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Vitamin D: Beyond Metabolism

Mark Lucock, PhD, CBiol, FSB, FRCPath1, Patrice Jones1,
Charlotte Martin, BFSHN (Hons)1,
Emma Beckett, BBiomedSc (Hons)1, Zoe Yates, PhD1,
John Furst, PhD1, and Martin Veysey, MD, MRCP, FRACP2

Abstract
Interest in vitamin D and the VDR gene is increasing as putative roles in human health and evolutionary processes are explored.
This review looks beyond the classic biochemistry that links vitamin D to calcium homeostasis; it explores how vitamin D
interacts with light in a broader perspective than simple skin photosynthesis. It examines how the vitamin influences circadian
rhythm, and how it may have helped drive the evolution of skin pigmentation. To this end, the nutrient–nutrient relationship with
folate is also explored. The VDR gene is additionally examined as a factor in the evolutionary selection of skin depigmentation at
higher latitudes to allow vitamin D synthesis. Evidence is given to show that VDR polymorphisms exhibit a latitudinal gradient in
allele prevalence consistent with such a paradigm. Overall, the review examines new evo-devo ideas that link light-sensitive
vitamins to human health/phenotype, both within and across the lifecycle.
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Vitamin D: Origins of an Archaic Biomolecule

The light-dependent vitamin D endocrine system is critical

for maintaining calcium homeostasis, with cells sustaining

a stable Sub-micromolar level of free intracellular calcium

(iCa2þ). Calcium in turn exhibits a reciprocal effect on the

production of calcitriol, the biologically active form of vita-

min D. Vitamin D signaling via the vitamin D receptor

(VDR) likely evolved to facilitate regulation of calcium

flux/equilibrium, calcium storage, and calcium signaling

within neuronal and muscle tissue. It has been suggested that

such regulation is critical for the evolutionary process1; we

argue in this article that vitamin D may indeed have an evo-

lutionary link to regulation of calcium, but that this relation-

ship is additionally critical over an individual lifecycle, and

is closely dependent on VDR-related nutrigenetic associa-

tions, some of which add in environmental exposure (ultra-

violet radiation [UV-R]) as a covariable.

The article explores how vitamin D interacts with another

light sensitive vitamin, folic acid, and how these 2 vitamins

might influence long-term biological effects (the evolution of

skin pigmentation),2,3 as well as shorter ‘‘lifecycle’’ timeframe

effects on clinical phenotypes of relevance to human health and

well-being.4

That vitamin D is an important regulator of many processes

within the cell may well be reflected in its ancient origins. It is

certainly interesting to speculate that its physiologic role has

evolved to counter the challenges faced by evolutionary

advancement, particularly of homeostatic iCa2þ control in

organisms that left ancient, calcium-replete oceans to reestab-

lish their lineage in calcium-deplete terrestrial ecosystems.1

It has been estimated that vitamin D photosynthesis has

occurred in marine phytoplankton for 500 million years and

that terrestrial vertebrates have been generating de novo vita-

min D for the latter 70% of this same time frame.5 A full vita-

min D endocrine system that deploys a specific VDR nuclear

receptor and cytochrome P450 enzymes, and which is regu-

lated by calciotropic hormones and vitamin D binding pro-

tein, is only found in vertebrates. The origins of this area

of metabolism may therefore relate to archaic xenobiotic

P450-related detoxification pathways and have been driven

by the need to handle the challenges of higher gravity in a

calcium-deplete terrestrial environment.6
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Vitamin D: Sunlight Meets Skin

Figure 1 shows relevant aspects of vitamin D photosynthesis, a

process that utilizes UV-B radiation in the wavelength 280 to

320 nm, with a maximal effect between 295 and 297 nm. Since

vitamin D can only be produced via photochemistry, terrestrial

vertebrates need to consume foods that contain vitamin D, or

need be exposed to UV-R to meet their vitamin D requirement.

UV-B transforms 7-dehydrocholesterol into previtamin D3 in

the skin (stratum basale and stratum spinosum). This vitamin

precursor then photoconverts into either inactive metabolites

(lumisterol or tachysterol) or undergoes a slow temperature-

dependent isomerization reaction to yield vitamin D3 (calciol),

which is metabolized on to calcidiol [25(OH)D3] in the liver

and, subsequently, on to the active vitamin form, calcitriol

[1,25(OH)2D3] in the proximal tubules of the kidney.7

Some terrestrial vertebrates provide adjustments to this pro-

cess to counter the effects of fur or feathers. Often, vitamin D is

generated from 7-dehydrocholesterol in oils secreted onto fur

or feathers by the skin. The 7-dehydrocholesterol is spread dur-

ing preening, allowing vitamin D photosynthesis. The micronu-

trient is then consumed during grooming.8 Interestingly, one

mammal that has no source of vitamin D available to it is the

subterranean naked mole rat (Heterocephalus glaber). Levels

of 1,25(OH)2D3 are undetectable and supplementation studies

have led to speculation that continuously growing incisors act

as a mineral dump to assist tight regulation of iCa2þ and phos-

phorus. Such vitamin D–independent mechanisms of regulat-

ing iCa2þ are thus well adapted to an environment devoid of

sunlight,7 although they are unusual in nature.

Clothing, altitude, latitude, time of day, and weather condi-

tions, including pollution levels, all influence previtamin D3

synthesis. In humans, individuals with lightly pigmented skin

produce higher amounts of previtamin D3 than individuals with

darkly melanized skin. As a consequence of this, deeply pig-

mented skin might be considered nonadaptive for de novo

1,25(OH)2D3 synthesis under conditions of limited UV-R.

It was a lack of sunlight that was first attributed to the defi-

ciency syndrome of vitamin D in children. Inadequate bone cal-

cium causes rachitic deformities,9 and as early as the mid-17th

century rickets was recognized as a discrete phenomenon aris-

ing due to urbanization of England’s population, and the asso-

ciated atmospheric pollution (smoke and smog) that hampered

seasonal vitamin D synthesis at northerly latitudes.10 By the

20th century, further industrialization and migration to high

latitudes both in Western Europe and the United States saw the

creation and proliferation of urban slums and burgeoning atmo-

spheric pollution with overcrowding and impoverished life-

styles adding to UV-R deprivation. As a consequence of this

anthropogenic vitamin D–restricting environment, a high pre-

valence of rickets (under-mineralization of bone) developed

among infants.

So how does the atmosphere influence the quality of light/

UV-R needed for vitamin D synthesis, and does it have adverse

effects on related vitamins? UV-A is more efficient at penetrat-

ing both ozone and human skin than UV-B or UV-C.2,11-14

Additionally, factors such as photoperiod (day length) and total

solar irradiance (TSI) are important factors to consider, along

with those alluded to above. It is particularly interesting to

recognize the impact that solar eruptions can have, and their

contribution to TSI. These phenomena lead to ionized particles

(solar storms) affecting power grids, satellites, and communi-

cations. Understandably, much work has focused on the impact

Figure 1. Simple schematic of vitamin D photosynthesis and distribution.
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of these dramatic solar events on human infrastructure, but very

little research has looked at the effects on human biology.

TSI, which increases with sunspot activity,11 is a balance

between sunspot-related magnetic influences that shield the

solar plasma and highly energetic faculae that surround sun-

spots. UV-A and to a lesser extent UV-B are likely to be a

highly relevant component of the TSI. This is important not

only in the context of vitamin D stability and photodegrada-

tion but also in maintaining folate stability: Folate has been

shown to exhibit an important relationship with UV-R. It is

now believed that dermal exposure to UV-A radiation pro-

motes photolytic degradation of folate, lowering systemic

vitamin status,2,15,16 work now strongly supported by a recent

Australian study.17 While vitamin D is usually discussed in

terms of photosynthesis, it is also degraded by UV-R. Vitamin

D3 synthesized by the action of UV-B can be degraded by UV-

A after as little as 10 minutes of nontropical sun, although the

rate of loss is lower in winter.2,7 This previtamin D3 photo-

isomerization prevents vitamin D toxicity, but means that

UV-A degrades vitamin D3 at times of the year when there

is inadequate UV-B to photosynthesize calciol in the skin7 and

hence generate biologically active 1,25(OH)2D3. 1,25(OH)2D3,

the main form of vitamin D, is itself UV-A labile and has a

short half-life of 15 hours in the circulation.7,18-20 By contrast,

25(OH)D3 has a half-life of around 14 days in the circulation,

although limited fat and muscle storage also occurs (half-life

60 days).20 Despite these additional stores, they may be

inadequate for lean people when UV-B photosynthesis of the

vitamin is absent.21

Recent research suggests that TSI and photoperiod may

influence human biology both in the short term and in the lon-

ger term, possibly via folate- and vitamin D–related phenom-

ena,22-24 and this is discussed in detail below. Although a

paradigm will be developed that frames both vitamin D– and

folate-related nutritional genetics within a molecular mec-

hanism that could explain aspects of the evolution of skin

pigmentation, other genetic factors are known to be important

in hominid adaptive melanization: the multifactorial involve-

ment of the following key genes is critical in skin pigmenta-

tion: MC1R, MATP (SLC45A2), OCA2, TYRP1, DCT,

KITLG, PPARD, DRD, EGFR, and SLC24A5.25-28 One there-

fore needs to be mindful of the polygenic nature of melaniza-

tion in focusing on mechanisms that are solely limited to

vitamin D and folate, and their related genes. However, as

mentioned earlier, an environment-pigmentation coefficient

exists in which melanized skin at high latitudes may limit

vitamin D synthesis, while light pigmentation at equatorial

latitudes might lead to photolysis of folate—both of which are

phenomena with negative attributes.

Recent research highlights an interesting biological contra-

diction. UV light is a well-established carcinogen, yet Fell and

colleagues29 have provided evidence that UV-seeking behavior

is addictive and that UV addiction is mediated by the hedonic

action of beta-endorphin and anhedonic effects of withdrawal.

They suggest this biological/behavioral mechanism may well

have enhanced evolutionary vitamin D biosynthesis in ancient

human populations, but that in contemporary society it has led

to a rise in skin cancer incidence.

Vitamin D Metabolism and Bioactivity
in Brief

The major elements of vitamin D metabolism beyond its

photosynthesis are shown in Figure 2. The vitamin enters the

circulatory system via the diet or following cutaneous photo-

synthesis. It is incorporated into chylomicrons and transported

via the lymphatic system into the blood plasma. It is carried

around the body bound to vitamin D binding protein (DBP)

in the form of calcidiol and is ultimately metabolized to the

active hormone calcitriol/1,25(OH)2D3.

Synthesis is highly regulated: calciol undergoes 2 con-

secutive hydroxylation reactions that act to regulate both

calcitriol synthesis and iCa2þ levels. In the liver, calciol

25-hydroxlase converts calciol into calcidiol, and in the kid-

ney, calcidiol 1-hydroxylase converts calcidiol into calcitriol.

Both these enzymes are in the cytochrome family and are

encoded by CYP2R1 and CYP27B1, respectively. However,

a further enzyme (calcidiol 24-hydroxylase) can also convert

both calcidiol and calcitriol into apparently inactive meta-

bolites (24-hydroxycalcidiol and calcitetrol, respectively).

Several feedback mechanisms operate to regulate calcium

homeostasis at the level of the 1- and 24-hydroxylases: (a)

Calcitriol reduces its own production by inducing the

24-hydroxlase while repressing the 1-hydroxylase—in both

cases via altered gene expression. (b) A fall in blood calcium

leads to parathyroid hormone (PTH) secretion. It enhances

1-hydroxylase activity while inhibiting 24-hydroxylase activ-

ity. An opposing action also occurs in which both elevated

calcium and calcitriol repress PTH synthesis. (c) Although the

main effect of calcium is on PTH, calcium ions can also

directly reduce renal 1-hydroxlase activity.

These biochemical mechanisms underpin physiological

regulatory processes in which vitamin D maintains calcium

homeostasis. There are 3 main processes: (a) calcitriol

enhances intestinal absorption of calcium; (b) calcitriol

reduces urinary losses of calcium by enhanced resorption in

the distal renal tubules; (c) calcitriol regulates mobilization

of bone mineral.

The Vitamin D Receptor Is Ubiquitous

1,25(OH)2D3 is a conformationally flexible secosteroid that eli-

cits its biological function via binding to the VDR, which is a

member of the steroid hormone receptor superfamily.30-34

Ligand binding leads to transcriptional regulation of a variety

of target genes.35 Many of these such as CYP24A1, osteocalcin,

CaBP-D9k, CaBP-D28k, and Rankl are upregulated, while

some such as PTH and CYP27B1 are downregulated via VDR

activation.36 It is therefore unsurprising that the VDR occupies

a central position in cellular and organismal biology.

The VDR has 2 overlapping ligand binding sites; these

are represented by genomic and alternative pockets, which
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respectively bind a bowl-like ligand configuration for gene

transcription or a planar-like ligand shape for rapid biologic

responses. VDRs exhibit narrow ligand selectivity. They bind

calcitriol/1,25(OH)2D3 with high affinity and are capable of

distinguishing between 1,25(OH)2D3 and other vitamin D3

precursors or metabolites.37,38 When the VDR genomic

pocket binds 1,25(OH)2D3, it can then interact with the reti-

noid X receptor to form a heterodimer that allows the nuclear

receptor to bind with vitamin D responsive elements that con-

trol gene expression. Activated VDR can recruit co-activators

or co-repressors to modulate gene transcription, which is most

often examined in relation to the regulation of intestinal cal-

cium and phosphate absorption. This influences skeletal cal-

cium as a mechanism to maintain calcium homeostasis

within an acceptable physiological range. However, it is

increasingly being recognized that 1,25(OH)2D3-related VDR

control of gene expression, and rapid biologic responses can

also mediate in the pathoetiology of chronic diseases of aging,

including cancer, type 2 diabetes, vascular disease, infection,

and osteoporosis.38

VDR is ubiquitous, and it is found in cells of the intestinal

epithelium, breast epithelium, kidney tubules, pituitary gland,

parathyroid gland, reproductive tissue, keratinocytes, pan-

creas, skeletal osteoblasts and chondrocytes, and immune

cells including T-lymphocytes, macrophages, and monocytes.

Of these, the greatest VDR content is to be found in bone, the

parathyroid gland, kidney, and intestine.36

Steroidal King of Light-Sensitive Vitamins

Vitamin D does not fit the classic definition of a vitamin, as the

most important source of this steroid pro-hormone is via endo-

genous synthesis in the skin following UV exposure. However,

it is not the only light-sensitive vitamin, although arguably it is

one of the most important. Other vitamins that are also sensi-

tive to and/or transduce light signals include folic acid, vitamin

A, riboflavin (vitamin B2), and niacin (vitamin B3). In some

cases light transduction by these vitamins plays a major role

in regulating circadian rhythm.16,39

Cryptochromes are blue-light photoreceptors that are cen-

tral to generating circadian oscillations in animals and plants.

They occur in the ganglion cell layer of the retina and trans-

mit/transduce light stimuli to the master circadian clock,

which in humans is located in the suprachiasmatic nucleus.

It has been shown that purified human cryptochrome 2

(hCRY2) exhibits fluorescence properties consistent with the

presence of both flavin (vitamin B2) and folate cofactors,40

although evidence of photoreception in mammalian crypto-

chromes remains indirect.41 CRY1 and CRY2 are 73% homo-

logous in all organisms and absorb light in the 350 to 450 nm

wavelength range. Most often, the folate cofactor is 5,10-

methenyl-H4folate, and the flavin vitamer is flavin adenine

dinucleotide (FAD). In this relationship, the folate vitamer

functions as a light-catching antenna whereas FAD facilitates

the subsequent redox reaction. Basically, exposure to blue-

Figure 2. Simple overview of the vitamin D endocrine system.

Lucock et al 313



light photons excites 5,10-methenyl-H4folate, and an electron

is then transferred to the reduced catalytic flavin (FADH�)

and then on to CRY1 or CRY2.39,42 Interestingly, in plants,

folate vitamer–containing cryptochromes regulate blue-light

dependent growth, while in bacteria, insects, and amphibians

they stimulate enzymes that repair UV-induced DNA damage.

In mammals, they regulate the circadian clock. Although vita-

min A interacts with opsin proteins in circadian photorecep-

tion,39 and is obviously critical in vision, it is now thought

that cryptochromes are the major mammalian circadian

photoreception system. Additionally, while systemic folate

is sensitive to UV exposure on the skin, and is easily

degraded, the opposite is true of vitamin D, which requires

UV for its synthesis. This diametrically opposed effect of

UV light may have played a significant role in evolutionary

processes (see below).

While vitamin D is the first vitamin that most people bring

to mind when nutrients are discussed in the context of sunlight,

and for good reason, it is not the only nutrient of significance.

Niacin as NAD(P)(H) is also closely linked to human biology

via UV exposure. A niacin deficiency or poor NAD status leads

to dermal sun sensitivity, reflecting a poor cellular response to

UV exposure (ie, sunlight dermatitis in the deficiency disease,

pellagra). Indeed, NAD deficiency leads to genomic instability

and may enhance cancer development. In keratinocytes, NAD

deficiency promotes photodamage. This stems from both

poly(ADP-ribose) polymerases and sirtuins being inhibited

by a lack of NADþ. A lack of this important vitamin-related

substrate for these enzymes leads to unrepaired photolytic dam-

age to DNA and promotes cell death. Furthermore, the rapid

depletion in NAD due to increased poly(ADP-ribose) polymer-

ase activity following genomic damage (UV damage/mycotox-

ins, etc) has long been seen as one of the potential mechanisms

of apoptosis,43 with a variety of deleterious effects in play such

as delayed DNA excision repair, a build-up of single and dou-

ble strand breaks, chromosome breakage, telomere erosion, and

malignancy.44

After vitamin D, vitamin A is perhaps the second vitamin

people tend to associate with light. However, in truth both pre-

formed and pro-vitamin A carotenoids fall into this category.

The role of 11-cis-retinaldehyde in vision as a prosthetic group

for the opsin protein is well established: The protein–vitamin

complex forms rhodopsin (visual purple), which following

UV exposure leads to isomerization of the 11-cis-vitamer into

the all-trans-retinaldehyde. The associated conformational

changes in the opsin protein subsequently lead to a GTP-

transduced closing of a sodium channel and a visual signal to

the brain. What is perhaps less well recognized is that skin car-

otenoids derived from our diet also have an important light-

related role in protecting us from photo-oxidative damage

resulting from UV exposure.45 This effect varies across our

bodies. However, in particular, blue light filtration by lutein

and zeaxanthin is critically important in protecting the retinal

fovea in the eye from damaging UV, and is considered a rele-

vant factor in age-related macular degeneration.46 Evidence is

also emerging that a novel endocrine axis involving vitamin A

in its retinoic acid vitamer form is regulated by photoperiod and

melatonin, suggesting new contributors in the photoperiodic

neuroendocrine response.47 In a recent review, Ransom and

colleagues examine how retinoic acid regulates several

rhythms in brain and body, from circadian to seasonal cycles,

both of which are entrained by light/photoperiod.48

Of course, vitamin A and vitamin D interact as nuclear

cofactors (heterodimerization of VDR-RXR) making it diffi-

cult to consider either vitamin in isolation. In fact, the best way

to summarize vitamin D as being the most significant of all

light-sensitive vitamins is to draw attention to the fact that vita-

min D signaling is so fundamentally important that irrespective

of whether deficiency stems from inherited defects, nutritional

deficits, a lack of sunlight, malabsorption, or covert disease, the

consequences can be significant and variable across the life-

cycle. This is largely because vitamin D signaling is regulated

at several levels and is far more complex than a simplistic

ligand–receptor–DNA interaction.49

Earlier it was suggested that folic acid and vitamin B2 might

play a key role in the generation of circadian oscillations, but

vitamin D may also be important. The current paradigm for the

mammalian circadian clock involves interplay between 2 tran-

scription–translation feedback loops consisting of ‘‘clock’’

genes and their expression products. Feedback loop one

involves positive elements, including the transcription factors

CLOCK and BMAL1. Following heterodimerization, these

transcription factors enter the nucleus and bind the circadian

E-box promoter, enhancing transcription of expression prod-

ucts PER1 and PER2 and both CRY1 and CRY2. These prod-

ucts negatively feedback to inhibit their source genes by

arresting CLOCK/BMAL1-mediated activation. The second

feedback loop initiates Rev-Erba and Rora genes via

CLOCK/BMAL1. The expressed protein products of these

genes compete for binding at the BMAL1 promoter, forcing a

daily rhythm of BMAL1 transcription, terminating this second

feedback loop. In this way, clock-controlled gene transcription

allows circadian clock outputs to be harmonized. The kinds of

outputs related to this process are manifold, but include mela-

tonin production and numerous post-translational modifica-

tions such as phosphorylation and ubiquitinization.16,50 It is

interesting that vitamin D has now also been related to circa-

dian processes. 1,25(OH)2D3 was found to synchronize circa-

dian clock gene expression in adipose-derived stem cells.

Expression of 2 circadian genes, BMAL1 and PER2, in cells

containing 1,25(OH)2D3 pointed to a critical role for this vita-

min in regulation of the molecular clock.51 These authors fur-

ther suggest that as circadian rhythm influences many

physiological processes in all forms of life, this could be the

key to a better understanding of the mechanisms by which

1,25(OH)2D3 mediates its many cellular functions. It is cer-

tainly interesting that adult mesenchymal stem cells may be

synchronized (entrained) with 1,25(OH)2D3, suggesting a rela-

tionships between circadian oscillations and stem cell proper-

ties such as pluripotency and proliferation.51

From a more mundane food perspective, many micronutri-

ents are light sensitive. Apart from folate, 2 good examples are
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thiamin (vitamin B1), which can exhibit total loss from bread

when freshly baked produce is exposed to light in shop win-

dows, and vitamin B2. When vitamin B2 in milk is exposed

to sunlight or even fluorescent light, photolysis leads to lumi-

flavin under alkaline conditions or lumichrome under neutral

or acidic conditions. Neither has vitamin activity and they can

catalyze peroxidation of lipids and conversion of methionine to

methional. Methional confers an off taste or ‘‘sunlight’’ flavor

to milk. As a consequence, cartons now have a protective lining

to stop B2 photolysis. It would be wrong to omit the many anti-

oxidant vitamins that undoubtedly also help mop up free radi-

cals and mediate cell repair processes following UV-induced

DNA damage.

Vitamin D Health Correlates Including a
Perspective on Seasonality

There is now overwhelming evidence that seasonality derived

from planetary rhythm influences all organisms via recognized,

putative, and as yet undiscovered cellular and genetic mechan-

isms. The sun in particular plays a pivotal role in orchestration

of the human lifecycle.

The human exposome, which includes all wavelengths of

UV-R, photoperiod, diet, and temperature, as well as an almost

incalculable number of other environmental factors, has con-

tributed to the evolution of our species. Some of these have

operated recently and at a cultural level. For example, cultural

practices related to food production, powerful selection pres-

sures, and genetic drift have conspired to rapidly alter around

700 regions within our genome in our recent past (between

5000 and 15 000 years BP).52-55 Examples include evolved

traits for lactose tolerance and starch digestion.56 Many genes

have adapted less well to our contemporary Western diet and

hasten the onset of common chronic degenerative disorders—

diabetes, cardiovascular diseases, and certain cancers. Despite

this, some environmental phenomena are still in tune with our

genes and affect us in fascinating ways. As an example, the

genome and environment are tightly interactive soon after con-

ception. We have previously demonstrated this for both folate

and vitamin D genes,16,22-24 but it is recognized that UV-R can

also attenuate the maternal immune system leading to cytokine

production that influences the fetal genome.57

Geophysical cycles impart a rhythm to life and are critical to

our biology; accumulating evidence indicates season of birth

modifies disease risk and life span.57 Two vitamins for which

this may most easily be demonstrated are the 2 light-sensitive

micronutrients—vitamin D and folate. In the context of folate,

schizophrenia and neural tube defects have a similar rhythm of

seasonal conception,58 with schizophrenia exhibiting a 5% to

8% bias toward late winter/early spring conception.59 We know

that pharmacologic folic acid prevents neural tube defects

(NTD), and the key C677T-MTHFR folate-related gene poly-

morphism has greater prevalence in both NTD60 and schizo-

phrenia.61 Furthermore, maternal oxidant stress inhibits

neural tube closure and alters left–right embryonic asymmetry

as might occur in the schizophrenic brain.62 Both clinical

phenotypes involve concurrent fourth-embryonic week pro-

cesses sensitive to folate degrading oxidant stress, a likely

action of pro-oxidant sunlight action, which has coined the

‘‘solstitial’’ hypothesis, a paradigm linking month of birth to

left-handedness and other markers of lateralization.63 How-

ever, one of the most interesting phenomena linking folate to

seasonality, and one that might be critical in both schizophrenia

and neural tube defects, is the recent finding that the day

length a woman experiences during the periconceptional

period predicts the C677T-MTHFR genotype of her child.22

The biologic mechanism for this is unclear, although UV-A

dermal destruction of 5-methyl-H4folate leading to a lower

cellular 5,10-methylene-H4folate status15,64 might increase

the viability of TT genotype embryos and hence population

mutant T-allele frequency.

A similar story exists for vitamin D, helping account for

environment-related disease phenomena. Seasonality at con-

ception is linked to multiple sclerosis,65,66 and month of birth

influences immune-mediated disease implicating UV-B and

vitamin D as risk factors.67 In this latter report, the risk of

immune-mediated disease (Crohn’s disease, rheumatoid arthri-

tis, ulcerative colitis, and lupus) was inversely correlated to

second trimester UV-B exposure and third trimester vitamin

D status.67 Interestingly, seasonality at conception is also asso-

ciated with brain tumors in adults,68 expression of biogenic

amine-related genes in psychiatric patients,69 and in the devel-

opment of specific behavioral traits.70 The present authors

demonstrate that the longer the photoperiod at conception, the

less the likelihood of depression in adulthood,24 a relationship

that might potentially be linked to vitamin D.

A recent large-scale Norwegian study indicates that solar

activity at birth predicts infant survival and women’s fertility.71

The authors relate this phenomenon to possible UV-R-related

effects on vitamin D and folate and discuss the possible role

of vitamin-related gene variants. This study builds on the work

of Lucock and colleagues22-24 and is supported by similar ear-

lier large studies that indicate that month of birth72 and the

solar cycle73 actually influence longevity, with Marzullo and

Fraser58 reporting that the human embryo responds to both

photoperiod and oxidant stress and suggest that later life

disease correlates could be a consequence of this. Another

recent, supportive large population study concluded that life

expectancy at age 50 years depends on specific embryonic

or in utero events.74

The most logical basis for seasonal effects at conception

would seem to relate to photoperiod; however, as has been

shown, the quanta of solar radiation received could also be a

factor: radiation intensity is linked to the solar cycle, with indi-

viduals born at the peak of such cycles living 1.5 years less than

those born in nonpeak years.57 Additionally, the solar cycle and

hence solar irradiance seems to have a direct effect on gene

occurrence.23,24

Foster and Roenneberg75 describe how geophysical cycles

influence temporal biology, and how despite modern man’s

apparent isolation from seasonal influences such as tempera-

ture, photoperiod, and nutrient availability in industrialized
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nations, seasonality still has a significant impact on human

developmental processes and our subsequent health. Since sea-

sonality is closely linked to agriculture/diet, Disanto and col-

leagues67 have suggested that seasonal effects can act before

birth via the ‘‘fetal origins of adult disease hypothesis,’’ some-

thing the present authors have also suggested in the context of

geophysical events.24 This may translate into season of birth

(more correctly the prenatal timing of specific developmental

processes) influencing susceptibility to disease. This has been

shown to occur for multiple sclerosis and type 2 diabetes, 2

conditions closely linked to vitamin D. Foster and Roenneberg

describe 28 conditions (taking account of hemispheric differ-

ences) that link general pathologies, psychiatric disorders, and

neurological illness to month of birth.75 Many of these have

folate or folate genes, or related epigenetic phenomena impli-

cated in their etiology.76 This supports an argument for envi-

ronmental modulators of photolabile or photosynthetic

vitamins mediating disease risk via a complex downstream

interaction of genetic/epigenetic phenomena, thus providing a

plausible explanation for seasonality in developmentally origi-

nated disorders.76

Of course, vitamin D status per se is also increasingly corre-

lated to chronic degenerative diseases, including hypertension,

cardiovascular disease, diabetes, stroke, osteoporosis, multiple

sclerosis, obesity, and several cancers including colorectal,

breast, pancreatic, and prostate cancer. Individual studies have

been discussed in a recent review that additionally explores the

role of VDR nutrient–gene interactions in respect of a range of

clinical correlates.77

Vitamin D–Folic Acid Relationship: A Novel
Evo-Devo Paradigm Linking Light-Sensitive
Vitamins to Human Phenotype Within and
Across the Lifecycle

It is well established that the vitamin D endocrine system

plays a critical regulatory role in maintaining health. In par-

ticular, it controls calcium homeostasis and hence bone int-

egrity, cell growth/differentiation, and immune response.4

Increasingly, this vitamin, which is better classified as a ster-

oid hormone, is being associated with an ever wider range of

disorders: from cancers to vascular disease and diabetes.78

Such a large sphere of influence becomes less surprising when

one recognizes that the VDR gene regulates around 3% of the

human genome and is highly polymorphic. However, recent

work has raised the possibility that vitamin D may also have

an even broader, hitherto unrecognized, and indeed quite

unexpected influence across the human lifecycle as well as

over a longer, evolutionary timeframe.16

Vitamin D is a light-sensitive hormone, its synthesis

involves the UV-B (295 nm) catalyzed epidermal conversion

of 7-dehydrocholesterol into previtamin D3. This intermediate

isomerizes into calciol, which is then metabolized to calcidiol,

and subsequently on to the final active metabolite, calcitriol.

Folate is another light-sensitive vitamin and may have a

synergy with vitamin D in the context of defining phenotype

within and across the lifecycle. While vitamin D is synthesized

by UV radiation, folate is readily degraded by it. Folate is as

important to biological processes as vitamin D, and is neces-

sary for both de novo biosynthesis of DNA-thymidylate

(dTMP) and methionine derived methyl groups (genomic

[CpG] and nongenomic methylation reactions). It is also

required for purine synthesis and serine–glycine interconver-

sion as well as histidine catabolism.79 This means a shortage

of folate can lead to uracil being misincorporated into the pri-

mary base sequence in place of thymine, and hence it can pro-

mote DNA fragility. As half our methionine is provided de

novo, a folate shortage can also adversely influence the methy-

lome and hence disrupt epigenetic control.80 Dysregulated

folate nutrition and/or genetics are now unequivocally associ-

ated with neural tube defects (NTD) and many other develop-

mental and degenerative disorders, including cancers, vascular

disease, and neuropsychiatric disorders.81

As discussed above, there is increasing evidence that geo-

physical cycles (particularly during the earliest phase of the

lifecycle) influence human biology and clinical phenotype.

Given the critical role that these 2 light-sensitive vitamins play

in cell metabolism, recent research opens up some interesting

ideas on how environment (UV-R) might alter/modulate the

systemic level of these vitamins that are required as cofac-

tors/ligands for key proteins that have variable activity depend-

ing on genotype. Where such polymorphic proteins are

absolutely critical for early embryo development, it is concei-

vable that certain ‘‘UV-R–vitamin–genotype’’ combinations

might lead to embryo loss. For example, low systemic levels

of folate or vitamin D might favor selection of embryos with

specific vitamin-related gene variants that have expression

products that are more effective at utilizing low vitamin levels.

If selected, such variants might alter disease risk later in life

according to an individual’s long-term nutritional habits.22

This argument has been developed for the folate-related

C677T-MTHFR variant and seems plausible given that an esti-

mated 70% to 80% of pregnancies are lost after conception.

With the above in mind, evidence is now pointing to these

environmental and nutritional agents interacting to modify gen-

otype–phenotype relationships across the lifecycle in a way

that fits the ‘‘developmental origins of adult disease’’ para-

digm, but that also provides a molecular explanation for the

current hypothesis that UV-R photosynthesis of vitamin D and

photodegradation of folate directed the evolution of parallel but

opposing phenotypic clines of skin pigmentation.24 The pre-

mise being that the aberrant effects of folate degradation on

fecundity promotes protective melanization toward equatorial

latitudes, while the need for vitamin D photosynthesis and cal-

cium balance facilitates epidermal depigmentation moving

away from equatorial latitudes.

Research findings justify further study, and cannot fail to

pique interest into this area of human ecology. As alluded to

earlier, increasing evidence indicates that elements of our biol-

ogy and phenotype are tied to the geophysical cycles we are

subjected to early in life and involve seasonality including
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photoperiod, UV-R exposure, temperature, and so on. Given

Darwinian thinking, it should not be any surprise that these

types of environmental phenomena are tuned into our genome

and are likely to be tightly interactive during the periconcep-

tional period.

The arguments that link folate to such events have been

reported by several groups and are summarized in a recent

review article by one of the present authors.16 Two roughly

concurrent articles explain how both photoperiod and total

solar irradiance at conception influence the occurrence of spe-

cific folate genotypes, most notably the C677T-MTHFR, and a

case is made to implicate UV-R degraded folate as a pressure

that offers a selective advantage to embryos with the 677T

allele, as this likely favors dTMP synthesis.22,23

However, the main purpose of the present article is to draw

attention to our recent 2014 finding24 that shows solar irradi-

ance and photoperiod does indeed influence vitamin D and

folate genotype. The folate genotypes studied (C1420T-

SHMT, 19 bp del-DHFR, 2R3R-TS) encoded expression

products critical for the elaboration of DNA, while all main

VDR gene polymorphisms were examined. Solar irradiance

and photoperiod also influenced occurrence of VDR-TaqI,

BsmI, and EcoRV at the postconceptional period when skele-

tal ossification begins (week 7), a process intimately associ-

ated with UV-R-derived vitamin D synthesis and hence

calcium sequestration. Solar irradiance was also important

in defining the occurrence of C1420T-SHMT and 19 bp del-

DHFR at a folate critical time during embryogenesis (week

6), while photoperiod at conception was associated with both

VDR-Tru9I and 2R3R-TS genotypes. This developmental

period is highly sensitive to folate and is close to the time

when the neural tube closes.24

Identifying environmental and nutritional agents that

interact to modify gene–phenotype relationships across the

lifecycle is important, but how this paradigm might have

influenced the evolution of skin pigmentation is an equally

fascinating area to consider.

A ParadigmtoPotentially Explain a Folate- and
Vitamin D–Mediated Molecular Mechanism by
Which UV-R Selects for Skin Pigmentation

The role of photosensitive vitamins in the evolution of skin

pigmentation is fascinating; however, as alluded to earlier,

many genes are likely to have been important in this process.

One of the most significant was SLC24A5. This gene seems

to have been critical in the evolution of depigmentation in

Europeans but not Asians. The majority of Africans and East

Asians carry 1 of 2 variant alleles for this solute carrier gene,

while 98% of Europeans carry the alternate variant.28 It is sug-

gested that depigmentation in Europe occurred as recently as

the past 6000 to 12 000 years. The putative selection pressure

for this is thought to be vitamin D related, being stimulated

by a move away from fishing and hunting that will have pro-

vided adequate preformed dietary vitamin D, to a farming

culture with fewer sources of preformed dietary vitamin D.82

That is to say, vitamin D was critical to survival and its synth-

esis had to be accommodated following this cultural shift.

Detailed molecular mechanisms for the role of vitamin D in

human evolution are lacking; however, vitamin D per se is

clearly important as a potential target for putative selection pro-

cesses. Higher follicular fluid and serum calcidiol predicts suc-

cess of in vitro fertilization,83 while during pregnancy a

woman’s calcidiol level jumps 4- to 5-fold to sequester the

additional calcium needed for fetal skeletal growth raising

potential issues at higher latitudes where maladapted pigmenta-

tion profile, sunscreen use, or cultural issues might promote

insufficiency.84 Furthermore, vitamin D inadequacy in early

life can lead to pelvis malformation and an inability to facilitate

normal childbirth.85 The real question has to be, ‘‘How does the

VDR fit into any model relating skin pigmentation to vitamin D

via natural selection.’’

Previous research has shown that both VDR-TaqI and

VDR-BsmI genotype occurrence through postconceptional

weeks 7 to 8, and VDR-EcoRV in week 6, were related to solar

radiation, and because this is a critical period when late

embryo skeletal ossification begins, it may be that both

long-term evolutionary pressures and shorter term plastic

adaptations can operate via the VDR to influence embryo sur-

vival.24 Hochberg and Templeton86 have examined the evolu-

tionary perspective of skin color, vitamin D, and the VDR.

They propose that along with changing skin pigmentation

based on MC1R and several other pigmentation genes, the

polymorphic VDR gene forms part of an evolutionary com-

plex capable of adapting humans to an altering UV exposome.

This raises an interesting question, ‘‘Is VDR an agent of short-

term adaptation,24 or is it a component within a cassette of

genes that are known to be altered in the longer term to adapt

the human phenome to the prevailing conditions?’’86 It seems

plausible that both scenarios may be true. In order to investi-

gate this idea further, we examine how 4 VDR gene poly-

morphisms (Figure 3) vary according to latitude in African

and several Eurasian populations.87-104 Studies were limited

to those examining any or all of the 4 best-characterized VDR

polymorphisms, with at least 100 normal control subjects

using data published since 1995. The African/Eurasian area

was examined between 12 and 60� N (if proximal, data from

geographic regions were averaged). This overall approach

provides a degree of homogeneity in terms of the chronol-

ogy/geography related to the out of Africa migration of early

humans within this defined region, while providing a good

latitudinal range for study. In all cases, VDR FokI (f), BsmI

(b), ApaI (a), and TaqI (t) prevalence decreased in a signifi-

cant linear fashion with respect to decreasing latitude (ie, as

one approaches the equator). While this fits a hypothesis that

links latitude, skin color, vitamin D, and the VDR, and appears

to fit well with a longer term evolutionary trend, recent stud-

ies do support short-term effects as well.24 In this latter study,

the statistical significance of the effect of solar radiation on

VDR BsmI occurrence received postconception was strong

(P ¼ .0008), but the b allele abundance increased with solar

Lucock et al 317



radiation which contrasts with the latitudinal reduction in the

b allele as one moves closer to the equator (Figure 3). How

can this paradox be explained?

One hypothesis that would explain this apparent paradox

relates to the fact that while UV-B is responsible for the synth-

esis of vitamin D in the skin, UV-A can actually destroy vita-

min D. Since UV-A has better penetration of both ozone and

human skin than does UV-B/C (NASA SAGE III-SOLVE

II),2,22 it is likely to be a highly relevant component of the TSI

in the context of the balance between vitamin D stability and

photodegradation: As alluded to earlier, calciol synthesized

in the skin by the action of UV-B can be degraded by UV-A

after only 10 minutes of nontropical sun,7,18 although this

degradation becomes less relevant in winter. While this photo-

isomerization prevents hypervitaminosis D, the implication is

that UV-A degrades vitamin D3 at times of the year when there

is inadequate UV-B to photosynthesize cholecalciferol in the

skin7 and hence generate biologically active 1,25(OH)2D3. Cal-

citriol, the biologically active form of vitamin D, is itself UV-A

unstable and has a short half-life of 15 hours in the circula-

tion.7,18-20 By contrast, calciol has a half-life of around 2 weeks

in the circulation. Some fat storage does occur.

Despite these vitamin stores, they may be inadequate for

lean people when UV-B photosynthesis of the vitamin is

absent.21 Despite current ideas on depigmentation, UV-B

synthesis of vitamin D will become increasingly marginal as

one moves further north from the equator due to greater sea-

sonality and increasing levels of destructive UV-A. To

emphasize this point, the annual fluence of UV-B varies more

with latitude than does UV-A. This is due to greater absorp-

tion of UV-B by the ozone layer. Moan has quantified this

difference: The annual fluence of UV-B radiation at 310 nm

at 60�, 45�, and 30� latitude are, respectively, 20%, 40%, and

65% of the annual fluence at the Equator. However, the cor-

responding figures for 60�, 45�, and 30� latitude for UV-A

at 360 nm are 60%, 80%, and 92%, respectively.105

To explain the paradox alluded to above, our study24 shows

that predominantly UV-A-related radiation around conception

increases the BsmI b allele, while the increase in the prevalence

of the b allele with increasing latitude (Figure 3) might also

reflect increasing levels of UV-A (perhaps in combination with

overall lower UV-B levels and stronger seasonality). While a

latitudinal relationship for VDR polymorphisms supports a role

in skin pigmentation phenotype, embryo genotype might be

more closely related to calcium metabolism and early skeletal

development. The VDR- BsmI bb genotype is known to be

associated with increased bone mineral density,106,107 and we

have shown that the highest solar irradiance (largely UV-A)

is associated with this recessive bb genotype.24 This raises the

question of whether this genotype is beneficial when excess

UV-A is present, allowing for better utilization of potentially

marginal vitamin D levels. There may be a relationship to insu-

lin levels.108 Our published data fits a model in which the VDR-

BsmI b allele occurrence is associated in a positive way with

UV-A exposure when embryonic ossification commences, and

in later life, the B allele (BB genotype) is highly dependent on

dietary vitamin D for maintaining insulin levels, and the bb

genotype is not.24 Clearly, interactions are complex and multi-

factorial, as well as polygenic.

It is recognized that in northern Scandinavia/Lapland, skin

pigmentation is darker than would be predicted.3 The UV-R

regime of these latitudes is almost exclusively UV-A through-

out the year, with virtually no UV-B apart from a low summer

exposure. Thus, habitation at these latitudes without reliance

on a vitamin D–rich diet of marine animals would be impos-

sible. Much of the dietary vitamin D stores are found in body

fat.109 This supports a possible evolutionary connection

between the development of generous subcutaneous fat stores

and vitamin D storage in these populations. This may further

help explain a link to insulin as alluded to earlier. Ultimately,

the selection pressure for depigmentation in these populations

is relaxed because of a high vitamin D diet, with darker skin

enabling protection from high levels of UV-A as a result of

not just direct solar irradiation but also UV reflection from

snow and ice.2 Given the global influence of VDR on home-

ostasis, other, yet to be discovered, critical early life events

and evolutionary processes may also be modulated by vitamin

D responsive elements. Effects are likely to relate to the func-

tional consequences of different VDR polymorphisms and

how the VDR interacts with vitamin D and other skin pigmen-

tation genes.86

We have also speculated on a mechanism by which folate

might be acted on by UV as a selection pressure for melaniza-

tion24: Periconceptional exposure to UV-R may play a role in

defining critical folate-related genotypes (DHFR, SHMT, and

TS) that influence the competency of DNA synthesis, mainte-

nance, and repair. These same genes may interact with UV

exposure according to skin melanin levels and influence evolu-

tionary aspects of the pigmentation phenotype.

Figure 3. Relationship between the frequency of 4 VDR polymorph-
isms and latitude based on 28 published studies.
P and r2 values from regression analysis are .0019 and .770; .0014 and
.838; .0019 and .769; .0007 and .870 for the prevalence of BsmI (b),
ApaI (a), TaqI (t), and FokI (f) alleles, respectively.
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Relevance at a Population Level

There has been significant debate on excessive versus inade-

quate UV-R exposure, much of it arising from the need to

synthesize calciol in the skin without risking the development

of skin cancers. This is quite a challenge in health promotion

given that 2 to 3 million non–melanoma skin cancers and

132 000 malignant melanomas occur globally each year.77

Martin and colleagues77 draw attention to the fact that although

health professionals advise the use of protective clothing and

SPF sunscreen, this can prevent the photoconversion of

7-dehydrocholesterol to previtamin D3. However, they also list

other studies where the opposite has been shown to be true.

The concentration of blood calcidiol is the best measure of

vitamin D status. There has been conjecture on levels of ade-

quacy, a minimal level of 75 nmol/L per day has been recom-

mended for both skeletal and general health. However, more

recently, a level of 50 nmol/L per day has been established

as being adequate. At a level of <25 nmol/L per day, mild to

severe vitamin D deficiency is likely.85,110

Ascertaining a safe level of sun exposure has led to models

based on skin types and erythemal dose, which is a measure of

the time taken for UV-R to cause a slight reddening of the skin.

In Australia, the Cancer Council has released broad recommenda-

tions on achieving adequate vitamin D synthesis while remaining

‘‘sun safe.’’ For a typical light-skinned individual, exposure

should be limited to a few minutes of sunlight either side of the

diurnal sunlight peak (ie, 10.00 AM to 3.00 PM), or when the UV

index is low. In winter, maintenance of vitamin D requires sun

exposure to increase to 2 to 3 hours a week.77 UV-R rather than

diet represents the best and most reliable source of vitamin D, but

following prescribed recommendations is crucial to gaining the

benefits without the damaging consequences of excessive expo-

sure. While few natural dietary sources of the vitamin exist, oily

fish including cod liver oil, mushrooms, and other fungi and yeast

are good sources. Mushrooms contain ergosterol, the provitamin

form of vitamin D2. Unfortunately, without UV-B exposure,

dietary intake of vitamin D from food is unlikely to be suffi-

cient to meet adult needs. It is therefore hardly surprising that

there is growing interest in vitamin D fortification given the

potential health effects of vitamin D across all stages of the

human life cycle. Supply to tissues is likely important from

conception through fetal development, into childhood and ado-

lescence, where it is needed for bone mineral accrual and

somatic growth, as well as in later life for reducing susceptibil-

ity to a raft of chronic degenerative diseases.111
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