
Research Article

Modeling of cutting performances in
turning process using artificial neural
networks

Samya Dahbi1, Latifa Ezzine2, and Haj EL Moussami1

Abstract
In this article, we present the modeling of cutting performances in turning of 2017A aluminum alloy under four turning
parameters: cutting speed, feed rate, depth of cut, and nose radius. The modeled performances include surface roughness,
cutting forces, cutting temperature, material removal rate, cutting power, and specific cutting pressure. The experimental
data were collected by conducting turning experiments on a computer numerically controlled lathe and by measuring the
cutting performances with forces measuring chain, an infrared camera, and a roughness tester. The collected data were
used to develop an artificial neural network that models the pre-cited cutting performances by following a specific
methodology. The adequate network architecture was selected using three performance criteria: correlation coefficient
(R2), mean squared error (MSE), and average percentage error (APE). It was clearly seen that the selected network
estimates the cutting performances in turning process with high accuracy: R2 > 99%, MSE < 0.3%, and APE < 6%.
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Introduction

Manufacturing processes can be classified into five princi-

pal types: shaping processes, property enhancing processes,

surface processing operations, permanent joining pro-

cesses, and mechanical fastening.1 Shaping processes can

be grouped into four categories: solidification processes,

particulate processing, deformation processes, and material

removal processes.1

Machining is the most important category of material

removal processes as it offers excellent dimensional toler-

ances and the best surface quality. However, machining

processes tend to be wasteful as the material removed from

the initial shape is waste, at least in terms of the unit oper-

ation.1 Therefore, the most important task in these pro-

cesses is to select the optimal combination of cutting

parameters in order to achieve the required cutting perfor-

mances2 such as surface roughness, cutting forces, cutting

temperature, material removal rate (MRR), power con-

sumption, specific cutting pressure, and tool wear.

Machining can be defined as the process of removing

excess material from an initial workpiece to produce the

desired final geometry.1 The workpiece is cut from a larger

piece, which is available in a variety of standard shapes

such as round bars, rectangular bars, round tubes, and so
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on. This material removal process includes three principal

categories: turning, drilling, and milling.1

Turning is one of the extensively used machining pro-

cesses in industrial applications. It consists of removing

material from an external or internal, cylindrical or conical

surface.1 The workpiece is rotated at a particular speed

(cutting speed), and the cutting tool is fed against the work-

piece (feed rate) at a certain level of engagement (depth of

cut) as shown in Figure 1. Turning process can be con-

ducted either on conventional lathe or on computer numeri-

cally controlled (CNC) lathe. Nowadays, the CNC lathe is

widely used where machining operations are controlled by

a program of instructions based on alphanumeric code. This

machine tool provides more sophisticated and versatile

means of control than mechanical devices.1

Surface roughness remains the main indicator of the

machined workpiece quality and its dimensional precision.

In fact, a low surface roughness improves several features

of the machined product such as tribological properties,

fatigue strength, corrosion resistance, and esthetical appeal.

Consequently, the most important tasks in turning process

are measurement and characterization of surface properties.

There are different parameters to characterize the surface

roughness.3 In this study, we selected the arithmetic aver-

age surface roughness (Ra) to characterize the surface

roughness as it is a key requirement for many relevant

applications in industry.

Cutting forces constitute representative data to charac-

terize machining operations. They have to be known pre-

cisely in order to predict deflections on the machined part

and optimize the industrialization of this part on the

machines.4 In order to have true values of cutting forces,

they have to be measured during cutting process which

leads to costly trials. Consequently, there is a necessity to

develop reliable models that predict these forces and inves-

tigate the effects of turning parameters on them.

In a turning operation, a considerable amount of the

generated energy is largely converted into heat, which

increases the temperature in the cutting area. This cutting

temperature may cause several consequences such as (i)

affecting the strength, hardness, wear resistance, and tool

life; (ii) difficulty to control the accuracy of the machined

piece due to its dimensional changes; and (iii) causing

thermal damage to the workpiece and affect its properties

and service life.5 Moreover, lower cutting temperatures

cause pressure welding creating a built-up edge, while

higher temperatures trigger oxidation and diffusion pro-

cesses.6 Hence, the necessity of modeling the cutting tem-

perature is of great prevalence.

MRR is the volume of material removed per minute.

Higher value of this cutting performance is desired by the

industry to satisfy the requirements of mass production

without affecting the product quality. Higher MRR can

be achieved by increasing the cutting parameters such us

cutting speed, feed rate, and depth of cut. However, exces-

sive cutting speeds may produce larger power, which may

exceed the power available on the machine tool.7

Many parameters affect the cutting performances in

turning process:

� cutting conditions: cutting speed, feed rate, and

depth of cut;

� cutting tool geometry: nose radius, rake angle, side

cutting edge angle, and cutting edge;

� workpiece and tool material combination and their

mechanical properties;

� quality and type of the machine tool;

� auxiliary tooling;

� lubricant used;

� vibrations between the workpiece, machine tool, and

cutting tool.

The current article constitutes a considerable extension

of our previous study,8 where we modeled the surface

roughness in turning of AISI 1042 steel using the artificial

neural networks (ANNs) approach. The developed network

estimated this cutting performance with high accuracy (cor-

relation coefficient (R2) > 95%, mean squared error (MSE)

< 0.1%, and average absolute error e < 10%). These rele-

vant results have constituted a motivation to model addi-

tional cutting performances in turning process, for example,

cutting forces, cutting temperature, MRR, cutting power,

and specific cutting pressure using the same artificial intel-

ligence technique. In order to realize this modeling, we used

large and consistent data by conducting turning experiments

on a CNC lathe under four turning parameters: cutting speed,

feed rate, depth of cut, and nose radius and by measuring the

cutting performances by forces measuring chain, roughness

tester, and infrared (IR) camera. The developed network was

evaluated by three performance criteria: R2, MSE, and aver-

age percentage error (APE).

In comparison to the previous studies conducted in this

research field, the contributions of our study can be dressed

as follows:

� The developed model (ANN) can be efficiently

exploited by researchers, industrials, and

Figure 1. Basic turning operation.2
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practitioners to estimate; at the same time, a set of

eight cutting performances rather than using a model

to estimate each performance as we found in the

previous studies. In fact, each study evaluated only

one or two cutting performances at most, while it is

crucial to have information about a maximum num-

ber of cutting performances at the same time, as

there are significant interactions between them and

the cutting parameters. Indeed, the results of our

previous study reveal that interactions between turn-

ing parameters have significant effects on surface

roughness.9

� The three main turning parameters considered in the

previous studies were cutting speed, feed rate, and

depth of cut. Unfortunately, few studies integrated

the tool nose radius as a crucial cutting parameter in

their modeling approaches. In fact, nose radius and

its interaction with the three main cutting parameters

have significant effects on surface roughness

according to our previous study.9 Therefore, the

integration of this parameter as an input of our ANN

will contribute to take into account its main and

interaction effects to model the eight cutting perfor-

mances with high accuracy.

In this article, the second section presents a literature

overview. In the third section, we will describe the experi-

mental system. The fourth section is consecrated to detail

the modeling approach followed by our study, while results

and discussions are presented in the fifth section. Finally,

the article concludes with conclusions and future work.

Literature review

A considerable number of research studies investigated the

effects of cutting parameters on cutting performances.10–14

In addition, these studies developed models to estimate

these performances by following various modeling

approaches, such as the multiple regression modeling,

mathematical modeling based on process’s physics, and

artificial intelligence modeling.
}Ozel et al.15 investigated the effects of feed rate, cutting

speed, workpiece hardness, and cutting edge geometry on

surface roughness and cutting forces in finish turning. The

results revealed that the effect of cutting edge geometry on

the surface roughness is remarkably significant. In addi-

tion, the authors concluded that the cutting forces are influ-

enced not only by cutting conditions but also by the cutting

edge geometry and workpiece surface hardness.

Kumar et al.16 investigated the effects of cutting speed

and feed rate on surface roughness during turning of carbon

alloy steels. Results revealed that surface roughness is

directly influenced by the two studied parameters. Indeed,

surface roughness increases with increased feed rate and it

was higher at lower speeds and vice versa for all feed rates.

Thiele and Melkote17 conducted an experimental inves-

tigation of workpiece hardness and tool edge geometry

effects on surface roughness in finish hard turning. They

analyzed experimental results by an analysis of variance

(ANOVA) to distinguish whether differences in surface

quality for various runs were statistically important.

Aouici et al.18 compared the surface roughness obtained

after machining of AISI H11 steels by ceramics and cubic

boron nitride (CBN7020) cutting tools. Experiments were

conducted according to Taguchi L18 orthogonal array, and

experimental data were used to develop multiple linear

regression models for surface roughness prediction in

respect of cutting speed, feed rate, and depth of cut. These

models were validated by the response surface methodol-

ogy (RSM) and the ANOVA. Moreover, these two tools

were used to determine the effects of machining para-

meters, their contributions, their significances, and the opti-

mal combination of these parameters that minimize surface

roughness.

Effects of cutting parameters and various cutting fluid

levels on surface roughness and tool wear in turning pro-

cess were investigated by Debnath et al.19 Turning experi-

ments were planed according to a Taguchi orthogonal array

and carried out on mild steel bar using a TiCN þ Al2O3 þ
TiN-coated carbide tool insert. Results of this study

revealed that feed rate had the main influence on surface

roughness (34.3% of contribution), followed by cutting

fluid level (33.1% of contribution). For the tool wear, it

was found that cutting speed and depth of cut were the

dominant parameters influencing this cutting performance

(43.1% and 35.8% of contribution, respectively). Authors

determined also the optimum cutting parameters that lead

to the desired surface roughness and tool wear.

Bensouilah et al.20 studied the effects of cutting speed,

feed rate, and depth of cut on surface roughness and cutting

forces during hard turning of AISI D3 cold work tool steel

with CC6050 and CC650 ceramic inserts. For both cera-

mics, a comparison of their wear evolution during time and

its impact on surface quality was proposed. In addition, the

study investigated the effects of cutting parameters on sur-

face roughness and cutting forces and determined the levels

of cutting regime that minimize these performances.

Azizi et al.21 investigated the influence of cutting para-

meters and workpiece hardness on surface roughness and

cutting forces during machining of AISI 52100 steel with

coated mixed ceramic tools. The authors demonstrated

using the ANOVA that feed rate, workpiece hardness, and

cutting speed have significant effects on surface roughness,

while cutting forces are significantly influenced by depth of

cut, workpiece hardness, and feed rate.

For cutting temperature, several studies have developed

models to estimate this cutting performance in respect of

different cutting parameters. Shihab et al.5 investigated the

effect of cutting parameters (cutting speed, feed rate, and

depth of cut) on cutting temperature during hard turning

process. Significance of cutting parameters was

Dahbi et al. 3



investigated using statistical ANOVA, which indicated

that the three cutting parameters have significant effects

on cutting temperature. Results also revealed that within

the investigated range, the cutting temperature is highly

sensitive to cutting speed and feed rate. In addition, the

study proposed a model to predict the cutting temperature

and determined optimal values of cutting parameters

using RSM.

Mia and Dhar22 proposed models to predict the average

tool–workpiece interface temperature during hard turning

of AISI 1060 steels. These models were developed using

the RSM and ANN in respect of cutting speed, feed rate,

and material hardness. In the RSM modeling, two quad-

ratic equations of temperature were derived from experi-

mental data. The ANOVA and mean absolute percentage

error were performed to evaluate the adequacy of the

developed models.

Experimental system

Material of workpieces and cutting tool

For the workpieces, 2017A aluminum alloy in the form of

round bars with a diameter of 80 mm and a cutting length of

40 mm was used to conduct turning experiments. For the

cutting tool, standard carbide tool inserts CNMG120404

and CNMG120408 were used for turning operations with

nose radii of 0.4 mm and 0.8 mm, respectively.

Turning conditions and measurement

Turning experiments were performed on a CNC lathe in the

Laboratory of Mechanical Manufacturing of ENSAM,

Moulay Ismail University, Meknes, Morocco.

For each turning parameter, two levels were selected as

we can notice in Table 1. The selection of levels took into

consideration the material of both workpiece and cutting

tool. The experiments were performed without cutting

fluid.

For the surface roughness measurement, the work sur-

face was characterized by the arithmetic average surface

roughness (Ra).3 After each turning operation, Ra was mea-

sured by a roughness tester, and the measurement was

repeated thrice at different locations for each workpiece

and average value was reported. Details of setting para-

meters of measure are as follows:

� Cut-off length ¼ 0.8 mm;

� Cut-off number ¼ 5;

� Standard: ISO 4287;

� Speed ¼ 1 mm/s.

For the cutting forces measurement, we used a measur-

ing chain formed by the following components:

� Dynamometer Kistler 9129AA;

� Multichannels Charge amplifier Kistler 5070A;

� Data acquisition hardware 5697A;

� DynoWare Software 2825D-02;

� All necessary cabling.

During each turning experiment, cutting forces were

measured by the dynamometer mounted below the cutting

tool. Forces acting on the cutting tool were amplified by the

multichannels charge amplifier, and the measured numer-

ical values and graphics were stored in the computer using

the data acquisition hardware and the DynoWare software

already installed in the computer. The cutting forces were

measured in three mutually perpendicular directions corre-

sponding to:

� passive force Fp (x-direction);

� cutting force Fc (y-direction);

� feed force Ff (z-direction).

For the cutting temperature measurement (T), we

mounted an IR camera (Optris PI) on the machine tool and

we connected it with the computer to get the cutting tem-

perature during each turning experiment via the camera’s

software. This IR method is best utilized as it un-interrupts

turning process and data can be collected and analyzed at

the same time.

For the MRR, cutting power (Pc), and specific cutting

pressure (Ks), we computed their values for each turning

experiment as follows:

MRR ¼ f � a� V (1)

Pc ¼ Fc� V (2)

Ks ¼ Fc

a� f
(3)

Figure 2 summarizes the experimental system and pro-

cedure of each cutting performance measurement. By this

experimental system, we conducted turning experiments

with different combinations of turning parameters and their

levels. We obtained a large data set of 48 experimental

results, which can be exploited to model the cutting perfor-

mances using the ANNs approach.

Methods

In this study, ANNs approach was used to model the cutting

performances in turning process in respect of turning para-

meters. They constitute a type of artificial intelligence tech-

niques that emulate the biological connections between

Table 1. Turning parameters and their levels.

Levels

Parameters Low High

V Cutting speed (m/min) 300 350
f Feed rate (mm/rev) 0.2 0.4
a Depth of cut (mm) 1.5 2
r Nose radius (mm) 0.4 0.8
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neurons.23 These networks are able to replicate the same

functions of human behavior, which are formed by a finite

number of layers with different computing nodes called

neurons. These latter are interconnected to form an ANN,

and the organization of connections between neurons deter-

mines the type of the network and its objectives.24 The

processing ability of the network is stored in the interunit

connection strengths called weights, which are adjusted

during the training process using a training algorithm (or

learning) so as to minimize a function of error between

actual and desired outputs.25 The most used function of

error is the MSE. ANNs are efficiently exploited for mod-

eling various problems due to their ability to model linear

and nonlinear systems without the need to make assump-

tions implicitly as in most conventional statistical

approaches. Currently, this artificial intelligence approach

is extensively applied in various aspects of sciences, engi-

neering, and technology: agricultural sciences,26–28 medi-

cine,29,30 business, management and accounting,31,32

energy,33–35 environmental sciences,36,37 chemical engi-

neering,38,39 engineering,40–43 and so one.

Based on their architectures, ANNs can be classified

into two major categories: feed-forward networks and feed-

back networks.44 The first category allows signals to travel

only from input to output, and it is appropriate to model

relationships between a set of input variables and one or

more output variables. Feed-forward network is memory-

less because the response of each layer does not affect that

same layer.23 The most commonly used family of feed-

forward networks is the multilayers perceptron (MLP),

where neurons are grouped into layers with connections

absolutely in one sense from one layer to another.23,24 In

the feedback (or recurrent) networks, signals can travel in

both directions by introducing loops in the network.23 The

neuron’s outputs are computed once a new input sample is

introduced to the network44 and the extracted computations

from earlier input are fed back into the network, which

provides a memory to the feedback networks. This type

of networks is dynamic; its state is changing continuously

until it achieves an equilibrium point and remains at this

point until the presentation of a new input and a new equi-

librium needs to be found.24

Multilayers perceptron

The MLP network is a widely used type of feed-forward

networks.24 Figure 3 shows an MLP formed by an input

layer, hidden layers, and an output layer. Neurons in input

Figure 2. Experimental system and cutting performances measurement.
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layer transfer the input variables xi (i¼ 1, . . . , n) to neurons

in the hidden layer. The following points describe the basic

characteristics of an MLP network23:

� Each neuron in the network includes a nonlinear

activation function that is differentiable.

� The network is formed by one or more layers that are

hidden from both the input and output neurons.

� The network exhibits a high degree of connectivity,

determined by the synaptic weights of connections

between neurons.

The structure of an artificial neuron j (Figure 4) is char-

acterized by

� An addition function, which sums up the input sig-

nals xi after weighting them with the weights of the

respective connections wji from the input layer. The

weighted sum Sj is given as follows:

Sj ¼
Xn

i¼1

wjixi (4)

� An activation function f, which activates the neuron

by the following equation:

yj ¼ f
Xn

i¼1

wjixi þ bj

 !
(5)

where bj is the bias of neuron j.

The function f can also be called “transfer function” and

can be linear, sigmoid, hyperbolic tangent, or radial basis

function. The frequently used one is the sigmoid function,

given as follows:

f ðxÞ ¼ 1

1þ expð�xÞ (6)

Back-propagation algorithm

In order to adjust the weights of an ANN, we can exploit a

training algorithm. In this context, the back-propagation

algorithm is the most frequently used one for training the

MLP networks.23 The basic idea of this algorithm is defin-

ing an error function and use gradient descent to find a set

of weights that optimize performance on a particular task.45

The training process is carried out in two stages:

Forward stage. In this stage, the synaptic weights of connec-

tions between neurons are fixed and the input signal is

propagated through the network’s layers until it attains the

output layer. Hence, changes are limited to the activation

potentials and neurons’ outputs in the network.23,24

Backward stage. Once the forward stage is accomplished, an

error signal is generated by comparing the network’s output

and the required response. This error is propagated through

the network’s layers in the backward direction. In this sec-

ond stage, the synaptic weights of the network are subject

to successive adjustments. These latter are simple for the

output layer but more difficult for the hidden layers.23–25

Back-propagation algorithm includes several types:

Levenberg–Marquardt algorithm, gradient descent algo-

rithm, scaled conjugate gradient algorithm, one step secant,

and resilient back-propagation algorithm.23,46

Results and discussion

In this section, we will present the ANN that we developed

to model the cutting performances in turning process. First,

we will describe the methodology followed to choice the

network’s architecture. Next, we will present the retained

network, the steps of its development, and its perfor-

mances. Finally, we will present the cutting performance

models and the comparisons between their experimental

and estimated values by the network.

For the network’s type, we selected an MLP network,

which is a kind of feed-forward ANNs. It is widely used by

researchers and it was noticed that this type trained with a

back-propagation algorithm gave the most accurate

results.47,48

For the MLP’s architecture, we selected two architec-

tures: (4-j-8) and (4-j-j-8). The first one is composed of

three layers: one input layer for the four input parameters

(cutting speed, feed rate, depth of cut, and nose radius), one

hidden layer with j neurons, and one output layer for the

eight outputs: surface roughness (Ra), cutting forces (Fp,

Figure 3. Multilayers perceptron network.8

Figure 4. Structure of an artificial neuron.8
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Fc, and Ff), cutting temperature (T), MRR, cutting power

(Pc), and specific cutting pressure (Ks). We selected this

architecture because a three-layer feed-forward network

with sigmoid hidden neurons and linear output neurons can

fit multidimensional mapping problems arbitrarily well, if

it is provided by consistent data and satisfactory number of

neurons in its hidden layer.49 The second architecture is the

same as the first one except the number of hidden layers

which is two for this architecture.

To ascertain the number j of neurons in the hidden

layers, we followed the guidelines given by the study.50

According to its authors, the recommended number of neu-

rons in the hidden layer is n/2, 1n, 2n, and 2nþ1, where n is

the number of neurons in the input layer. Therefore, we

developed eight networks with the following architectures:

� One hidden layer: 4-2-8, 4-4-8, 4-8-8, 4-9-8.

� Two hidden layers: 4-2-2-8, 4-4-4-8, 4-8-8-8,

4-9-9-8.

For the training process, we selected the Levenberg–Mar-

quardt back-propagation algorithm,23 which is a variation of

Newton’s method designed to minimize functions that are

sums of squares of other nonlinear functions.51 This charac-

teristic makes this algorithm the adequate one to train our

MLP network since the MSE is among the performance

criteria to evaluate our developed network. Moreover, this

algorithm is the most frequently used one as it guaranties

faster training for networks of moderate size.51,52

The eight networks were developed using the Neural

Network Toolbox of MATLAB software. After the devel-

opment, training, testing, and simulation of these networks,

we determined their R2, MSE, and APE, and we recorded

these performances criteria in Table 2. The best architec-

ture must achieve the following performances: high R2,

minimal MSE, and minimal APE. Therefore, the optimal

architecture corresponds to (4-8-8) and it is detailed in

Figure 5.

The following steps describe in details the development

of the retained network8:

Reading, randomization, and normalization of data. Before the

creation of the MLP network, the program started by read-

ing data (formed by 48 samples) from an Excel file, where

each sample is defined by a combination of turning para-

meters (V, f, a, r) and the corresponding cutting perfor-

mances (Ra, Fp, Fc, Ff, T, MRR, Pc, and Ks). Then, the

data samples were randomized using the function

“randperm” which returned a random permutation of sam-

ples, while the order of columns containing turning para-

meters and cutting performances for each sample was kept

unchanged. After these two steps, data samples were

Table 2. Performances of the developed networks.

MLP network R2 (%) MSE (%) APE (%)

4-2-8 89.77 1.41 13.33
4-4-8 96.07 0.68 11.37
4-8-8 98.70 0.29 5.16
4-9-8 97.23 0.36 6.41
4-2-2-8 91.79 1.11 14.62
4-4-4-8 97.00 0.48 8.68
4-8-8-8 96.25 0.51 7.79
4-9-9-8 96.18 0.80 6.84

MLP: multilayers perceptron; MSE: mean squared error; APE: average
percentage error.

Figure 5. Architecture of the Multilayers perceptron (4-8-8).
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normalized using the function “mapminmax” in order to

equalize the importance of variables before introducing

data to the network. Normalization of input and output

variables was performed using their minimum and maxi-

mum values within a range of 0.1 and 0.9 as detailed below:

x norm ¼ 0:8� x� x min

x max�xmin

þ 0:1 (7)

where xnorm is the normalized value of a variable, x is real

value of this variable, and xmax and xmin are the maximum

and minimum values of x, respectively.

Creation of the network. After the normalization procedure,

the network was created according to the parameters pre-

sented in Table 3.

Training and testing of the network. From Table 3, we can

remark that 30 samples were used to train the network,

09 samples for validation, and 09 samples were used to

test the ability of the trained network to estimate the

cutting performances. The training process was per-

formed by adjusting the synaptic weights so as to mini-

mize the MSE. A successful training was attained at

epoch 168 with MSE ¼ 0.29%, 100 validating checks,

and R2¼ 99.71%. The MSE performance plot for this

network is shown in Figure 6.

After the training stage, the developed network was tested

with the experimental data that were not present in the training

data set, in order to evaluate its ability to estimate the cutting

performances. Performances of the network (4-8-8) in training

and testing processes are detailed in Table 4 and Figure 7.

In the hidden layer, neurons were activated by the

“logistic-sigmoid” function. Equation (8) presents the acti-

vation of each neuron j:

f j ¼
1

1þ expð�sjÞ
(8)

where sj is the weighted sum of the normalized inputs (V, a,

f, r) and it is calculated by equation (9). Weights wji and

biases bj for the eight neurons of the hidden layer are given

in Table 5.

sj ¼ wj1 � V þ wj2 � f þ wj3 � aþ wj4 � r þ bj (9)

where V is the cutting speed, f is the feed rate, a is the depth

of cut, and r is the nose radius.

In the output layer, neurons were activated by the

“linear” function. Therefore, the normalized cutting

Table 3. Parameters of ANN process.

Network type
Feed-forward back-

propagation

Transfer function Hidden layer Sigmoid
Output layer Linear

Training algorithm Levenberg–Marquardt
Performance function MSE (goal ¼ 10�4)
Data division Training data set 60% of the data

Validation data set 20% of the data
Test data set 20% of the data

Number of epochs 1000
Validation checks 100

ANN: artificial neural network; MSE: mean squared error.

Figure 6. MSE performance plot of MLP (4-8-8). MSE: mean
squared error; MLP: multilayers perceptron.

Table 4. Performances of the MLP (4-8-8).

Performances Training data (%) Testing data (%)

R2 99.71 96.42
MSE 0.04 0.50

MLP: multilayers perceptron; MSE: mean squared error.

Figure 7. Regression plot for the multilayers perceptron (4-8-8).
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performances which correspond to the output layer were

computed by the following equations:

Ra ¼ 1:3498f 1 � 0:8870f 2þ1:6374f 3þ 2:2046f 4

þ 1:0164 f 5 þ 0:6978 f 6 � 0:4589f 7

þ 1:0096f 8 � 3:2063

(10)

Fp ¼ � 2:3126f 1� 0:9616 f 2 � 0:9212f 3 þ 1:6950 f 4

þ 0:7079f 5 � 1:6167f 6 þ 1:1385f 7

� 3:4873f 8 þ 1:7467

(11)

Fc ¼ 0:1996f 1þ0:2136 f 2 þ 0:2351 f 3 � 4:7126 f 4

�0:0046f 5 þ 0:0232f 6 � 0:4971f 7 � 0:7072f 8

þ 3:7517

(12)

Ff ¼ 0:9379f 1 þ 0:5345 f 2 þ 0:9624 f 3 � 2 :2443 f 4

�0:2178f 5 þ 0:4693f 6 � 1:8270 f 7 � 0:2772f 8

þ 1:3119

(13)

T ¼ 1:2063f 1 � 0:7646 f 2 � 1:5428 f 3 þ 5:4038f 4

�0:6416 f 5 � 0:4017f 6 � 6:2884 f 7 � 5:2000f 8

� 2:3496

(14)

MRR ¼ � 0:1173f 1 � 0:0626 f 2 � 0:1314 f 3 � 6:5921f 4

þ 0:0273 f 5 � 0:0562f 6 þ 0:1704f 7 � 0:1718f 8

þ 5:1059

(15)

Pc ¼ 0:0363f 1 þ 0:0818 f 2 þ 0:1464 f 3 � 4:8787 f 4

þ 0:0826 f 5 � 0:1537f 6 � 0:2875 f 7 � 0:4057f 8

þ 3:8083

(16)

Ks ¼ 0:4395f 1 þ 0:5360 f 2 þ 1:1084 f 3þ 9:2143f 4

þ 0:7163 f 5 � 0:5552f 6 � 1:5388 f 7 � 0:6385f 8

� 7:6368

(17)

where fj is the value of activation function for neuron j.

Simulation of the network. To compute the network’s outputs,

we presented the whole normalized data to the developed

network. Then, the obtained outputs were denormalized by

the same function “mapminmax”(with the option

“reverse”) in order to compare them with the experimental

data. Comparison of experimental and estimated values of

the eight cutting performances for the 48 experiments

(training and testing data) is shown from Figures 8 to 15.

Table 5. Weights and biases between input and hidden layer.

Neuron j wj1 wj2 wj3 wj4 bj

1 �3.6982 3.2392 �3.6846 7.3188 �10.6536
2 �7.3398 �1.2854 �0.6287 �1.4340 7.9812
3 0.9469 6.3466 1.3403 �5.3478 �1.4537
4 �0.1547 �0.5303 �0.2526 0.0272 1.3210
5 �1.4451 2.7956 0.9360 �4.1080 3.8937
6 �9.6824 2.0989 3.2542 �2.6488 �5.1064
7 �1.3156 0.6428 �0.7512 0.7448 �1.3524
8 3.4567 �3.6575 �0.1875 �0.1682 0.4810

Figure 8. Comparison of experimental and estimated surface
roughness.

Figure 9. Comparison of experimental and estimated passive
force.

Figure 10. Comparison of experimental and estimated cutting
force.
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According to these figures, there is a good agreement

between the experimental and estimated values as the pat-

terns of the two lines are identical for all cutting perfor-

mances except the surface roughness Ra, the cutting force

Fp, and the cutting temperature T, where few points show a

difference between the two values. This is due to some

errors caused by the measurements and other unknown

factors. However, these points can be neglected as the R2

for training and testing data exceeded 95% and the APE for

each response didn’t exceed 5.17% as we can see in Table

6. These relevant results confirm the ability of ANNs to

estimate the eight cutting performances in turning process

with high accuracy.

Conclusion

In this article, ANNs approach was used to model eight

cutting performances (surface roughness, three cutting

forces, cutting temperature, MRR, cutting power, and spe-

cific cutting pressure) in turning of 2017A aluminum alloy

under four turning parameters: cutting speed, feed rate,

Figure 11. Comparison of experimental and estimated feed
force.

Figure 12. Comparison of experimental and estimated cutting
temperature.

Figure 13. Comparison of experimental and estimated material
removal rate.

Figure 14. Comparison of experimental and estimated cutting
power.

Figure 15. Comparison of experimental and estimated specific
cutting pressure.

Table 6. APE for cutting performances.

Model Ra Fp Fc Ff T MRR Pc Ks

APE (%) 5.17 2.35 0.74 2.51 1.49 0.88 0.82 0.43

APE: average percentage error; MRR: material removal rate.
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depth of cut, and nose radius. Turning experiments were

conducted on a CNC lathe. During each turning experi-

ment, some cutting performances, for example, surface

roughness, cutting forces, and cutting temperature, were

measured by a roughness tester, forces measuring chain,

and an IR camera, respectively, while the remaining per-

formances were obtained directly from the measured ones.

The collected experimental data were exploited to develop

an ANN that estimates the pre-cited cutting performances.

To select the best architecture of the network, we fol-

lowed a particular methodology that allowed us to develop

eight MLPs networks and to choose the best one by three

performance criteria: R2, MSE, and APE. The selected one

corresponds to the MLP (4-8-8), trained by the Leven-

berg–Marquardt back-propagation algorithm and had the

following performances: R2 ¼ 99.71%, MSE ¼ 0.29%,

and APE ¼ 5.17%.

From the developed network, we extracted a model for

each cutting performance. Then, we plotted the comparison

between experimental and estimated values for each

response which revealed that there is a good agreement

between the two patterns. Therefore, the ANNs are a reli-

able tool to model the cutting performances in turning pro-

cess with high accuracy.

This article constitutes a considerable extension of our

previous study,8 where we modeled just one cutting perfor-

mance (surface roughness) in turning of AISI 1042 steel

under the same turning parameters considered in the current

study. This modeling was performed by exploiting the same

artificial intelligence technique and the developed network

estimated surface roughness with high accuracy (R2 > 95%,

MSE < 0.1%, and APE < 10%). These interesting results

have constituted a motivation to model additional cutting

performances in turning process by following the same

approach. Moreover, in comparison with our previous study,

we followed a specific step to choose the number of neurons

in the network’s hidden layer, which provided best results.

Indeed, the APE decreased from 9.70% to 5.17% for the

surface roughness estimation.

In comparison to the previous studies conducted in this

research field, our study will contribute to estimate eight

cutting performances at the same time instead of estimating

each performance by its own model, which can be effi-

ciently used by practitioners, industrials, and researchers.

In addition, turning process is characterized by significant

relationships either between cutting performances or

between these performances and cutting parameters. This

crucial point was taken into account by the followed

approach as ANNs have the ability to learn these relation-

ships. Moreover, our study integrated nose radius as turning

parameter with the three main parameters considered in the

previous studies, since the nose radius and its interaction

with the other parameters have significant effects on cut-

ting performances. Therefore, its integration contributes to

estimate the cutting performances with high accuracy as we

can conclude from results.

Practical implications

Concerning the practical implications, this study will pro-

vide to industrials practical information about the cutting

performance values that they will attain with the considered

turning parameters levels. In addition, the findings of this

research will constitute a relevant technical database for

several industrial applications of turning process, where

industrials can exploit the developed model in optimization

and decision-making stages in order to determine the opti-

mal combination of turning parameters that lead to the

highest cutting performances and improve the quality and

the productivity of machining process. Moreover, due to its

ability to learn complex linear and nonlinear relationships

between cutting performances and turning parameters, the

developed network can be integrated in-process and pro-

vide the possibility to understand, control, and take in time

corrective actions to retain the cutting performances within

the required limits.

Limitations of the study

The findings of this study are limited to the specified levels

of turning parameters and the materials of workpieces and

cutting tool. However, researchers and industrials inter-

ested by these results can follow the same approach, given

in details in this article, in order to develop their own model

using their own turning parameters levels, their selected

materials, and the cutting performances that they want to

model in turning process.

Future works

Considering the results and conclusions of this study, future

directions and research works can be dressed as follows:

� develop other models that could improve the accu-

racy for cutting performances estimation;

� predict the optimal combination of turning para-

meters that optimize simultaneously the cutting

performances;

� include additional cutting parameters and perfor-

mances that characterize the turning process;

� integrate the developed model in simulation soft-

ware to ensure that the final machined part corre-

sponds to the required specifications and avoid the

costs generated by rejected pieces;

� follow the same methodology to model cutting per-

formances in other machining processes.
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