deviation for Kuramoto-Sivashinsky stochastic partial differential equation. A large deviation principle
for stochastic differential equations with deviating arguments is dealt with in [30].

A Freidlin-Wentzell type large deviation principle is discussed in Dembo and Zeitouni [8] for the
following stochastic differential equation:

dX(®) = b(t,X(@))dt + Veo(t, X(2))dW(r), t€(0,T],
X©0) = Xp.

In the case that the system is affected by hereditary influences, the drift and diffusion coefficients (b
and o) also depend on an integral component, thus giving rise to stochastic integrodifferential equation-
s. The large deviations for stochastic integrodifferential equations has been carried out in [29]. In this
paper, we consider the stochastic fractional integrodifferential equations with Gaussian noise perturba-
tion of multiplicative type and establish the large deviation principle by using the results developed by
Budhiraja and Dupuis [7]. The compactness argument is done with the associated control equation and
weak convergence result is obtained by observing the nature of the solution of the stochastic control
equation as the perturbation of the noise term tends to zero.

)

2. Preliminaries

Let X and H be separable Hilbert spaces. Denote by L(X) the space of all bounded linear operators
from X to X. Denote by J the time interval [0, T']. Let {Q, ¥, P} be a complete filtered probability space
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equipped with a complete family of right continuous increasing sub o-algebras {F;,¢ € J} satisfying
{F: c F}. Let Q be a symmetric, positive, trace class operator on H and W(-) be a H-valued Wiener
process with covariance operator Q. Denote the space H, := Q'/?H. Then H, is a Hilbert space with
the inner product (X, Y), := (Q~'2X, Q~'/?Y) for all X, Y € H, and the corresponding norm is denoted
by ||-]lo- Let Ly denote the space of all Hilbert-Schmidt operators from Hj, to X. Consider the nonlinear
stochastic fractional integrodifferential equation in X of the form

CD*X(1)
X(0)

?(j((t) +b(.X(@). [} £, 5. X(s)ds) + o (1. X(0), [; 8(t. 5. X(5))ds) &2, 1 e J, } 2

where 1/2 < @ < 1,Xy € Xand A : X — X is a bounded linear operator. Also the drift coefficient
b:JxXxX — X, the noise coefficient 0 : / X XXX — Lo(Hp;X)and f,g : I X I XX = X
Assume the following Lipschitz conditions on the drift and noise coefficients: For all x;, x5, y1,y, € X
and 0 < s <t < T, there exist constants L, L., L¢, L, > 0 such that

Ly[llx1 = x2llx + [ly1 = ¥2llx]s

Lo [llx) = xollx + llyr = yallx]s 3)
Lyllx; — xollx%,

Lg”xl — Xollx.

b2, x1, y1) — b(t, x2, y2)lIx
llo(z, x1, y1) — o°(2, x2, y2)ll1
L, s, x1) = f(2, 5, x2)llx
gz, s, x1) — g(t, s, x2)Ix

INIA N IA

Also assume the following linear growth assumptions on the coefficients: For all x,y € X and 0 < s <
t < T, there exist positive constants K;, K-, K¢, K, > 0 such that

Ib(t, x, G < Kp[1+ [1xl + Iyl ],

lo(t, x, 0I7, < Ko[1+ 11X + IV @
It s, 0I5 < K1+ IxliZ],

lg(t, s, 0l < K[1+IIxZ].

Let us first quote some basic definitions from fractional calculus. For @, > 0, withn -1 < @ < n,
n—1<pB<nandn €N, D is the usual differential operator and suppose f € Li(R,), R, = [0, 00).

(i) Caputo Fractional Derivative:
The Riemann Liouville fractional integral of a function f is defined as

1 !
I'f) = — f (t— )" f(s)ds,
(@) Jo
and the Caputo derivative of f is CDf(f) = I""*f")(¢), that is,

Cna _ 1 ft _ \n—a—1 g(n)
DO = g | =9 (s,

where the function f(¢) has absolutely continuous derivatives up to order n — 1.
(i) Mittag-Leffler Operator Function: Two parameter family of Mittag-Leffler operator functions is

defined as
E, 5(A) = — a, 0.
#A) kZ:;Jl"(ka/+B) @p>
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Here A is the bounded linear operator. In particular, for § = 1, the one parameter Mittag-Leffler
operator function is

E(4) = ;{ Tka + 1)

The Mittag-Leffler functions are in fact generalizations of the exponential function and are applica-
ble in varied situations involving fractional derivatives, see for example [9]. Assume the following
boundedness on the Mittag-Leffler operator functions with one and two parameters:

M, = sup ||EC,(At")|| M, = sup ||Ea,a(At“)||L(X). (5)
teJ teJ

LX)’

In order to find the solution representation, we need the following hypothesis and make use of the
Lemma that follows.

(H1) The operator A € L(X) commutes with the fractional integral operator /* on X and ||A||i(x) <

Qa-1)(T(@))?
TZa .

Lemma 2.1. [17] Suppose that A is a linear bounded operator defined on X (more generally, X may
be a Banach space) and assume that ||A|| ) < 1. Then (I - A)7! is linear and bounded. Also

(I-A)" = ZA".
k=0

The convergence of the above series is in the operator norm and ||(I — A)‘IIIL(X) < (1 -|All L(X))‘l.

We next show that [[[*A||,x) < 1 and, by the Lemma, we obtain (/ — I°A)7! is bounded and linear.
Let X € X; then by (H1), we have

E

E[II(I “A)X| |é(1;x)]

T
Ty 13
T2a/
2a - 1)(r<a>>2E[

!
sup f (t - s)z"-2||AX(s)||§§ds]
0

sup ||AX(r>||§] < BIXIE

teJ

hence yielding the desired inequality. On the other hand, defining the random differential operator

dF(t,X(1) := b (t, X(1), f f(,s, X(s))ds) dr + o'(t, X(1), f g(t, s, X(s))ds) dW()
0 0

and operating by /¢ on both sides of (2), we have

X(t) = Xo+I"AX(t) + Iaw’
X = (-1 (xzw)

Therefore, using Lemma 2.1 and the fact that /* commutes with A, we obtain (see [3, 20])

LAF (@, X (t)))
dr

0o

Xt = Z(I“A)" (X0+I

k=0
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dF(t, X(1))
dt
dF(t, X(1))
dt

Z 1A% X, + T A
k=0
— Z IkaAkX + Ika/+aAk

k=0

oo

_ Aktak ol Ak(l _ S)ak
= Zr(k 0+f(t S) (kor(k )

= E,(A1")X, + f (t = 5)* " E,o(A(t — $)*)dF (s, X(5)).
0

dF(s, X(s)),

Thus we obtain the solution representation of (2) as
! S
X(@) = E (AMXy+ f(t — §)* ' E, o (A(t — 5)*)b (s, X(s),f f(s, T, X(T))dT) ds
0 0

+ f (t— )" Eyo(A(t — )0 (s, X(s), fs g(s, 1, X(T))dT) dW(s). (6)
0 0

We now present some basic definitions and results from large deviation theory. For this, let {X¢}
be a family of random variables defined on the space X and taking values in a Polish space Z (i.e., a
complete separable metric space ).

Definition 2.1. (Rate Function). A function I : Z — [0, 0] is called a rate function if I is lower

semicontinuous. A rate function I is called a good rate function if for each N < oo, the level set
Ky ={f € Z:I(f) <N}iscompactinZ.

Definition 2.2. (Large Deviation Principle). Let I be a rate function on Z. We say the family {X¢}
satisfies the large deviation principle with rate function I if the following two conditions hold:
(i) Large deviation upper bound. For each closed subset F of Z,

limsup elogP(X€ € F) < —I(F).

e—0

(ii) Large deviation lower bound.For each open subset G of Z,
lim ionf elogP(X® € G) > -1(G).

Definition 2.3. (Laplace Principle). Let I be a rate function on Z. We say the family {X¢} satisfies the
Laplace principle with rate function I if for all real-valued bounded continuous functions h defined on

Z
hmelogE{exp [——h(Xf)]} }ﬂ% {h(f)+ 1(f)}.

e—0

One of the main results of the theory of large deviations is the equivalence between the Laplace
principle and the large deviation principle when the underlying space is Polish. For a proof we refer
the reader to Theorem 1.2.1 and Theorem 1.2.3 in [11].

Theorem 2.1. The family {X¢} satisfies the Laplace principle with good rate function I on a Polish
space Z if and only if {X¢} satisfies the large deviation principle with the same rate function 1.
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3. Large Deviation Principle

In this section, we consider the stochastic fractional integrodifferential equation (2) with the random
noise term being perturbed by a small parameter € > 0 in the form

CDOXr) = AX(D)+ b(L.X(0), [ f(t. 5, X(5))ds)
+ Ve (LX), [} g(r. s, X(5))ds) 22, 1 € (0,71, (7)
X<0) = X,.

Let G° : C(J : H) — Z be a measurable map defined by G(W(-)) := X¢(-), where X¢ is the solution
of the above equation (7). We implement the variational representation developed by Budhiraja and
Dupuis to study the large deviation principle for the solution processes {X}. Let

T
A= {v v is H, - valued ¥, - predictable process andf [|[v(s, w)ll% ds < o0 a.s. },
0

T
Sy = {v e L*(J; Hy) : f ||v(s)||(2) ds < N} ,
0

where L?(J; H,) is the space of all H, -valued square integrable functions on J. Then Sy endowed
with the weak topology in L*(J; H,) is a compact Polish space (see [10]). Let us also define

Av={veA:viw)eSyP-a.s}.

We now state the variational representation developed by Budhiraja and Dupuis [7, Theorem 4.4]
that provides sufficient conditions under which Laplace principle (equivalently, large deviation princi-
ple) holds for the family {X*}:

Proposition 3.1. Suppose that there exists a measurable map G° : C(J : H) — Z such that the
following hold:

(i) Let {v¢ : € > 0} ¢ Ay for some N < oo. Let v¢ converge in distribution as S y-valued random
elements to v. Then G¢ (W(-) + # fo' ve(s) ds) converges in distribution to G° ( fo. v(s) ds) .

(ii) For every N < oo, the set
Ky = {Qo{fv(s) ds] : veSN}

0
is a compact subset of Z.

For each h € Z, define

T
I(h) = inf {1 f Iv(s)ll ds}, (8)
)

{veLz(J:‘Ho):hng( [ v(s) ds
0

where the infimum over an empty set is taken as . Then the family {X¢ : € > 0} = G(W(.)) satisfies
the Laplace principle in Z with the rate function I given by (8).
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In Proposition 3.1, (i) is a compactness criterion and it is to be noticed that it has a coincidence with
the fact that the level set for a good rate function is compact. Thanks to the variational representation
prescribed by Budhiraja and Dupuis, the study of large deviation principle for any stochastic differential
equation can now be simplified to the problem of identifying Borel measurable function G° so that the
hypothesis in the above proposition is satisfied.

Consider the controlled equation associated to (7) with control v € S y.

CDX,(1) = AX()+b(t.X,(0). [ £t 5. X,(s))ds)
+ o (6. X,00, [; 8(t. 5. X,(5))ds) v(®), 1 € (0.1, ©)
X,(0) = Xo,

and let X,(¢) denote the solution of the equation (9). The main result in this chapter is the following
Freidlin-Wentzell type theorem:

Theorem 3.1. With the assumption (HI) on the bounded linear operator A, the family {X*(t)} of solu-
tions of (7) satisfies the large deviation principle (equivalently, Laplace principle) in C(J; X) with the
good rate function

1 (7
I(h):= inf{E f vl dt; X, = h}, (10)
0
where v € L*(J; Hy) and X, denotes the solution of the control equation (9) with the convention that
the infimum of an empty set is infinity.

In order to prove the theorem, the main work is to verify the sufficient conditions in Proposition 3.1.
Initially we formulate the following perturbed controlled stochastic equation corresponding to (7):

CDOXE) = AXS) +b(LX0), [ £t 5. XA())ds) + o (. X, [) 8(t. 5. XE(5))ds) v(0)
+ Veo (1. X5, [) g(t, 5. X5(s))ds) &2, 1 € (0,77, (11)
X0) = X,

The solution representation is given by
! S
XS() = E (Af)Xo + f(t — s)“_lEa,a(A(t - )b (s, Xj(s),f f(s, T, X‘f(T))dT) ds
0 0
! S
+ f (t— s)“_le(A(t -0 (s, X:(s), f g(s, 1, XS(T))dT) v(s)ds
0 0

+ \/Ef (t— s)"_lE(w(A(t - 85Y0o (s, X5(s), fs g(s, T, XVE(T))dT) dW(s). (12)
0 0

Before proceeding further analysis, we show that the solution X;(f) obeys the following energy esti-
mate:

Theorem 3.2. The solution X;(t) of (11) is bounded in the space L*(Q; C(J; X)), that is, there exists a
positive constant K > 0 such that

E [sup IXE@)Ix | < K. (13)

teJ
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Xﬁ(t)”2 > N}. And, for any 1 € [0,T A 7y],
consider the solution representation of (11) given by (12), take || - ||§§ on both sides and use the algebraic
identity (a + b + ¢ + d)* < 4(a® + b* + ¢* + d°) to get

Proof. First we define the stopping time 7y := inf {t : |

¢ s 2
|X§(t)||§§ < 4||EL(Ar") Zx)nxongg + 4 H j; (t — $)7  Eqo(A(r — 5)9)b (s, XE(s), fo f(s,1, Xg(T))dT) ds
X
t s 2
+ 4 f(t — ) EL (At - 5)Y)o (s, Xj(s),f g(s, 1, XS(T))dT) v(s)ds
0 0 X
t s 2
+ 4e f (t— s)“_le(A(t - 890 (s, X (s), f g(s,, Xj(‘r))dr) dW(s)| .
0 0 X

Using the Holder inequality and the bounds on ||Ea()||
estimate

and ||Em(-)|| ) given by (5), we obtain the

L(X) L(X

€ 2 ' a— ! ?
X, < 4Mf||X0||§§+4M§fo(t—s)2 stfo de

b(s, X:(s), fs f(s,, Xj(T))dT)
0

2 1
ds f Iv(s)ll3ds
Lo 0

2

!
+4M; f (t—s)**2
0

O'(S, X:(s), fs g(s,, XVE(T))dT)
0

+4e€

f (t = $P*Eq oAt - s>“>a(s, X¥(s), f oo, Xj(T))dT) aw(s)
0 0

X

2
}ds
X

Now using the linear growth property of ‘b’ and ‘o~ given by (3) results in

1+]

. 2 T2(1—1 t
IXsoll, < 4 MTIXOIE + 4Ky M3 -— fo

Xj(s)”; + ‘U; f(s,7, X5 (7))dr
2

] ds
X

f (t— s)"_le(A(t -0 (s, X5(s), fs g(s, T, XS(T))dT) dW(s)
0 0

!
+4K,M3N f (t—s)*2
0

1+]

Xl +| fo 8(s, T, X<(D)dr

2
+4e€ .
X

Using Holder’s inequality for the integrands || fos f(s, T, XE(T))dT”; and | j(;s g(s, T, X‘f(‘r))”i and also
making use of the linear growth property of ‘f” and ‘g’ given by (4), we get, on simplifying,

| sl + &7 [ [1+]
0

Xj(s)||§§+Kng [1+]

SNTE T
X0l < AMAXoIE + 4K, M3 — )

!
+4K,M; N f (t—s)™2
0

X,

1+]

dT] ds

1+

, XE(T)H;] dr] ds
0
2
. (14)

X

+4e€
0

U (t— s)“_lEa,a(A(t - )0 (s, X:(s), fs g(s,, XS(T))dT) dW(s)
0

The stochastic integral term can be estimated by means of the Burkholder-Davis-Gundy inequality as

2
E { sup [ }}
0<t<T Aty X
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T s 2
< M%f (T - )| s,Xj(s),f g(s,T,XVE(T))dT) ds
0 0 Lo
T [ 2 r 2
< KUMgf (T - ™21+ |X§(s)||X+Kng |1+ x| dr] ds
0 L 0
5 T _— . ) ) T2a/—l T )
< KUMQJ(; - 572 1+ x| ds+K(,M2Kngj; L+ xeolfy | ds.

Hence (14) becomes, after taking supremum and expectation on both sides and simplifying,

. ) T2a-1 T
E[O<sup IXc0|] < 4 MIEIX|; + 4K, M; (1 + K T?)5— I]Ef [1 +|
<t<T Aty 0

Xve(s)”;] ds

T
+ 4K, M3 (N + e)Ef (T - 5)*7? [1 + |X5(S)||§g] ds
0

Xj(s)”ig ds.

5 T2(1/—1 T
+ 4K MK To— (N + e)]EfO [1 +|

Further simplifying and applying the well known Gronwall inequality, we end up with

E[ sup |X§(t)||§§] < (4 MIEIIXoIE + Cr) e =K, (15)
0<t<T Aty

where Cr = 4M252 | K, (1 + K(T?) T + Ko (1 + K,T) (N + €)| . Observe that T Aty — T as N — oo,
hence resulting in (13). i

Lemma 3.1 (Compactness). Define G° : C(J;H) — C(J;X) by

X,. ifh= [v(s)d €Sy
& ::{ if Ofvs s for some v € Sy

0 , otherwise.

Then, for each N < oo, the set

Ky = {QO [IV(S)dSJ tve SN}

0

is a compact subset of C(J; X).

Proof. Let {v,} be a sequence of controls from S y that converge weakly to v in L?(J; H,) and let X,, (1)
denote the solution of (9) with control v replaced by v,. Take Y,(¢) = X,, (f) — X,(#). Then the equation
corresponding to Y,(¢) would be

DY) = AY,(1)+b(.X, ). [ £(t. 5. X, (s)ds) = b (. X,0). [} £(t. 5. X,(5))ds)
+0 (1. X, (). [ 8(t. 5. X, ()ds) vo(0) = o (1. X,(0). [ g(t. 5. X,(s))ds)v(e), ¢ (16)

Y,(0) 0.
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The solution representation is
Y, (1) = fot(f — 8)" " Eq oAt — 5)7) [b (S, Xy, (5), f0~‘ f(s,7, Xvn(T))dT)
b (s, X,(5), fo flsor, XV(T))dT)] ds
+ fot(f — )" EqolA(t — 5)") [U (S, Xy, (5), fos g(s, T, Xv,,(T))dT) Va(s)

- (s, X,(s), fs g(s,, XV(T))dT) v(s)] ds
0
= 1(D) + L) + (),

where
L(1) == fot(l — )" Eqo(A(t = 5)) lb (S, X,,(s), fos f(s,7, Xv,,(T))dT)
—b (S, X(s), fos f(sm, XV(T))dT)] ds,
(1) = fot(l — )" Eqo(A(t = 5)) [ff (S, X, (s), fos g(s, 7, Xv,,(T))dT)
—cr(s,XG(SL‘J;Sg(s,T,)CKTO)dT)]»w(S)ds,

I(t) := ft(t - s)"_lE(m(A(t - o (s, X,(s), fs g(s,, XV(T))dT) (va(s) = v(s))ds.
0 0

First consider the integral /,(¢) and taking || - |[x on both sides, we get

WMMX§£U—QWWEWMU—@Wmml{&&&ﬁl:ﬂ&ﬁXAﬂMﬂ

-b (s, X,(s), fs f(s,T, XV(T))dT)
0

ds.
X

7)

(18)

19)

(20)

Using the boundedness of ||E, ,(-)|| given by (5) and Lipschitz continuity of ‘b’ from (3), we obtain

||Il(l‘)||X < L,M, ‘f(; (t— S)a—l[

Using the Lipschitz continuity of ‘f”, we get subsequently

E@k+g£
Yn(S)”X ds + L,LM, ft(t B S)a/—lft
0 0

T ([
Yo(s)|,, ds + LyLyMy— fo

L, < Ly M f (t- s)“-l[ Y, (@), dT]ds
0

!
<L, M, f (t— )"
0

!
=L, M, f (r— S)a_l
0

Y, ()|, drds

Yo(s)||,, ds.

Yn(S)”X + fo‘ ||f(s, 7, X, (1) — f(s, 7, XV(T))“X dr]ds.

21
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In a similar way, consider the integral /;(f) and estimating using the boundedness of ||E,,(-)|| and
Lipschitz continuity of ‘o, we get

I, < LM, fo -9 [, + fo [lots. 7 X0, ) = 865 7 X ()l ds,

Now, using the Lipschitz continuity of ‘g’, we obtain

A
I, < Lo M f (i — |
0

+ LyL M, f t |
0

For the third integral, applying Holder’s inequality, one gets

You(9)||, va(s)llo ds

Vfldr [ @9 Inlods (22)
0

||I3(l)||x < f (t—s)*! ||Ea,a(A(t - )Nz O'(S, Xv(s),f g(s, 7, X,(1)) d‘r) (Va(s) = v(s)) ‘X ds
0 0
¢ 1/2 ! s 2 1/2
<M, (f (t— 5)>*2 ds) (f O'(S, Xv(s),f g(s, 7, X,(1)) dT) (va(8) = v(s)) ds)
X
0 t So 0 i »
< MZTa(f O'(S, Xv(s),f g(s, 7, X,(1)) dT) (Va(s) = v(s)) ds) , (23)
0 0 X

where T, = \T/% Now (17) becomes, after substituting (21) - (23) and applying Gronwall’s inequal-

ity,

2 1/2
ds)
X

!
LM, f (t = 9 vn()lods
0

Y, (0|, < MaT, ( f Ha(s, X,(5), f g(s,7, X,(7)) dT) (Vu(s) = v(s))
0 0

a+1

!
X exp {L,,M2 f (t — )" ds + LyL; M,
0 (04

!
# LLET [ =97 (ol ds).
0

Applying Holder’s inequality to the last two integral terms on the exponential index, one gets

2 1/2
ds]
X

v,0||, < MoT, [ f Hcr(s,xvm, f g(s,r,Xm))dr)(vn(s)—v(s))
0 0

T« Ta+1
X exp {Lsz— + LbLfM2
a (0

t 1/2 ! 1/2
+ (LyMs + Ly L,M,T) ( f (i - s)2“-2ds) ( f ||v,,(s)||3ds) }
0 0

On simplifying and taking supremum over ¢ € J, we get

5 12
ds]
X
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0 0

sup |
teJ



359

a 2a—-1

T
X exp {LbMZF(l + LfT) + L, M, 20— 1

(1+L,T) \/N}

(24)

Since v, — v weakly in L*(J; H,) and o is a Hilbert-Schmidt operator and hence compact, we have
that ov, — ov strongly in L?>(J;X) and so ¥, = X, — X, — 0 in C(J;X), thereby proving the

compactness.

O

Lemma 3.2 (Weak Convergence). Let {v¢ : € > 0} C Ay for some N < co. Assume that v¢ converge to

v in distribution as S y-valued random elements; then

ya -t (eods| °f
W() + ﬁ!v (s)ds] Q( v(s)ds]

0

QE

in distribution as € — 0.

Proof. Consider the nonlinear stochastic fractional integrodifferential equation (11) with control v¢ €

L2(J; H,) and let the solution be denoted by X:.(¢). Take Y(¢) = X{.(¢) — X,(¢). Then
v = [[a- o Buaa-o|b(sxion [ s X
-b (s, X, (s), j: f(s, 1, XV(T))dT)] ds
; fo (= 9 E, (A= 5)%) [0' (s, X5.(s), fo oo, X;(T))dr)
- a(s, X6, [ g, va)dr)] Vi(s)ds
al (= 5 Ey (Al - s)“)a(s, xo. [ e va)df) (v(5) - v(s))ds

+ \/Ef (t— s)"_lE(m(A(t - 890 (s, X5 (s), fs g(s,, XV(T))dT) dW(s).
0 0

Taking || - ||*> on both sides and using the algebraic inequality (a + b + ¢ + d)* < 4(a® + b* + ¢* + d?), we

obtain
YO, < T0(0) + To() + I3(0) + Ta(0),
where
I, :=4 f(t - s)“_le(A(t -5 [b (s, X5 (s), fs f(s, T, Xvi(T))dT)
0 0
S 2
- b (s, Xv(s),f f(s, 1, XV(T))dT)] ds|| .
0 X
I, =4 f (t— s)"_lEW(A(t -5 [0‘ (s, X5 (), fs g(s, T, Xf,E(T))dT)
0 0

(25)

(26)

AIMS Mathematics Volume 2, Issue 2, 348-364



360

2

- O'(S, X, (s), fs g(s, T, XV(T))dT)] Vve(s)ds|| 27
0 X

2
, o (28)
X

I5() =4 H L (t— s)“_lEC,,C,(A(t -0 (s, X,(s), fos g(s, 1, XV(T))dT) (vé(s) — v(s))ds

I4(t):=4¢€

t S 2
f (t— s)"_lE(m(A(t - )0 (s, X5(s), f g(s,, XV(T))dT) dW(s) (29)
0 0 X

First consider the integral 7 (¢) and applying Holder’s inequality along with the bound for ||EW(~)||
given by (5) and the Lipschitz continuity of ‘b’ given by (3), one gets

LX)

I < 4 fo (t = )| Eaal Al = )], ds
t S S 2
b(s,Xvi(s), f f(s,T,XEe(T))dT)—b(s,Xv(S), f f(s,T,Xv(T))dT) ds
0 0 0 X
t t S 2
< 4LZM§f(t—s)2“_2dsf [| Yf(s)||X+f ||f(S,T,XSg(T))—f(S,T,XV(T))”dT] ds.
0 0 0

Using the algebraic identity (a + b)* < 2(a® + b*) and Holder’s inequality to the last integral term on
the right hand side and then using the Lipschitz continuity of ‘f’, we obtain simultaneously

2a-1
T1(1) <8L; M3 2T— [|

rlf o7 [ x5 - e x o

rol+r [ |

On simplifying, the integral 7(¢) can be estimated as

YG(T)”; dr|ds

2a-1
<8IZMI L [|
220 -1 J

TZa—l ! 5
2 rq2 2 2 €
Ti(t)< 8Ly M3 (1+ L3 T )m——lfo [Y<(9)||;, ds. (30)

Similarly consider the integral 7,(¢), apply Holder’s inequality followed by the bound for ||E, (-)llx
and the Lipschitz continuity of ‘o to get

() < 4 f (t—s)Z“‘ZIIEa,a(A(t—s)")lli(x)ds
s 2
(s Xf(s)fg(sT se(T))dT)—O'(S,Xv(S)afg(S’T’Xv(T))dT) IV (9)llgds
Lo
T2 . c
< w2 Mzﬁ [l 227 [ o arfhecolfas.

On further simplifying and making use of the fact that the control variable v € Sy, we obtain

T2a—1 1
7 < LZMZ—[f
1-2()_80- 22(1’—1 0|
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Now consider the integral 7;(¢), apply Holder’s inequality and the bound for ||Ew(-)|| to obtain

L(X)
T20z—1 t
T4(f) < 4M? f
3( ) 2 2 — 0

2
ds. (32)
1 X

a(s, xo. [ et xvm)dr) () = 1(s))
0

Finally consider the stochastic integral 74(¢) and taking supremum and then taking expectation on both
sides and making use of the Burkholder-Davis-Gundy inequality, we get
2
A

f (t— 5) " E (At — 5)")o (s, X5 (), fs g(s,, XV(T))dT) dW(s)
0 0

(s X5 (s), f g(s, 7, X (7)) dT)

Using the linear growth property of ‘o’ and ‘g’ and simplifying, we get

E [sup L;(t)] = 4€E {sup

teJ teJ
2

ds.
Lo

T
< 4eM5E f (T - 5)*2
0

T s
E[supﬂ,(t)] < 4eK,ME f (T—s)z"2[1+||Xvi(s)||§§+KgT f (1+||X55(T)||§§)d7']ds
teJ 0
T
< 4eK,M; [E f (T — )™~ X5 ()3 ]ds + K, T (s)||§§]ds]
0
TZLU 1 2
< AeK,M3o— (1+K T2){ +E X;(t)||x]}. (33)
teJ

With all these estimates on the integrals 7;(¢),i = 1,2, 3,4, given by (30) - (33), equation (25) becomes,
after taking supremum over ¢ € J and then taking expectation

Yf(t)||§§] < 8L2M2(1+L2 T2) f [7<cs)|[; ds

+8L2M2 [ f|

2a-1 T
+ 4M§ r Ef o (s, X, (s), f g(s,, XV(T))dT) (v(s) = v(s))
-1 0

2a—-1
<r>||§]}~

T
+ 4eK M22 (1+KT2){1+E
Applying Gronwall’s inequality and further simplifying, we end up with

. 2 TZa—l T
Y(t)”X] < {4M§2a_1Ef0

2a—-1

T
+ 4 €k, 1\422 (1+1<T2)(1+E

E| sup |
teJ

Ye(s)“X

‘ds+ [ZNTE f |Yf(r)||Xdr]

ds
X

2
ds
X

0(& X (s), f S g(s, 7, X,(7)) dT) (v(s) = v())

xzolf|)}

[L%,(l + L2T)T + L2(1 + L2T2)N]) (34)

]E[ sup |
teJ

2a-1
X exp (SM2 d
2a
Since o is a Hilbert-Schmidt operator and hence compact and since v¢ — v weakly in L*(J; H,) as
€ — 0, we have that ov¢ — ov strongly in L?*(J;X) and so Y€ = Xf. — X, — 0in probability in the
space L2(Q; C(J; X)). Since convergence in probability always implies convergence in expectation, we
have finally proved the required weak convergence criterion. m|
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4. Examples

Example 4.1. Consider the stochastic fractional integrodifferential equation with additive noise given
by

CD*X(1)
X(0)

dr 35
X,. (35)

[ X(s)ds +sin(X()) + [} 1+ X2(s)ds + ve UL, e (0,T], }

with X, € R and 1/2 < a < 1. The corresponding controlled equation with control v € L*(0, T;R)

takes the form
! !
f X, (s)ds + sin(X, (7)) + f A1+ X2(s)ds + v(D),t € (0,T],
0 0

Xo.

CDYX,(1)

X,(0)

It is observed that if there exists a unique solution X,(-) for the above mentioned equation, then the
control v € L([0, T], R) with which the unique solution X, is attained is also unique and hence the rate
function 7 : C([0,T]; R) — [0, o] is given explicitly by

1 T
10-5 |

if ¢ satisfies (35) for appropriate control v, and co otherwise.

2
dr, (36)

“D*p —sing — ft (¢(s) + 1+ ¢2(s)) ds
0

Example 4.2. As an example for (7) with multiplicative type noise, consider the following stochastic
equation:

CDYX(1) = B[ [X(s)+exp (1mb )| ds + Ven [y X(s)ds B2, 1 e (0,1], } a7
X©0) = 1,

where 7, 8 > 0 are positive constants. Then the rate function 7 : C([0, 1];R) — [0, co] is given by
1 1
I(p) = inf{E f [v(£)|?dz : v € L*([0, 1], R) such that X, = ¢}, (38)
0
where inf () = co and X, is the unique solution of

- wgd L ool
X, =1 X, —||drd
O = 1w T b [0 el oo

no [ v
r(3)Jo @=9"

fs X,(r)drds,t € [0, 1]. (39)
0

It is evident from (38) that estimating the rate function Z(¢) is a problem of finding the minimal cost
% fol [v(#)|*dt, out of all the controls v that steers the desired solution ¢ = X,, from (39).

AIMS Mathematics Volume 2, Issue 2, 348-364



363

Acknowledgments

The first author would like to thank the Department of Science and Technology, New Delhi for
their financial support under the INSPIRE Fellowship Scheme. The work of the third author is sup-
ported by the University Grants Commission [grant number: MANF-2015-17-TAM-50645] from the
Government of India.

Conflict of Interest

All authors declare that there is no conflict of interest.

References

1. K. Balachandran, S. Divya, M. Rivero and J.J. Trujillo, Controllability of nonlinear implicit neutral
fractional Volterra integrodifferential systems, Journal of Vibration and Control, 22 (2016), 2165-
2172.

2. K. Balachandran, V. Govindaraj, L. Rodrguez-Germa and J.J. Trujillo, Controllability results for

nonlinear fractional-order dynamical systems, Journal of Optimization Theory and Applications,
156 (2013), 33-44.

3. K. Balachandran, M. Matar and J. J. Trujillo, Note on controllability of linear fractional dynamical
systems, Journal of Control and Decision, 3 (2016), 267-279.

4. L. Bo and Y. Jiang, Large deviation for the nonlocal Kuramoto-Sivashinsky SPDE, Nonlinear Anal-
ysis: Theory, Methods and Applications, 82 (2013), 100-114.

5. M. Boue and P. Dupuis, A variational representation for certain functionals of Brownian motion,
Annals of Probability, 26(1998), 1641-1659.

6. A. Budhiraja P. Dupuis and V. Maroulas, Large deviations for infinite dimensional stochastic dy-
namical systems, Annals of Probability, 36 (2008), 1390-1420.

7. A. Budhiraja and P. Dupuis, A variational representation for positive functionals of infinite dimen-
sional Brownian motion, Probability of Mathematics and Statistics, 20 (2000), 39-61.

8. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, New York: Springer,
2007.

9. A. Di Crescenzo and A. Meoli, On a fractional alternating Poisson process, AIMS Mathematics, 1
(2016), 212-224.

10. N. Dunford and J. Schwartz, Linear Operators, Part I, New York: Wiley-Interscience, 1958.

11. P. Dupuis and R.S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, New
York: Wiley-Interscience, 1997.

12. W.H. Fleming, A stochastic control approach to some large deviations problems, Recent Mathe-
matical Methods in Dynamic Programming, Springer Lecture Notes in Math., 1119 (1985), 52-66.

13. ML.L Freidlin and A.D. Wentzell, On small random perturbations of dynamical systems, Russian
Mathematical Surveys, 25 (1970), 1-55.

AIMS Mathematics Volume 2, Issue 2, 348-364



364

14. M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, New Y-
ork:Springer, 1984.

15. R. Joice Nirmala and K. Balachandran, Controllability of nonlinear fractional delay integrodiffer-
ential system, Discontinuity, Nonlinearity, and Complexity, 5 (2016), 59-73.

16. M. Kamrani, Numerical solution of stochastic fractional differential equations, Numerical Algo-
rithms, 68 (2015), 81-93.

17. E. Kreyszig, Introductory Functional Analysis with Applications, New York: John Wiley and Sons
Inc, 1978.

18. W. Liu, Large deviations for stochastic evolution equations with small multiplicative noise, Ap-
plied Mathematics and Optimization, 61 (2010), 27-56.

19. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Amsterdam: Elsevier, 2006.

20. R. Mabel Lizzy, K. Balachandran and M. Suvinthra, Controllability of nonlinear stochastic frac-
tional systems with distributed delays in control, Journal of Control and Decision, 4 (2017), 153-167.

21. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential
Equations, New York: John-Wiley, 1993.

22. C.Mo and J. Luo, Large deviations for stochastic differential delay equations, Nonlinear Analysis:
Theory, Methods and Applications, 80 (2013), 202-210.

23. S.A. Mohammed and T.S. Zhang, Large deviations for stochastic systems with memory, Discrete
and Continuous Dynamical Systems Series B, 6 (2006), 881-893.

24. J. C. Pedjeu and G. S. Ladde, Stochastic fractional differential equations: Modelling, method and
analysis, Chaos, Solitons and Fractals, 45 (2012), 279-293.

25. 1. Podlubny, Fractional Differential Equations, London: Academic Press, 1999.

26. J. Ren and X. Zhang, Schilder theorem for the Brownian motion on the diffeomorphism group of
the circle, Journal of Functional Analysis, 224 (2005), 107-133.

27. J.Ren and X. Zhang, Freidlin-Wentzell large deviations for homeomorphism flows of non-Lipschitz
SDE, Bulletin of Science, 129 (2005), 643-655.

28. S.S. Sritharan and P. Sundar, Large deviations for two dimensional Navier-Stokes equations with
multiplicative noise, Stochastic Processes and their Applications, 116 (2006), 1636-1659.

29. M. Suvinthra and K. Balachandran, Large deviations for nonlinear Ito type stochastic integrodif-
ferential equations, Journal of Applied Nonlinear Dynamics, 6 (2017), 1-15.

30. M. Suvinthra, K. Balachandran and J.K. Kim, Large deviations for stochastic differential equation-
s with deviating arguments, Nonlinear Functional Analysis and Applications, 20 (2015), 659-674.

31. S.R.S. Varadhan, Asymptotic probabilities and differential equations, Communications on Pure
and Applied Mathematics, 19 (1966), 261-286.

©2017, Murugan Suvinthra, et al., licensee AIMS
Press. This is an open access article distributed under
the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 2, Issue 2, 348-364


http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Large Deviation Principle
	Examples

