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Previous work in our lab has demonstrated that efficient visual search with a fixed target has a reaction
time by set size function that is best characterized by logarithmic curves. Further, the steepness of these
logarithmic curves is determined by the similarity between target and distractor items (Buetti et al.,
2016). A theoretical account of these findings was proposed, namely that a parallel, unlimited capacity,
exhaustive processing architecture is underlying such data. Here, we conducted two experiments to expand
these findings to a set of real-world stimuli, in both homogeneous and heterogeneous search displays. We
used computational simulations of this architecture to identify a way to predict RT performance in het-
erogeneous search using parameters estimated from homogeneous search data. Further, by examining the
systematic deviation from our predictions in the observed data, we found evidence that early visual pro-
cessing for individual items is not independent. Instead, items in homogeneous displays seemed to facilitate
each other’s processing by a multiplicative factor. These results challenge previous accounts of heteroge-
neity effects in visual search, and demonstrate the explanatory and predictive power of an approach that
combines computational simulations and behavioral data to better understand performance in visual search.
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Introduction

Parallel processing in visual search

Starting from the retina, early stages of the human visual
system are organized in a parallel architecture, so that low-
level information is extracted and represented simultane-
ously for a wide view of the world (Breitmeyer, 1992). On
the other hand, there are several central bottlenecks limit-
ing the amount of information that the mind can actively
maintain, process and respond to. Those bottlenecks are
exemplified in phenomena like the limited capacity of vis-
ual working memory (Sperling, 1960; Luck & Vogel, 1997,
Awh, Barton & Vogel, 2007), the psychological refractory
period (Pashler, 1992; Sigman & Dehaene, 2008), and
the attentional blink (Shapiro, Raymond & Arnell, 1997;
Vogel, Luck & Shapiro, 1998). The needs to both have
parallel access to basic visual information around us and
to focus high-level processing on select information are
key constraints in the study of visual attention. Because
the mind is almost always motivated by a specific goal,
understanding of goal-directed visual processing is thus
essential to understanding visual attention. By present-
ing a target object among various distracting items, vis-
ual search provides a convenient method to capture the
goal-directed selection process of attention and therefore
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has been widely used and studied in the visual attention
research.

Notably, much of the effort in the visual search literature
has been devoted to understanding focused attention, a
capacity-limited form of visual attention where items or
subsets of items in the display are serially processed. Plenty
of empirical research has thus focused on the dependent
variable of search slope—how much longer on average it
takes for the visual system to process an additional item,
and tried to establish relationships between different
task settings and corresponding changes in search slopes.
These task setting variables include how many features
define the target (Treisman & Gelade, 1980), whether the
target is defined by known features (Bravo & Nakayama,
1992), the similarity between target and distractors
(Duncan & Humphreys, 1989), or what specific features
are used to differentiate target from distractors (Wolfe &
Horowitz, 2004). When this kind of relationship is suc-
cessfully mapped out, inferences can be drawn about the
nature or function of focused attention. For example, a key
question in the history of visual search research had been
to examine under what conditions a search slope becomes
non-zero, which was thought to reflect the limit of paral-
lel processing in the visual system. The fact that conjunc-
tion search produced non-zero search slopes while feature
search did not lead to the suggestion that focused atten-
tion is necessary for the binding of different features onto
an object file (Treisman & Gelade, 1980). This approach
assumes a linear relationship between reaction time and
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number of items (or ‘set size'), which is often observed
and is consistent with a capacity limitation in high-level
processing. As a consequence, many prominent theories
of visual search (and by extension, of visual attention)
have been essentially accounts of the search slope given
a specific search task (e.g., Duncan & Humphreys, 1989;
Wolfe, 1994). Although alternative focus on the accuracy
of responses has also generated important insights such
as the signal detection theory of visual search (Verghese,
2001), the traditional method of studying reaction time as
a function of set size has become one of the most popular
approaches of attention research.

Perhaps partly because of this tradition, cognitive exper-
imental research on visual search has become somewhat
disinterested in understanding parallel processing in vis-
ual search. The specific reason for this disinterest might
be because of the assumption that parallel processing is
synonymous with ‘flat’ search functions. This follows from
two observations: first, when the linear regression of RT
by set size returned a slope coefficient that's close to zero
(or smaller than 10ms/item), the search function is typi-
cally assumed to be a flat straight line; second, parallel
processing with unlimited capacity was assumed to pro-
duce no (meaningful) additional time cost as additional
items are introduced to a display. Therefore, when search
slope is found to be near zero, the usual inference is that
items are processed in parallel and that there is no need
for attentional selection. Thus, the data producing that
pattern were considered to be not informative for under-
standing visual attention. Yet, as discussed below, recent
findings indicate that neither of these assumptions neces-
sarily hold (Buetti, Cronin, Madison, Wang & Lleras, 2016).
Nevertheless, major theories of visual search assume that
parallel visual processing produces no meaningful varia-
bility in reaction time. For example, Guided Search (Wolfe,
1994) used a fixed 400 ms constant for the time cost to
process the search display, compute the ‘priority map’ (and
prepare and execute a response to a target, once found).
Bundesen's Theory of Visual Attention (1990) also had a
mathematically explicit goal to make search time inde-
pendent of set size in so-called pop-out searches, which
were thought to depend entirely on parallel processing.

Our knowledge about the parallel processing of visual
scenes has largely come from computationally-oriented
approaches to vision, in which the central goal is to pre-
dict the series of loci of attention or eye fixations given a
specific scene or image. By the success of these compu-
tational models of attention in predicting human fixa-
tions, one can argue that low level, parallel computations
carried out by these models mimic the parallel process-
ing of human vision. For example, the work by Itti and
Koch (2000; 2001) suggested that bottom-up, image-
based control of attention can be formalized by the com-
putation of a ‘saliency map’, a sum of various feature
contrasts over different spatial scales. This model enjoys
some degree of success in free-viewing tasks, particularly
with complex scenes. Other saliency models operate on
ideas such as self-information (Bruce & Tsotsos, 2009),
Bayesian surprise (Itti & Baldi, 2009), and figure-ground
segmentation (Zhang & Sclaroff, 2013), which can be
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seen as alternative accounts of the computational basis
of bottom-up attention. One advantage of these models
is that they are highly specific and allow for testable pre-
dictions regarding human performance, but the majority
of these predictions are focused on measures like fixation
distribution. The downside of many recent computational
models of parallel vision is that their increased complexity
does not allow for a clear understanding of the underly-
ing mechanisms. For example, the currently top 2 ranking
(using the AUC-Judd metric) saliency models (Kruthiventi,
Ayush, & Babu, 2015; Vig, Dorr, & Cox, 2014) on the MIT
Saliency Benchmark (Bylinskii, Judd, Durand, Oliva, &
Torralba, 2014) are both based on deep neural networks.
This approach is based on learning hierarchical features
represented by multiple layers of neurons. However, there
has been little effort to understand the correspondence
between these learned features and actual representa-
tions in the human visual system. Thus, while these mod-
els describe the computations carried out in early vision,
many of them cannot be directly related to visual search
behavior. Important exceptions should be noted, such as
Zelinsky's Target Acquisition Model (2008), which was
developed to predict scan path behavior in target pre-
sent visual search based on a mechanistic model, and
Najemnik & Geisler (2008), whose ideal-observer model
reveals important deficiencies in common theories of
visual attention. Both provide more specific predictions in
terms of sequences of fixations (and thus saccades) rather
than simply fixation distributions. Still, none of these mod-
els include estimates of visual processing times in humans,
which complicates detailed comparisons to human perfor-
mance. Lastly, Rosenholtz, Huang, Raj, Balas, and llie (2012)
proposed a texture tiling theory of crowding in peripheral
vision that considers search efficiency to be a function of
summary visual statistics over peripheral pooling regions
that aggregate low level visual information. However, here
too, no differentiation was made between visual process-
ing times and focused attention decision times, and an
explicit mechanism is lacking to predict actual processing
time given those summary statistics.

Consequently, important aspects of the influence of par-
allel processing in visual search are largely unchartered.
There are several reasons why understanding this process-
ing stage is important. A priori, selective attention evolved
to address the need to optimally bridge the gap of process-
ing capacity between early parallel visual processing and
higher level processing, therefore understanding what
information the parallel stage can process naturally pro-
vides boundaries to what the attentive, limited capacity
stage needs to do and/or compute. More importantly, the
often-implied assumption that parallel, unlimited capac-
ity processing results on constant processing times simply
does not hold: Townsend and Ashby (1983), for instance,
provided a precise mathematical formulation of a variety
of such processing models, many of which predict non-flat
RT by set size functions. The counter-intuitiveness of these
results can be perhaps dispelled if one considers that
unlimited capacity (i.e., the term referring to the fact that
information is processed simultaneously at various spa-
tial locations/channels, independently of the number of
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locations/channels) should not be and is not synonymous
with infinite capacity (i.e., that there are no limitations to
the processing capacity at any one location).

We propose then that developing a better understand-
ing of early parallel processing ought to be very informa-
tive to attention research. Empirically, there are various
experimental results indicating that the visual system can
rapidly access substantial amounts of information with-
out focused attention, such as scene gist (Potter & Levy,
1969; Potter, 1976; Schyns & Oliva, 1994; Oliva, 2005), sta-
tistical properties in a scene (e.g., Parkes, Lund, Angelucci,
Solomon & Morgan, 2001; Chong & Treisman, 2005a,
2005b; Haberman & Whitney, 2009), and some basic cat-
egorical information of objects (Li, VanRullen, Koch, &
Perona, 2002; Li, Iyer, Koch & Perona, 2007). Such process-
ing power must be based on this parallel processing stage,
of which relatively little has been learned. Additionally,
current theories often fail to account for search perfor-
mance variability in real world scenes (e.g. Itti & Koch,
2000; Wolfe, Alvarez, Rosenholtz, Kuzmova & Sherman,
2011), which could be at least partly due to neglecting the
processing variability arising from the parallel processing
stage.

Systematic variability in efficient search

Recent work in our lab demonstrated an important reac-
tion time signature of the parallel processing stage in
fixed-target, efficient visual search (Buetti, Cronin, Madi-
son, Wang & Lleras, 2016). Our results showed that in
addition to a linear increase in reaction time caused by
distractor items highly similar to the target, less similar
items can produce a logarithmic increase in reaction time
as set size increases. This logarithmic function can be eas-
ily overlooked if one does not sample the set size condi-
tions appropriately and simply make a linear regression
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to the data. Figure 1 illustrates key aspects of our results.
These two different signatures in reaction time lead us
to propose a distinction between two types of visual dis-
tractors: candidates and lures. Candidates are items that
require focused spatial attention to be distinguished from
the target because they share too many visual characteris-
tics with the target (such as color, curvature, line intersec-
tion, orientation). As a result, given the known represen-
tational limitations of peripheral vision, human observers
cannot discriminate candidates from the target in parallel
in the peripheral field of view. In contrast, lures are items
that are sufficiently different from the target along some
set of visual features that they do not require close scru-
tiny. That is, the resolution of peripheral viewing is suf-
ficient for determining that lure items are not the target.
Take for example the case of looking for a watering can in
your garden. Close scrutiny is likely not required to decide
that fence, trees, flowers, grass, and large lawn furniture
are not a watering can. You can, therefore, discard all
such objects as unlikely targets in parallel, and we would
refer to them as lures, in this particular example. Other
medium sized objects of similar size, color, and material
(maybe some children toys) might be confusable with the
watering can in peripheral vision. We would refer to those
objects as candidates and those candidates would require
focused attention to be differentiated from the target.
Returning to lures, lures are sufficiently different from
the target that they can be processed in parallel, across the
visual scene and, with a high degree of success, they can
be ruled out as non-targets. When candidates and lures
are both present in a scene, one can dissociate the linear
and logarithmic RT contributions to overall RT that each
bring about (see Figure 1A). Furthermore, we also dem-
onstrated that different types of lures produce logarithmic
RT by set size functions of different steepness, depending
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Figure 1: Key findings demonstrating logarithmic RT by set size functions from Buetti et al. (2016). Panel A: Data from
Experiment 3A of Buetti et al. (2016). The task was to find a ‘T’ target among ‘L’ candidates and thick orange cross
lures. The data are best described as a logarithmic function of total set size when the number of candidates is held
constant. Notice that the two curves for two different candidate set sizes are highly parallel, suggesting that candi-
dates introduce a linear increase in reaction time. Panel B: Data from Experiment 1A of Buetti et al. (2016). Reaction
times to find a red triangle target among different types of lures are best fit by logarithmic functions, whose steepness
or ‘logarithmic slopes’ are modulated by the similarity between lure and target.
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on their visual similarity to the target, such that lures
that are more similar to the target produce steeper loga-
rithmic curves (Figure 1B). Notably, if linear regressions
were performed on truncated sections of this RT x Set Size
functions, most of these data would yield very small lin-
ear slopes (in all cases, below the traditional 10ms/item
“benchmark” for efficient search).

Given these results, we proposed that ure items are pro-
cessed in the first parallel stage of vision to the degree
that there is sufficient evidence to reject them as possi-
ble targets. Naturally, candidates go through this parallel
stage because the resolution limitation at this stage of
processing means it cannot differentiate them from the
target. Locations where information is not differentiated
in that manner are passed on for analysis by the second
stage of focused spatial attention. Further, the relation-
ship between lure-target similarity and the slope of the
logarithmic function indicates that lure-target similarity
determines the efficiency of processing for each individual
lure item.

We developed the following set of hypotheses to con-
struct a theoretical model of stage-one visual processing
that allows us to understand variability in stage-one
processing times:

(1) Consistent with traditional assumptions of early
visual processing (e.g., Treisman & Gelade, 1980;
Wolfe, 1994), we proposed that stage-one process-
ing has a parallel architecture and unlimited
capacity. Hence, all items in the display are simulta-
neously processed with a rate that doesn’t depend
on set size.

(2) During stage-one processing, the visual system is
attempting to make a binary decision at each loca-
tion where there is an item. The question is: is this
item sufficiently different from the target? If so, the
item is unlikely to be the target and doesn’t require
further processing. If it is sufficiently similar to the
target, given the resolution limitations of peripheral
vision, the item will require further processing and
its location will be passed on to stage-two process-
ing. An eye movement or a deployment of focused
attention will be required to resolve and inspect the
item to determine whether or not it is the target.

(3) The amount of evidence required to reach a deci-
sion about an item (the “decision threshold”) is
proportional to its similarity to the target. This
follows from the idea that the more visually similar
an item is to the target, more information is needed
to determine that the item is indeed not the target
and will not require further inspection. Given the
resolution limitation of peripheral vision, there is a
maximum decision threshold. All locations contain-
ing items that reach that level (i.e., items too similar
to the target and the target itself) will be passed on
to the second stage of processing.

In order to make explicit predictions with this theory, we
specified the following assumption to model individual
item processing times:
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(4) Processing of individual items is modeled by
noisy accumulators. The rate of information
accumulation at each instant is drawn from a
Gaussian distribution with a positive mean value.
Processing is complete when accumulated evi-
dence reaches a decision threshold. As proposed
above, the decision threshold is proportional to
the item’s similarity to the target. This process
is thus mathematically equivalent to a Brownian
motion with a constant drift rate towards a given
threshold. Completion time t of this process
follows the Inverse Gaussian distribution
(Chhikara, 1988):

nY
4 (A—kt)

N 2mo?t?

F(t|Ako)= e 1

where A is the accumulator’s threshold, k is the con-
stant drift rate (or mean accumulation speed), and o
is the standard deviation of accumulated information
at each instant.

These assumptions enabled us to numerically simulate
different implementations of parallel, unlimited capacity
processing system, and derive the expected time costas a
function of number of items to be processed, modulated
by the similarity of items to the target. Specifically,
following the pioneering work by Townsend and Ashby
(1983), we implemented different termination rules (self-
terminating vs. exhaustive) in systems with or without
resource reallocation in the case of efficient search (see
Buetti et al. (2016) for results and detailed methods of
these simulations in their Figure 3 and Appendix A.).
Our simulation results indicated that only a system with
an exhaustive termination rule (i.e., the stage is complete
once all items are fully processed) and no reallocation
of resources produces logarithmic curves. Further, we
demonstrated that in such cases, the steepness of these
logarithmic curves are modulated by similarity of lure
items to the target just as observed in our experiments
(see Figure 1B). In other words, we demonstrated a one-
to-one correspondence between decision thresholds in
our accumulator models and the slopes of the logarithmic
completion times, such that smaller decision thresholds
produce flatter logarithmic slopes and larger decision
thresholds produce steeper logarithmic slopes. In sum,
we found evidence (based on empirical data and a set of
reasonable assumptions) that stage one in visual search
functions as a parallel, unlimited capacity, exhaustive
processing system. When there are no candidate items
in the display (other than the target), this model can
account for all the systematic reaction time variation
caused by changes in the number of lure items. Our sim-
ulations combined with our behavioral results suggest
that the coefficient of the logarithmic slope observed in
behavioral experiments can be interpreted as an index of
lure-target similarity, as it reflects the amount of evidence
required to reject the lure as a possible target (Buetti etal.,
2016, Appendix A).
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Predicting performance in lure-heterogeneous displays
Given our current theory of stage-one processing in visual
search, one intriguing application is to the understand-
ing of performance in search tasks with multiple types
of distractors presented simultaneously. Many laboratory
experiments on visual search use highly homogeneous dis-
plays, i.e. the distractor items are either completely identi-
cal, or composed of groups that differ from each other in
only one feature dimension. In the real world, however,
an arbitrary scene often consists of mostly non-repeating
objects. When a specific target is defined, it is also usually
the case that most non-target objects are highly dissimilar
to the target, so that very few of them need to be actu-
ally examined (Neider & Zelinsky, 2008; Wolfe et al., 2011).
Thus, it seems that many visual search-like tasks performed
in the real world will be best conceptualized as search for
the target amongst a heterogeneous set of lure items.

Notice that many conclusions drawn from homogene-
ous search tasks cannot be easily extended to a hetero-
geneous search scenario simply. Duncan and Humphreys
(1989) already pointed out that distractor-distractor simi-
larity (or heterogeneity in the distractor set) has an effect
independent of target-distractor similarity. Guided Search
theory (Wolfe, 1994) proposed that top-down attention
could ‘guide’ parallel processing by prioritizing items with
specific feature values of the target. Yet in the real world,
objects are defined as conjunctions of many different fea-
ture dimensions so that groups of objects can share a few
features, while still being the case that each object is suf-
ficiently dissimilar to every other one along several fea-
ture dimensions. Nordfang and Wolfe (2014) found that
in the case of high feature dimensionality, the effect of
heterogeneity in visual search could not be explained by a
linear summation of the ‘guidance’ afforded by each fea-
ture dimension. Therefore, the difference or relationship
between homogeneous and heterogeneous search is still
relatively unclear.

One prominent aspect of our current theory is that it
emphasizes the role of visual similarity in the parallel stage
of processing, and it makes a more specific formulation of
the effect of target-distractor similarity in comparison to
Duncan and Humphreys (1989) and other previous theo-
ries. Further, the concept of visual similarity is abstract
enough to be applied to both artificial and naturalistic
stimuli alike. Hence, we expect our previous results to
extend to tasks using natural images as search items.
Specifically, efficient search should always be modulated
by lure-target similarity, and should produce logarithmic
RT by set size functions, when observers are looking for a
specific target. For example, search for a teddy bear target
among an array of toy pandas and model cars should both
produce logarithmic RT by set size functions because both
toy pandas and model cars look sufficiently dissimilar to
the target. And the function for toy panda lures should
be steeper than the log curve produced by a search for a
teddy bear among model cars, as long as the toy panda is
visually more similar to the teddy bear than the model car.

More importantly, the degree of similarity between one
distractor item and the target item should not depend on
what other objects are present in the scene, or whether
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the distractor set is homogeneous or heterogeneous.
Moreover, as mentioned above, our theory and results sug-
gest that the ‘slope’ of the logarithmic function measured
in homogeneous search can be a valid behavioral index
of lure-target similarity. Hence, in principle, we should be
able to predict search times in [ure-heterogeneous displays
based on participant's performance on lure-homogeneous
displays. This follows because, as we just mentioned, our
model proposes that there is a one-to-one correspond-
ence between accumulation thresholds and the log slope
coefficients of homogeneous search. If this is correct,
then we should be able to derive accumulation thresholds
for each lure type from the observed log slopes of lure-
homogeneous search data. Then, we should be able to
use these thresholds to predict search RT in novel, hetero-
geneous scenes.' This fact illustrates the generalizability
and specificity of our theory: it makes specific RT predic-
tions for performance in novel, untested experimental
scenarios. We can then compare the RT predictions to
observed experimental data to test the accuracy of the
model. Further, systematic deviations from the model’s
predictions can be used to infer undiscovered properties
of human parallel processing, as we demonstrate below.

There are two obstacles that need to be resolved before
we can take on this approach. The first issue is that an
analytical solution for stage-one processing time based on
our current model is not readily available, which means
that given observed log slope values, we cannot directly
compute the corresponding accumulator thresholds. This
is because even though the individual accumulator’s com-
pletion time is well understood (formula 1), in the case
of heterogeneous displays (where individual completion
times are sampled from multiple groups of different
Inverse Gaussian distributions), the maximum of all items’
completion times (since our model assumes an exhaus-
tive termination rule) requires an integral that seems to
be analytically unsolvable.? To circumvent this issue, in
Buetti et al. (2016) we used a computational simulation
approach to find numerical mappings between thresholds
and log slopes. This is the same approach that we will use
here to make numerical predictions of heterogeneous
search performance. Specifically, we developed several
equations predicting heterogeneous search time based
on different theoretical assumptions, and compared their
predictions to simulated heterogeneous search results.
The best-performing equation was taken as the prediction
of our theory, in lieu of the exact analytical solution.

A second issue lies in the fact that our model assumed
individual items’ processing are independent of each
other, and this assumption was not directly backed by
evidence. In Buetti et al. (2016), we rejected one type of
processing interaction: the resource-reallocating model.
We were able to do so because this family of models pro-
duces a qualitatively different RT by set size function than
non-reallocating models (i.e., a monotonically decreasing
function). However other types of processing interactions
are possible. In particular, models where lure-to-lure inter-
action effects are additive or multiplicative and constant
over the time course of stage-one processing could not be
ruled out. This is because in Buetti et al. (2016) we made
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a qualitative comparison between the various simula-
tion results and the shape of the observed RT by set size
functions in human participants. Thus, if homogeneity or
heterogeneity in the search scene were to introduce a con-
stant (additive or multiplicative) change in the processing
of items, the overall shape of the RT functions would still
be logarithmic and our model's predictions would be
inaccurate by either an additive or multiplicative factor.
For instance, one might expect that display heterogene-
ity slows down overall processing, or the reverse, that dis-
play homogeneity facilitates processing via a mechanism
like the ‘spreading suppression’ originally suggested by
Duncan and Humphreys (1989). This issue is therefore
an empirical question, and we resolved it by designing
empirical tests of our theory’s predictions. To anticipate,
by examining the deviations of observed heterogeneous
search performance from the predictions based on the
independence assumption, we gained insight to what
type of interaction might be taking place in homogeneous
displays to facilitate homogeneous search performance.

Strategy adopted in our computational approach and
predictions

First, we began by simulating homogeneous search com-
pletion times for three types of lures by using a differ-
ent accumulation threshold for each lure type. We then
estimated the log slope coefficients for each of these lure
types by finding the best-fitting logarithmic slope coeffi-
cient for the function relating number of lures to comple-
tion times. We refer to these slopes as D values.

Second, we ran simulations of completion times for
heterogeneous search scenes. Each scene was composed
of a varying number of each of the three types of lures.
Processing of every lure was modeled by the same type of
accurmulators, with the same accumulation thresholds as
used in homogeneous displays. In other words, here we
assumed that lure-target similarity is context-independ-
ent, that is, the degree of similarity between one type
of lure and the target should not depend on what other
objects are present in the scene, or whether the distractor
set is homogeneous or heterogeneous.

Third, based on different assumptions about how the
processing of heterogeneous search scenes might unfold,
we developed four different theoretical models of stage-
one processing. For each of these models, we derived a
hypothetical equation that approximates the completion
time as a function of the number of lures of each type
present on the display and each lure type's logarith-
mic slope coefficient (i.e., the D values extracted from
lure-homogeneous simulations). The models and their
corresponding equations were pre-registered on the
OpenScienceFramework website, in the context of the
pre-registration for Experiment 2 (osf.io/2wa8f).

Fourth, we compared the simulated completion time for
each display with the completion time predicted by each
of the four processing models. This comparison allowed us
to select the best-performing equation as the optimal for-
mulation of the relation between homogeneous and het-
erogeneous search performance. As a reminder, this series
of steps was necessary because we do not know of an exact
analytical solution for completion times in heterogeneous
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displays using our accumulators (see Note 2). The detailed
methods and results of this simulation procedure is pre-
sented below in the Predictive Simulation section.

Finally, we did an empirical test of our computational
model by using the best-performing equation to predict
behavioral data. That is, we used performance observed
in a homogeneous search experiment (Experiment 1) to
predict performance in a separate experiment with het-
erogeneous displays (Experiment 2). This amounts to a
rigorous empirical test of our computational model and
of its underlying assumptions. Using Experiment 1 data,
we can estimate best-fitting log slopes for each type of
lure type. We can then use those estimated D values in
conjunction with the best-performing equation to predict
what RTs ought to be in the various heterogeneous condi-
tions tested in Experiment 2. We can then compare pre-
dicted RTs with observed RTs to test whether the equation
favored by our theory-based simulation also outperforms
all other alternative equations in behavioral data. This
comparison allowed us to assess the predictive power of
our theory.

This predicted-to-observed RT comparison will also
be used to investigate whether individual items are pro-
cessed independently of one another or whether there are
inter-item interactions that produce systematic deviations
from the model. Because our simulation was conducted
under the assumption of between-item independence, the
predictions of this equation naturally carry that assump-
tion along. Hence, any systematic deviation of predicted
stage-one processing times from observed heterogeneous
search data can be interpreted as effects of homogeneity
(or heterogeneity, depending on the viewpoint) on pro-
cessing times. To estimate the deviations from our model,
we fit predicted stage-one processing times to observed
data via a linear regression. On the one hand, if the model
allowed for a perfect prediction, then observed and pre-
dicted stage-one time costs should line up precisely along
the y = x line, with y being observed stage-one time costs
on every heterogeneous condition tested, and x being the
predicted stage-one time costs for each condition, based
on the model and the parameters obtained from homo-
geneous displays. We would then conclude that items are
always processed independently of context. On the other
hand, if there are systematic deviations from the predicted
stage-one time costs in observed data, these indicate that
lures are not processed in a context-independent fash-
ion. Two types of systematic deviations can be therefore
obtained: a multiplicative deviation and an additive devia-
tion. If the estimated slope coefficient between observed
and predicted stage-one time costs is different from 1,
then this would indicate a multiplicative effect of homo-
geneity on single-item processing. If the intercept coeffi-
cient of the observed-by-predicted time cost function is
different from 0, this would indicate an additive effect of
homogeneity on stage-one processing times (the observed
time costs would then be shifted below the y = x line).

As a summary, the current study consists of a predictive
simulation and two experiments. The simulation provides
a best-performing equation for predicting the completion
times for stage-one processing in heterogeneous visual
search, using parameters obtained from homogeneous
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visual search displays. Next, we used a set of real-world
object images to construct homogeneous search displays
in Experiment 1 and heterogeneous search displays in
Experiment 2. Experiment 1 served both as an extension
of our previous ‘feature search’ results (as in Experiment 1
of Buetti et al,, 2016) to real-world objects and as the
data source for estimating log slope (D) coefficients for
predicting heterogeneous search data in Experiment 2. In
Experiment 2, we collected behavioral data of visual search
with heterogeneous displays each containing a mix of the
objects used in Experiment 1, using a different group of
subjects. By comparing different equations’ predictions of
RT to observed RT, we were able to (1) test whether the
best-performing equation from our theory-based simula-
tion works best in reality, and (2) examine whether there
is a multiplicative or additive effect of homogeneity on
stage-one processing and if so, estimating the magnitude
of that effect in our data.

Predictive Simulation

Methods

Approximating equations for heterogeneous search

We developed the following set of equations in the
hope that some of them may be a good approximation
of the exact analytical solution of stage one processing
time cost in heterogeneous lure search. Each equation
describes time cost of stage-one processing, 7, as a func-
tion of the D coefficients and numbers of each type of
lure items (N), i.e. T= f{{D}, {N}). The D coefficients here
are meant to be a proxy of the accumulation threshold
values, and thus are assumed to be independent of con-
text (homogeneous or heterogeneous). Therefore, given
the D coefficients estimated based on homogeneous
search, the equations provide different predictions of
heterogeneous search time, based on different underly-
ing hypotheses of how search unfold in a heterogeneous
scene. For each equation, its form in the case of 3 types
of lures will be presented below (rather than the general
form with arbitrary number of lure types). D coefficients
will have the ordering of D, > D, > D, > 0, i.e. we denote
lure no.3 to have the highest similarity to the target and
lure no.1 with lowest similarity. Note that these equa-
tions do not include time costs associated with other pro-
cessing stages, such as encoding, response selection, and
execution, which we assume to be constant in efficient
search tasks for a given target.

Equation 1:

T=D/In(N,+ N, + N, +1)+(D,— D) In(N, + N, +1)
Jr(D3 7Dz)/n(N3 +1)

This equation was a simple extension of the concepts in
Buetti et al. (2016). We assumed that: (a) all lures are pro-
cessed in parallel; (b) that evidence stops accumulating at
a location once the decision threshold for that stimulus
has been reached; (c) that evidence continues to accumu-
late at locations where decision thresholds have not been
reached. At the aggregate level, this means that lures with
lower decision thresholds will be rejected sooner than
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lures with higher decision thresholds. This reduces the
number of “active” accumulators over time. Imagine a dis-
play with blue, red and orange lures, and assume that blue
is the least similar lure to the target, followed by red, then
orange. In this model, blue lures would be rejected first,
then red lures, and finally orange lures (on average). As
an example of this model, consider the case of the equa-
tion above where there are three different types of lures
in the scene (i.e., three different decision thresholds, with
D,> D, > D, > 0), with N, being the number of lures of
type i (i =1, 2, 3). The first term represents time cost for
all 3 types of lure items to arrive at the evidence thresh-
old for lure type 1 (D,). Here, lures of type 1 are rejected.
Then, evidence for lures of types 2 and 3 continues to
accumulate. However, some evidence about these lures
has already been accumulated (dictated by D1). Thus, the
second term represents the additional time cost to arrive
at the decision threshold for lures of type 2 (D,) for lure
types 2 and 3 (hence the term D, - D,), and so on.

Equation 2:

T =D, I[n(N,+1)+ D, In(N, +1)+ D, In(N, +1)

Equation 2 above assumes that each group of lures is
considered and rejected sequentially. That is, different
types of lures are processed in a serial and exhaustive
fashion, while within each type of lure, individual items
are processed in parallel. This model would mean that
first all blue lures are processed and discarded in paral-
lel, then the red ones, and last the orange ones. The big
difference between Models 1 and 2 is that in Model 2,
accumulation for red ones will start once the blues have
been discarded, whereas in Model 1, accumulation for
all types of lures starts simultaneously and rejected lures
“fall off” while the other ones continue to accumulate
evidence.

Equation 3:

T =max{D,,D,,D,}In(N,+ N, + N, +1)
=D, In(N,+ N, + N, +1)

Equation 3 represents a model that has a single decision
threshold associated with the single D value in the equa-
tion. The model predicts that while all items are being pro-
cessed in parallel and exhaustively, the amount of infor-
mation required to complete processing is determined by
the lure with the highest similarity to the target. This can
be understood as there being a single decision threshold
for the entire display: items below it will be discarded at
the same moment, while items above the threshold will
require focal inspection (i.e., are likely targets). This kind
of idea has been proposed in the literature in various
papers (e.g., Guided Search, Wolfe, 1994; TAM, Zelinsky,
2008). So, in the example above, when all three types of
items are present in the display, the decision threshold
used would be the one for orange lures, whereas when
only blue and red lures are present, the decision threshold
for red would be used.
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Equation 4:

T

- Wm(/v] N, + N, +1)

Equation 4 serves as an alternative to equation 3. Here the
log slope is estimated by the mean of the 3 types of lures
(instead of the max), while all items are still processed
exhaustively in parallel.

We note here that the above 4 equations include varia-
tions in different aspects of processing across lure types.
Equation 1 is the strongest extension of our theory since
it assumes both parallel processing and independence
across lure types. Equation 2 assumes independence but
serial processing across lure types, whereas equations 3
and 4 assumes parallel processing but with interaction
between different lure types.

Simulation and Analyses

The goal of this simulation is to find out which of the 4
equations above best accounts for simulated time costs of
stage-one processing in heterogeneous scenes. The criti-
cal parameters are the threshold values (representing dif-
ferent lure-target similarity levels), the drift rate k (rate of
information accumulation that is sampled from the same
Gaussian distribution regardless of scene context) and
noise range o.

We used two sets of parameters representing two dif-
ferent sets of stimuli to simulate stage-one completion
times under the same model architecture. Choosing two
different sets of parameters estimates allows us to be
confident that our simulations and our equations are not
overly dependent on any specific parameter, and that in
fact, they generalize well across the parameter space. In
both runs of simulations, we simulated displays contain-
ing at most three types of lure items to ensure a sufficient
degree of heterogeneity without requiring too many dif-
ferent display conditions. Simulation no. 1 had a target
item whose threshold was 20, and three types of lure
items with thresholds of 15, 17, and 19. The drift rate k
was fixed at 4 and noise range o was also a constant 2.
Simulation no. 2 had a target threshold of 62, three lure
thresholds at 48, 53, and 58, with drift rate of 9 and noise
range of 4. In each simulation run, threshold values, drift
rate, and noise range parameters were held constant.

Given a specific set of parameters, the simulation proce-
dure and algorithm can be described as follows:

(1) For each type of lure item, we simulated homo-
geneous search time as a function of set size. At
set size N, there were 1 target item and N-1 lure
items. The target item'’s processing time was found
by randomly sampling from an Inverse Gaussian
distribution defined by the target threshold A, the
drift rate k and the noise range o. Each of the N-1
lure items was similarly simulated by sampling
from another Inverse Gaussian distribution with a
lure threshold value A, and the same kand o. The
overall processing time was simply the maximum
of all individual items’ processing times (i.e. the
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exhaustive processing rule). Because of the random-
ness in the sampling procedure, we took the mean
processing time cost of 2000 repetitions at each set
size as the final output.

(2) For each type of lure, we computed a regression of
RT = DIn(N) + d based on the simulated results from
step (1). The estimated coefficients D and d were
used for predicting heterogeneous search time cost.

(3) We simulated heterogeneous search time with
different combinations of the 3 types of lures. For
each simulated display condition, each type of
lure could appear 1, 3, 7, or 15 times with one or
two other lure types, which yielded a total of 111
unique combinations or conditions (see Appendix
A for a complete list of these conditions). Process-
ing time costs were then simulated in the same way
as in step (1), with 2000 repetitions per condition.

(4) For each of the 4 approximating equations, we
computed the predicted completion times for
each display condition simulated in (3) using the
estimated D and d coefficients from (2). We then
compared predicted completion times (T) against
simulated T values by computing a linear regres-
sion for each equation to estimate the equation
that best fits the simulated data. We used several
diagnostics for goodness of fit including the R
square, log likelihood, and the slope and intercept
coefficients of the regression models.

Results

We plotted simulated completion times for heterogene-
ous scenes against predicted completion times as scat-
terplots, for each equation and for both simulation runs
in Figure 2. The y = x line is also plotted for reference.
Table 1 summarizes regression model characteristics
for each equation in both simulation runs. These char-
acteristics describe how well predicted processing times
match simulated processing times. In both simulations,
Equation 1 had the highest R-squares, the slope coeffi-
cient closest to 1, and the estimated intercept closest to 0.
Predictions of Equation 1 also fell closest to the y = x line
in Figure 2 for both simulations.

From these results, we can conclude Equation 1 is our
best performing equation for predicting heterogeneous
lure search based on performance metrics from homo-
geneous displays. In the next section, we will consider
empirical data based on human participants in both lure-
homogeneous (Experiment 1) and lure-heterogeneous
(Experiment 2) search tasks.

Experiment 1

Experiment 1 serves two purposes. First, it allowed us to
estimate three different lure-target similarity coefficients
in homogeneous displays to be used to predict perfor-
mance in Experiment 2 (heterogeneous displays). In addi-
tion, it allowed us to extend the findings from Buetti et al.
(2016) to real-world stimuli. Our previous results were
based on two groups of simple stimuli with relatively few
distinguishing features (group 1: find red triangle or blue
half circle among orange diamonds or yellow triangles or
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Simulation 1
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Simulation 2

R? Log Slope Intercept R? Log Slope Intercept
likelihood (Standard (Standard likelihood  (Standard (Standard
Error) Error) Error) Error)
Eq 1 0.9615 114031  1.005(0.019) -0.109(0.127) 09637  124.179 1008 (0.018)  -0.152(0.156)
Eq2  0.8045 23816  0.463(0.021) 3.075(0.163)  0.8095 32107 0.482(0.022)  3.871(0.203)
Eq3 07934 20.758  0.877(0.043)  0.570(0.291)  0.7709 21878  0.861(0.045)  0.905 (0.383)
Eq 4 0.8049 23.953 1.112(0.052) -0.652(0.338)  0.7852 25.452 1.137 (0.057) -1.058 (0.466)
Table 1: Model characteristics of linear regressions of simulated processing times as a function of predicted processing
times.
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Figure 2: Predicted processing time according to the 4 approximating equations for heterogeneous processing times
plotted as a function of simulated processing times. Panels A and B present results from two different simulation runs
using different sets of parameters (see text for more details).

blue circles; group 2: find red T among red Ls and thin
orange crosses or thick red crosses or orange crosses or
orange squares; see Figure 4 in Buetti et al., 2016 for an
illustration of these stimuli).

Methods

Participants. Twenty-six participants were recruited
through the Course Credit Subject Pool in the Psychology
Department at the University of Illinois at Urbana-Cham-
paign. Participants signed up for the experiment through
the Department's subject pool website. Prior to participat-
ing in any experiments, participants must fill out a Screen-
ing Questionnaire that can be used by experimenters to
filter out participants that do not meet recruitment crite-
ria. In our case, we used this questionnaire to make sure
only participants without self-reported color-vision defi-
ciencies could sign up for our experiment. Upon arrival
to the lab, they were also screened for normal color vision
using the Ishihara color test (10 plate edition, with the
standard number tests). No participants were excluded
due to abnormal color vision or low visual acuity. All par-
ticipants gave written informed consent before participat-
ing in the experiment. We excluded 3 participants whose
overall accuracy was below 90%. For the 23 participants

included in analysis, their age ranged from 18 to 24 years,
14 are female, 21 were right-handed. This experiment has
been approved by the Institutional Review Board of the
University of lllinois at Urbana-Champaign.

Apparatus and Stimuli. Stimuli are presented on a
20-inch CRT monitor at 85 Hz refresh rate and 1024*768
resolution. Participants sat in a dimly lit room at a view-
ing distance of 75 cm. The experiment was programmed
with Psychtoolbox 3.0 (Kleiner et al., 2007) in the MATLAB
environment, and run on 64 bit Windows 7 PCs.

Search objects were chosen from a collection of images
studied by Alexander and Zelinsky (2011), which were
originally sampled from Cockrill (2001) and the Hemera
Photo-Objects collection. Alexander and Zelinsky (2011)
obtained visual similarity ratings on these images using
computational models and human subjects’ subjective
ratings. Using their results, we selected groups of images
that were consistently rated as having high or medium
similarity to the teddy bear category to be used as distrac-
tor items. Specifically, we chose a red humanoid ‘carrot
man’, a white reindeer toy, both of which were consist-
ently rated as highly similar to the teddy bear category,
and a gray model car rated as having medium similarity.
We also chose a specific teddy bear as the target item.
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These images of objects were presented with sizes of
approximately 1.3 degrees visual angle horizontal and 1.7
degrees visual angle vertical. All images had a small red
dot overlaid on the left or right side, with a diameter of
0.2 degrees of visual angle. In each search display, there
was always only one target and at most one type of lure
item. The items were randomly allocated onto the screen
based on an invisible 6-by-6 square grid that spanned
20 degrees of visual angle horizontally and vertically. Each
item'’s actual location was then randomly jittered within
1 degree horizontally and vertically. On average the mini-
mal distances between two items (i.e. the distance between
two adjacent grid points) was 3.5 degrees. The grid was
populated with equal (or approximately equal) numbers
of items in each of the four quadrants of the screen. A
white fixation cross was also presented at the center of the
screen, spanning 0.6 degrees vertically and horizontally.
All displays had a gray background with a color vector of
[121, 121, 121] in RGB color space. Figure 3 presents exam-
ples of search displays for Experiments 1 and 2.

Procedure. At the beginning of the experimental ses-
sion, instructions were both shown on the screen and
delivered verbally to participants. They were told to look
for the target teddy bear (whose image was shown on the
screen) and respond to whether the red dot appeared on
the left or right side on the bear. They were asked to press
the left arrow key with their left index finger when the
red dot was on the left, and right arrow key with the right
index finger when the dot was on the right. Speed and
accuracy of response were equally prioritized.

Trials started with a brief presentation of the central
fixation cross, with a duration randomly selected from
350 to 550 ms. Then, the search scene was displayed for
a maximum duration of 2.5 seconds. The display turned
blank as soon as the participant pressed a response key.
On error trials, a warning tone (1000Hz sine wave lasting
250 ms) was played. The inter-trial interval was selected
randomly between 1.4 to 1.6 seconds. Each experiment
session started with a practice block of 32 trials.

Design. The two main independent variables, lure type,
and set size, were fully crossed within-subjects. There could
be 1,4, 9, 19, or 31 lures of the same identity on the display
along with one target item (so that total set sizes were 2, 5,
10, 20, or 32); additionally, there was a target-only condi-
tion where only the target image appeared on the screen.
Therefore, there were a total of 3 x 5+ 1= 16 experimental
conditions. The location of the red dot on the target image
was pseudo-randomized to ensure that it appeared on the
left or right equally often. Locations of red dots on lure
images were randomized with 0.5 probability on the left or
right. Each condition was repeated 50 times so that there
were 800 trials total in one experimental session. All con-
ditions are randomly intermixed. There were short break
periods every 20 trials that lasted up to 20 seconds if par-
ticipants did not resume the experiment sooner.

Results

We compared regression models based on logarithmic and
linear RT by set size relationships using R square and log
likelihood as measures of goodness of models.* In order to
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test an alternative hypothesis that the results could be better
described by a bi-linear model assuming a transition point at
set size 2, we also compared the log and linear models using
data without the target-only condition. These results are
summarized in Table 2. When the target-only condition was
included, logarithmic models clearly outperformed linear
models, indicating that a logarithmic model is more accu-
rate and plausible in describing the data than a simple linear
model; without the target-only data point, logarithmic mod-
els still consistently had higher R-squares and log likelihoods
than corresponding linear models. In Figure 4 we plotted
reaction time against set size, separating the three groups
of data by lure type, along with the best-fitting logarithmic
curves for each lure type. The estimated logarithmic slope
coefficients for each type of lure were: D, =66.278,
D e reindeer = 28492, Dgrey o = 26.581. In sum, the results
show that the RT by set size functions found in this experi-
ment are best characterized by a series of logarithmic func-
tions.

It should be noted that the estimated ‘linear slopes’
were very small and would be categorized as ‘efficient’
or ‘pop-out’ search according to traditions in the litera-
ture. When the target-only condition was included, the
estimated linear slope coefficients were 6.380 ms/item,
2.559 ms/item, and 2.446 ms/item for carrot man, rein-
deer, and model car lures, respectively. Without the target-
only condition, these changed to 4.531 ms/item, 1.727
ms/item, 1.503 ms/item.

A within-subjects ANOVA using lure type and set size
as factors on correct RTs was also conducted. Main effects
were significant for both lure type, F(2, 44) = 265.37,
p < 0.001, Cohen’s f = 3.47, and set size, F(5, 110) = 217.69,
p<0.001,f=3.15.More importantly, the interaction between
set size and lure type was significant, F(10, 220) = 54.13, p <
0.001, f = 1.57. These results indicate that the different lev-
els of lure-target similarity lead to different magnitudes of
set size effects, i.e. lure-target similarity modulated search
processing efficiency. To further understand this difference
in search efficiency, we also computed individual subjects’
logarithmic slope estimates and use t-tests to compare the
mean log slope for different pairs of lures. Consistent with
the visual pattern in Figure 4, we found that the mean log
slope for the red carrot man lure was significantly larger
than both the mean log slopes for the white reindeer lure,
t(22) = 15.85, p < 0.001, Cohen’s d = 3.31, and for the grey
model car, t(22) = 15.54, p < 0.001, d = 3.24, while there was
no significant difference between the log slopes for reindeer
and model car, t(22) = 1.42, p=0.17.

Discussion

Overall our results provided evidence that a logarithmic
function better captured the relationship between reac-
tion time and set size in efficient searches with real-world
stimuli than linear models. Importantly, this conclusion
was not contingent upon whether the target-only condi-
tion was included in the analysis. Additionally, the steep-
ness of the logarithmic curves depended on the similar-
ity between target and lures: the higher similarity, the
steeper or more inefficient search functions. This pattern
of results extends our previous findings to real-world
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Example search displays for Experiment 1 (top row) and Experiment 2 (bottom row).

Figure 3
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Figure 4: Reaction times for Experiment 1 plotted as a function of set size and lure type. Curves indicate best-fitting
logarithmic functions. The legend shows the analytical form of each of these functions as well as corresponding
R-squares as a measure of fit. Error bars indicate one standard error of the mean. Images of search stimuli and the

corresponding data symbols are presented on the right.

With target-only condition

Without target-only condition

Logarithmic Linear Logarithmic Linear
R Log R Log R Log R Log
square  Likelihood square  Likelihood square Likelihood square Likelihood
Red carrot man 0.933 -27.178 0.713 -31.558 0.965 -18.718 0.924 -20.650
White reindeer 0.930 -22.251 0.619 -27.351 0.951 -15.365 0.711 -19.827
Grey model car 0.852 -24.354 0.595 -27.380 0.938 -14.636 0.919 -15.300

Table 2: Logarithmic vs. linear regression results of RT by set size functions in Experiment 1.

stimuli and corroborates the notion that visual similarity
modulates early parallel visual processing, regardless of
whether search objects differ from each other along a cou-
ple or multiple feature dimensions (Buetti et al., 2016).
We can also conclude that all the distractor objects used
in Experiment 1 are sufficiently different from the target
teddy bear that they can be efficiently processed in the
first, parallel stage of visual processing. We can, therefore,
use these stimuli to study how this processing stage han-
dles heterogeneous search scenes.

We should note that there is some difference between
the similarity relationship reflected in our visual search
results and Alexander and Zelinsky (2011)'s ratings. Our
data suggested that the white reindeer and grey model car
were equally dissimilar to the target teddy (i.e., their search
slopes were almost identical). In contrast, in Alexander

and Zelinsky's data, the reindeer was rated as being of high
similarity to teddy bears, whereas the grey car was rated as
having a medium similarity (we used these ratings when
we first selected the stimuli for this experiment). Several
factors can be identified to account for this apparent
inconsistency. Ratings in Alexander and Zelinsky's study
were obtained using a ranking method. Five images were
presented on screen and participants had to rank-ordered
them according to their visual similarity to a teddy bear
(no ties allowed). Note that the influence of non-visual fac-
tors cannot be ruled out in this ranking procedure: even
if a reindeer is in fact equally visually dissimilar to a teddy
bear as a car, at the moment of ranking which of the two
(reindeer or car) is more similar to the bear, the conceptual
similarity of the reindeer to the teddy bear (both four-leg-
ged animals) might lead observers to give the reindeer a
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higher similarity rank than the car. More importantly, the
requirements of the two tasks are different, so that the
nature of ‘similarity’ computed may be different. In the
ranking task, participants try to make a multidimensional
decision with as much time as needed to compare stimuli.
In this case, participants might decide to weight down
differences along single dimensions when there is strong
agreement along multiple dimensions. For instance, if a
red teddy bear is to be judged in similarity against a green
teddy bear, the match along shape, texture, size, and even
semantic features might make participants judge them as
being highly similar. In contrast, in a search task, the vis-
ual system tunes towards feature contrasts between target
and distractor stimuli that can quickly locate the target in
the scene. In the teddy bear example, the color contrast
between the target (green teddy bear) and the distractors
(red teddy bears) is likely to override the similarity along
the other dimensions, such that participants will find the
green teddy bear very fast and efficiently in spite of its
overall level of similarity to the red teddies. In this sense,
perhaps it's more appropriate to consider the modulation
of log slopes as an effect of dissimilarity rather than simi-
larity. In our experiment, the log slopes observed for rein-
deer and car lures might indicate that something along
those lines is occurring. It is possible that the color con-
trast was similar for both target-lure pairings (the target is
brown, the lures are white and grey) and that this particu-
lar feature-contrast was most responsible for locating the
target in the scene.
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Experiment 2

In Experiment 2, we used the same stimuli as in Experi-
ment 1 to construct heterogeneous search displays. We
then compared observed RTs with predicted RTs from the
four equations described in the Predictive Simulation sec-
tion. We had two goals. The first goal was to determine
which of the four equations best predicted human per-
formance. The second goal was to evaluate what kind of
systematic deviations exist between our theory-based RT
predictions and human data.

Because of the limited number of conditions we could
afford within one experimental session (about 50 minutes),
we designed five different subsets of conditions of hetero-
geneous displays, characterized by different types of lure
combinations (see Table 3). We analyzed RT data from each
subset of conditions separately as well as all conditions
combined. This allowed us to evaluate whether different
ways of mixing the lures produced different patterns of
results. This experimental design and planned analy-
ses were pre-registered on the Open Science Framework
(https://osf.io/2wa8f/), including the description of the
four predicting equations.

Methods

Participants. Using effect size of the two-way interac-
tion effect in Experiment 1, we estimated that in order
to achieve power of 0.8, we needed 19 subjects (effect
size f = 1.5685, numerator df = 10, denominator df = 7,
actual achieved power = 0.815, computed with G-Power,

#red carrot man  # white reindeer  # grey model car Description
Subset 1 0 1 2 Comparable numbers of white
0 3 4 reindeer and gray cars
0 7 8
0 15 16
Subset 2 1 0 2 Roughly equal numbers of red carrot
3 0 man and white reindeer
7 0 8
15 0 16
Subset 3 1 6 0 Fixed 6 reindeer, varying number of
6 o carrot man
6 0
21 6 0
Subset 4 1 1 1 Roughly equal numbers of all 3 types
2 2 3 of lures
5 5
10 11 10
Subset 5 1 4 2 Fixed 4 reindeer, comparable numbers
4 4 of carrot men and cars
4 8
13 4 14
Target-Only condition 0 0 0 Baseline

Table 3: Description of all the conditions tested in Experiment 2, organized by subset. In Subsets 1-3 only two lure
types were presented in the display with the target, whereas in Subsets 4-5 always contained all 3 types of lures in

addition to the target.


https://osf.io/2wa8f/

Art. 6, page 14 of 23

Faul, Erdfelder, Lang & Buchner, 2007). In anticipation of
the need to replace some subjects, we collected data on
26 subjects recruited from the Course Credit Subject Pool
at the University of Illinois at Urbana-Champaign. All par-
ticipants gave written informed consent before participat-
ing in the experiment. The same procedure to screen for
participants with normal color vision and normal (or cor-
rected-to-normal) visual acuity was used as Experiment 1.
No participants were excluded due to abnormal color
vision or low visual acuity. No participants in this experi-
ment participated in Experiment 1. Two participants were
excluded from analysis because their overall accuracy was
lower than 90%. For the 24 subjects included in the analy-
sis, their age ranged from 18 to 22 years and had a mean of
19 years, 12 were female, and 22 were right-handed. This
experiment has been approved by the Institutional Review
Board of the University of Illinois at Urbana-Champaign.

Stimuli and Apparatus. In contrast to Experiment 1
where only one type of lure is present in each search dis-
play, displays in Experiment 2 contain 2 or 3 types of lures.
These lure items were randomly intermixed across all pos-
sible spatial configurations under the constraint that each
quadrant of the screen contained the same number of
items. All other aspects of the stimuli and apparatus were
the same for Experiments 1 and 2. See Figure 3 for exam-
ples of search displays.

Instruction and Procedure. The experiment procedure
and instructions were the same for both Experiments 1
and 2, with the exception that the practice session at the
beginning of Experiment 2 had 27 trials.

Design. There were 21 total conditions in this experi-
ment, where each condition is specified by the number
of carrot men, reindeer and model cars in the display.
They are organized into 5 different subsets, each exhib-
iting a specific kind of variation in the number of lure
items, which are detailed in Table 3. Each condition was
repeated 38 times, for a total of 798 trials. Location of the
red dot on the target image was pseudo-randomized with
equal probability of left or right, while for lure images
they were randomized with 0.5 probability.

Notice that in both Experiments 1 and 2 we had
included a target-only condition where the only item in
the display is the target. We consider reaction time in this
condition to be an important baseline to compare perfor-
mance across both groups. Mean RT in this condition rep-
resents all the RT components that do not depend on set
size, e.g. time for visual information to arrive at the cortex,
response selection processes, motor response time, etc.
In the case of efficient search for a target among lures,
the only component depending on set size should be the
stage-one processing time, which can be computed by
subtracting target-only RT from RT in each of the condi-
tions with mixtures of lures. Notice that this operation is
consistent with the property of the logarithmic function,
i.e. [n (1) = 0. Since the set size of target-only condition is
1, stage-one processing time is 0 under our current formu-
lation. Thus, subtracting out target-only condition leaves
us with a direct measure of stage-one processing time.

Data analysis. According to the hypotheses laid out in
the introduction, the key analysis for this experiment is a
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linear regression of predicted RT data to observed RT data.
We used the log slope coefficients for each type of lure
estimated in Experiment 1. The same fixed parameters
were used for all four equations and all experimental con-
ditions (i.e., the RT in the target-only condition and the
three log slope estimates from Experiment 1). To predict
RTs in a specific condition, we used the numbers of each
type of lures (as indicated in Table 3). Predicted RT for
each condition is the sum of the predicted stage-one time
cost (derived separately from Equations 1-4) plus the
mean RT of the target-only condition (which contains the
time costs for other cognitive stages such as encoding,
response selection, and execution).

The analysis consisted in linear regressions for observed
RTs as a function of predicted RTs for each subset of con-
ditions. Because there were four equations to be com-
pared, there were be four different set of predicted RT
values. Each set of predicted RT values are based on all
20 non-target-only conditions of the experiment. Thus,
four regressions were performed using observed RTs as
the dependent variable and each set of predicted RTs as
the independent variable. To compare the performance or
‘goodness of fit" across the four equations, we computed
the R-square and the Akaike Information Criterion (AIC;
Akaike, 1974) values for each model. These computations
were carried out using the fitlm() function, the R-squared
and the ModelCriterion methods of the Linear Model class
in Matlab.

In a further analysis focused on the best-performing
equation, we analyzed whether the human data had any
systematic deviations from the model. We interpret this
deviation as the effect of heterogeneity/homogeneity on
stage-one processing. As described before, we were inter-
ested in identifying either additive or multiplicative devia-
tions. To estimate them, we performed six regressions on
stage-one time costs obtained from the best-performing
equation, one for each subset of conditions (5 total),
plus one overall regression combining all conditions. In
this manner, the estimated intercept coefficients become
a useful indicator of any systematic lure-to-lure interac-
tion effects in homogeneous search. If this interaction
does not cause an additive difference, then the estimated
intercept should be equal to zero, assuming that our
best performing equation provides a truthful prediction.
Hence, any substantial difference between the estimated
intercept and zero becomes a measure of the magnitude
of this additive effect. By the same logic, deviation of the
estimated slope coefficient from 1 represents a multipli-
cative effect of inter-lure interaction in homogeneous
search displays.

Results

Descriptive statistics. Mean RTs are plotted for each con-
dition, grouped by Subset, in Figure 5. Visual inspection
shows that Subset 1 was uniquely separated from the
other subsets. Subset 1 was the only one that did not con-
tain images of the carrot man stimulus. This pattern was
confirmed when we performed logarithmic regressions to
each Subset of data (see Table 4). The log slope of Subset
1 (D = 26.881) was very close to the homogeneous slope



Wang et al: Predicting Search Performance in Heterogeneous Visual Search Scenes with Real-World Objects

Art. 6, page 15 of 23

1050 | | .

O subset 1 (half reindeer half car)

1000

T
> O

950 -

target only

subset 2 (half carrotman half car)

subset 3 (6 reindeers, varying carrotman)
v subset 4 (equal numbers of all 3)
* subset 5 (4 reindeers, equal number of other two)

900+

850

800+

RT (ms)

750+
700

6501

6000 5 10 195

Set size

20 25 30 35

Figure 5: Reaction times in Experiment 2 as a function of set size, grouped by the different subsets of conditions. Error
bars indicate one standard error of the mean. Curves are best-fitting logarithmic functions, see Table 4 for regression

model coefficients and R-squares.

Log Slope (D) Intercept R square
Subset 1 26.881 663.97 0.9722
Subset 2 79.59 649.38 0.9811
Subset 3 75.183 650.16 0.9307
Subset 4 70.196 654.85 0.9801
Subset 5 71.974 649.76 0.9573

Table 4: Logarithmic regression results of search RT for
each subset of conditions.

estimates of white reindeer (D, ... . = 28492) and of
the grey car (D, ., = 26.581) from Experiment 1, in spite
of the fact that in Subset 1, there were two types of lures
always present in the display. In contrast, the log slopes
for Subsets 2 to 5 were all greater than the homogeneous
slope estimate of the red carrot man (D, =66.278)
from Experiment 1. That is, even though in each of the
Subsets 2-5, the red carrot man was paired with stimuli
that were lower in similarity to the target, the process-
ing time was increased compared to displays containing
only carrot man stimuli. Finally, it is worth noting that the
regressions for all Subsets had very large R-squares. This
indicates that for all subsets, the underlying processing
was consistent with the parallel, exhaustive nature of stage

one proposed by our theory. It should be noted, however,
that the logarithmic RT-set size pattern for each of the Sub-
sets is dependent on the fact that within each Subset, the
proportions of each type of lure were roughly constant (by
our design). If such proportion constancy is absent, there’s
no a priori reason to believe any group of heterogeneous
search data will exhibit a logarithmic function.

Model comparison. We computed predicted RTs for each
of the four equations and regressed those predicted RTs to
observed mean RTs. The linear fitting R-squares, AIC values
(corrected for small sample sizes) and root mean square
errors (RMSE) are summarized in Table 5. Consistent with
the results from the Predictive Simulation section, all
three measures indicated that Equation 1 was the best-
performing equation in terms of precision and likelihood.
Specifically, the corrected AIC values indicated that the
model based on Equation 1 was 166 times more likely than
the second best model (Equation 3).* Also, the R-square
value for Equation 1 (0.9681) is roughly the same as the
R-square obtained in the Predictive Simulation section
(0.9615, Table 1), when Equation 1 was used to predict
simulated heterogeneous search data. This might indicate
an upper-bound of predictive accuracy for this equation.
The RMSE (which is an indicator of the average amount
of prediction error) for Equation 1 was 14.520 ms, which
compares favorably to the smallest observed standard
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error of mean RTs (S.E. = 14.181 ms., in the condition where
there were 13 carrot men, 4 reindeer and 14 grey cars). The
accuracy of Equation 1's predictions is all the more remark-
able given that these predictions were based on param-
eters estimated from Experiment 1's data coming from a
different group of participants. Further, the two groups of
subjects saw qualitatively different displays. Participants
in Experiment 1 only saw homogeneous displays, whereas
participants in Experiment 2 never saw homogeneous dis-
plays (i.e., they only saw heterogeneous displays).

In sum, Equation 1 represents an architecture that is
equally successful at predicting performance in simula-
tions as well as in human experiments.

Estimating homogeneity effects. To investigate any poten-
tial effect of homogeneity facilitation between identical
lure items, observed RT were first transformed to observed
stage-one processing time by subtracting out the target-
only RT. Then, we fitted observed stage-one processing
times to predicted stage-one processing times based on
Equation 1. Regressions were computed for all condi-
tions combined as well as for each subset of conditions.
The resulting coefficients are listed in Table 6 along with
standard error of estimates.

To evaluate whether there was an additive effect of
homogeneity on stage-one processing times, we com-
puted and reported 95% confidence interval of both coef-
ficients. The regression on all 20 conditions combined
had 19 degrees of freedom, whereas the regressions on
each subset had 3. All 6 intercepts’ confidence intervals
included zero, indicating that there was no meaningful
additive deviation when we predict heterogeneous search
time using efficiency parameters (D values) from homoge-
neous search data.

Next, to evaluate whether there was a multiplicative
effect of homogeneity on stage-one processing times,
we can compare 95% confidence intervals of slope coef-
ficients to 1. The results indicated that slope coefficients
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were significantly larger than 1 when all conditions were
combined, as well as in 3 out of 5 Subsets (specifically,
subsets 2, 4, 5 had confidence intervals that were larger
than 1). In other words, our best-predicting equation
systematically under-predicted stage-one processing time
in heterogeneous search tasks by a multiplicative factor.
This multiplicative factor is approximately 1.3 for this
particular set of search stimuli, and can be viewed as a
quantitative estimate of the pure effect of heterogene-
ity. This pattern of results is visualized in Figure 6. Recall
that when making predictions using Equation 1, the log
slope parameters for each lure type were estimated from
homogeneous search data and that Equation 1 assumed
processing independence between individual items. The
most straightforward explanation of this multiplicative
deviation, then, is that in Experiment 1 when adjacent
lures were identical, processing of individual lure items
sped up by a multiplicative factor of about 1.3, in logarith-
mic efficiency space. In other words, this would mean that
the estimated D parameters from Experiment 1 were, in
fact, under-estimating the true Standalone’ processing effi-
ciency of each individual lure item because of the presence
of lure-to-lure interactions in homogeneous displays. In
contrast, in heterogeneous search, adjacent items are less
likely to be identical and thus this type of suppression is
less likely to take place and improve performance.

Discussion

Equation 1 provided the best predictions of heterogene-
ous search reaction time using log slope values estimated
from homogeneous search data, just it did for simulated
data. Thus, the predictive power of our theory was con-
firmed by empirical data. Therefore, Equation 1 represents
a formula that will allow investigators to predict perfor-
mance in heterogeneous search scenes. In the present
study, Equation 1 accounted for 96.81% of the variance
for a total of 20 different experimental conditions. This

Equation 1 Equation 2 Equation 3 Equation 4

R squared 0.9681 0.9178 0.9480 0.9153

AlCc 174.533 194.392 184.757 195.003

RMSE (ms) 14.520 23.298 18.522 23.639

Table 5: Linear regression results of predicted RT to observed RT in Experiment 2.
Intercept Slope
Estimate  Std. Error 95% C.I. Estimate Std. Error 95% C.I.

All subsets -10.961 7.268 [-26.17; 4.25] 1.3328 0.0555 [1.22; 1.45]
Subset 1 0.948 5.986 [-18.11; 19.99] 0.9554 0.0938  [0.66; 1.25]
Subset 2 -4.392 6.585 [-25.35; 16.56] 1.3587 0.0515 [1.19; 1.52]
Subset 3 2.038 16.573 [-50.71; 54.78] 1.2063 0.1179 [0.83; 1.58]
Subset 4 -1242 10217 [-33.76; 31.27] 1.2905 0.0857  [1.02;1.56]
Subset 5 -1.242 6.277 [-21.22; 18.74] 1.2890 0.0474 [1.14; 1.44]

Table 6: Regression coefficients of the regression of Equation 1's predicted stage-one processing times to observed

stage-one processing times.
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Figure 6: Predictions of Equation 1 for each Subset plotted against observed stage-one processing time. Error bars
indicate one standard error of the mean. The lines y = x and y = 1.3x were plotted for referencing purpose. Observed
stage-one processing time was computed by subtracting target-only RT from RT of other conditions. The data points
for Subset 1 fitted y = x line closely, while points for the other Subsets were close to the y = 1.3x line, except for a

couple of points in Subset 3 and 4.

predictive success is all the more compelling given that
predictions were based on parameter estimates from dif-
ferent participants.

Further, since our simulation on both homogeneous
and heterogeneous search assumed processing independ-
ence between individual items, systematic deviations
from Equation 1's predictions can be used to estimate
quantitatively, for the first time, the extent and effect of
homogeneity facilitation in efficient search tasks. The
results indicated a systematic multiplicative deviation that
suggests that in homogeneous displays, identical items do
interact in a facilitative fashion and are not truly inde-
pendently processed. This facilitation effect can be char-
acterized by a constant multiplicative factor that does not
depend on set size. Because the general formula to describe
the RT by set size functions in efficient visual search takes
the form of RT = a + DIn (N), where N is set size, we can
infer that the facilitation effect resulted in an underes-
timation of the D coefficients in our Experiment 1. And
since D coefficients were found to be directly related
to the thresholds of accumulators, we propose that the
facilitation was a result of a multiplicative lowering of the
thresholds between adjacent, identical items. We discuss
this finding further in the General Discussion.

The slope coefficients for all conditions combined, as
well as for Subsets 2-5 all indicated a systematic multipli-
cative under-prediction by a factor somewhere between
1.2 and 1.3, in a fairly consistent pattern. It should be
noted, however, that regression analysis on stage-one pro-
cessing times for Subset 1 showed a slope coefficient that
deviate from the other groups. It was much closer to 1
(estimate = 0.9554, standard error = 0.0938). Recall that
Subset 1also had a cluster of RTs that substantially differed
from the other Subsets, as shown in Figure 5. Finally, it is
also important to acknowledge that for Subset 3, although
numerically larger than 1, the estimated slope coefficient
was not significantly different from 1 (estimate = 1.2063,
standard error = 0.1179). That said, we still view the results
from Subset 3 as being in line with our interpretation of
multiplicative lure-to-lure interaction effects in homo-
geneous displays. We think the slope coefficient failed
to reach significance due to the relatively large standard
error in that condition. It may also be that simply because
of alack of power, we could not simultaneously detect that
all four slopes for Subsets 2, 3, 4 and 5 were greater than
one (see Francis, 2012). That leaves open the question of
why the slope for Subset 1 was so different from the slope
of all the other subsets: why was the multiplicative effect
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of homogeneity absent in Subset 17 It is worth recalling
that Subset 1 displays were constructed with mixtures
of reindeer and model cars. Both of these lures have very
low levels of similarity to the target, as indexed by their D
coefficients from Experiment 1. In fact, their D values are
very close to each other. This can be interpreted as reflect-
ing that, in spite of reindeer and model cars being clearly
different stimuli, they are both equally dissimilar to the
target teddy bear.

More data is needed to understand why Subset 1's
results differed from those of the other Subsets. There
are at least two possible explanations. The first is that, at
extremely low levels of lure-target similarity, homogeneity
facilitation effects are absent. If so, the D values observed
in Experiment 1 are good predictors of performance in
heterogeneous displays, simply because the D values truly
represented stand-alone processing efficiency of those
items. A second possibility is that, for this pair of stim-
uli, the same lure-to-lure interaction effects are present
in both homogeneous and heterogeneous display. That
is, perhaps when two types of lures are equally dissimilar
to the target, they can mutually facilitate each other as
if they were identical lures. If so, D values in Experiment
1 did reflect lure-to-lure suppression effects, but these
values produced accurate predictions in Experiment 2
because mixing reindeer and cars (when looking for a
teddy bear) allows for reindeer and cars to mutually facili-
tate each other to the same extent as when they are each
presented in isolation.

General Discussion

Recent work in our lab has uncovered that there is sys-
tematic variability in stage-one processing times and that
much can be learned about the architecture of early visual
processing by studying this variability (Buetti et al., 2016).
Typically, the literature has assumed that on fixed-target
efficient visual search tasks, reaction times (RTs) do not
meaningfully vary as a function of set size or other dis-
play characteristics. In a series of experiments, we dem-
onstrated that RTs increase logarithmically as a function
of the number of items in the display and further, that
the steepness of the log function is modulated by the
similarity between the target and the distractors. In the
present study, we followed-up on this research and tested
four different specific computational implementations
of stage-one processing that produced specific RT predic-
tions for different visual search conditions in heterogene-
ous scenes. Both computer simulations and human data
indicated that Equation 1 was the best performing equa-
tion to predict stage-one completion times. This equation
assumed parallel, unlimited capacity and exhaustive pro-
cessing, with complete inter-item processing independ-
ence, as initially proposed in Buetti et al. (2016).

Using data from homogeneous search tasks with real-
world objects (Experiment 1), we were able to predict het-
erogeneous search RTs (Experiment 2), accounting for as
much as 96.8% of the variance and with high precision,
as indicated by the 14.520 ms RMSE. This prediction was
made across participants: that is, parameters were esti-
mated on one set of participants and predictions were
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confirmed on an entirely new set of participants that had
never participated in one of these search experiments and
who never saw any homogeneous displays like the ones
used to estimate D parameters. The only common con-
dition across experiments was the target-only condition.
Finally, we used systematic deviations from the predic-
tions of our model to estimate quantitatively, for the first
time in the literature, the effects of homogeneity facili-
tation on performance in homogeneous displays, similar
to the ones traditionally used in the literature to study
efficient, a.k.a. pop-out, search (all elements identical but
one). We found evidence that in homogeneous displays,
there is a facilitatory processing effect whereby evidence
thresholds are systematically reduced. This results in an
improvement in overall search efficiency (in logarithmic
space) in homogeneous scenes and thus, D coefficients
estimated in homogeneous scenes end up under-predict-
ing performance, by a multiplicative factor, in heterogene-
ous scenes where lure-to-lure interactions are absent (or
much reduced).

Implications regarding homogeneity effects in search
The idea that the degree of heterogeneity (or homo-
geneity) in a scene influences visual search processing
efficiency is not new. Duncan and Humphreys (1989)
referred to it as the nontarget-nontarget similarity effect.
Their claim that nontarget-nontarget similarity increases
processing efficiency was based on their Experiments 3
and 4. However, in both experiments, search slopes for
homogeneous displays were collapsed across different
distractors and compared to heterogeneous search slopes,
which were also collapsed across easy and difficult condi-
tions in Experiment 4. Perhaps most important, there was
not a direct manipulation of the degree of heterogene-
ity in these experiments: there was always a nearly equal
number of both types of distractors in all heterogeneous
scenes. Thus, the evidence in Duncan and Humpbhreys is
in fact quite limited to an observed difference between
homogeneous scenes and a specific type of heterogeneous
scene (a 50-50 mix of items). Duncan and Humphreys pro-
posed that the search slope should increase continuously
as the degree of nontarget-nontarget similarity decreases
(Figure 3, Duncan & Humphreys, 1989), but there was no
direct evidence for this continuum.

In contrast, here we conducted a more systematic eval-
uation of heterogeneity and differences in processing
between heterogeneous and homogeneous scenes. We
analyzed homogeneous search separately for three dif-
ferent types of lures and designed displays with varying
degrees of heterogeneity using those stimuli. Whereas
Duncan and Humphreys suggested increasing linear
search slopes with increasing degree of heterogene-
ity, we found that different mixtures (e.g. mixing two or
three types of lure items) can be accounted for by a sin-
gle constant factor (around 1.3). This result suggests that
processing in heterogeneous scenes is somewhat insensi-
tive to variations in the types of heterogeneity in those
scenes. This finding somewhat contradicts the Duncan
and Humphreys' spreading suppression account of homo-
geneity, because according to their account, the efficiency
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with which items are processed ought to be affected by
distractor context (i.e. the composition of distractor set),
whereas our results suggests it is not. Granted, Duncan
and Humphreys had theorized this modulation of search
efficiency as occurring in stage two, whereas, here, we
only focused on changes in efficiency during stage-one
processing. More data are needed to continue evaluation
of these conclusions.

At the theoretical level, according to Duncan and
Humphreys, items are given different attentional weights
or different amounts of resources from a limited pool,
depending on their similarity to the target template.
Items (or ‘structural units’) compete for access to visual
short-term memory by their weight. Further, the more
items perceptually group with each other, the stronger
the weights of those items will covary. This spreading
suppression mechanism thus entails an overall bias (i.e.,
weight) to rejected grouped items that is a result of lower-
level perceptual grouping mechanisms. Importantly,
spreading suppression is not a form of lateral inhibition.
But rather, it is a description of how the weight given to
an item will “spread” to other items as a function of the
strength of grouping between those items. Homogeneous
scenes therefore produce faster RTs than heterogeneous
scenes because the grouping strength amongst elements
in homogeneous scenes is much stronger than in hetero-
geneous scenes. The spreading suppression account was
thought to be a further advance from the traditional ‘per-
ceptual grouping’ accounts (Bundesen & Pedersen, 1983;
Farmer & Taylor, 1980) because it described how group-
ing strength affected attentional priorities. There is reason,
however, to doubt this spreading suppression account, at
least in this simple form, because our results (here and in
Buetti et al., 2016) demonstrate that items are not rejected
as groups in homogeneous scenes as proposed by Duncan
and Humphreys. Rather, the fact that parallel search
exhibits an exhaustive processing rule (and logarithmic
efficiency) implies that every element in a scene matters
(with each additional element contributing a non-zero
cost to RT), in spite of whatever grouping effects might be
observed amongst lures.

As a result, our results imply that a mechanism differ-
ent from Duncan and Humphreys spreading suppression
is at play in homogeneous search. We foresee at least two
possible mechanisms. First, it is possible that instead of
grouping similar search items, decisions are still made
for each individual item, but adjacent identical distractor
items facilitate each other by reducing the amount of infor-
mation needed (i.e. threshold of accumulators) to reach a
decision of rejection. This lowering of the thresholds could
be due to the knowledge that only a single target exists in
the display, which implies that for any-two adjacent items,
the more similar they are to each other, the less likely it is
that either of them is the target. This can be easily tested,
for example, by controlling how often two identical items
appear next to each other in a heterogeneous search scene.
One possible extreme is when scenes consist of homoge-
neous regions, each containing a different type of lure,
so that within each region, all adjacent items are identi-
cal to each other, and facilitation over the search scene

Art. 6, page 19 of 23

should be maximized. The opposite extreme case would
be when different types of lures are carefully ‘interlaced’
with each other so that adjacent lures are always differ-
ent from one another. Our first hypothesis would predict
that when facilitation is maximized, stage-one processing
time should be nearly perfectly predicted by homogene-
ous search coefficients (i.e., the slope estimates reported
in Table 6 should all be close to 1). On the other hand,
when such inter-item facilitation is minimized, stage-one
processing time should deviate even further from the pre-
dictions based on homogeneous search data and Equation
1 (i.e., the slope estimates should be larger than the ones
reported in Table 6).

Alternatively, the lowering of thresholds for identical
items could reflect the presence of an evidence monitor-
ing mechanism. An evidence monitoring mechanism is
one that observes (i.e., monitors) how evidence accumu-
lates at all local accumulators and sums up (or averages)
evidence over all (or large) regions of the scene, much like
global motion detectors sum/average local motion signals
to extract a global motion direction. Applied to lure pro-
cessing, as information accumulates, regions containing
identical lure items will produce stronger evidence against
target presence, compared to regions containing differ-
ent lure items. Thus, homogeneous regions can then be
discarded sooner as being unlikely to contain the target.
Precise location information would not be available for
these global accumulators because they represent large
regions, but that is not a big problem: representing lure-
location information is unnecessary for task completion,
what is needed, rather, is a representation of the target
location. Rejecting large regions of the display as unlikely
to contain the target does help to reduce the uncertainty
about the target location. Further, an advantage of such
an evidence monitoring mechanism is that it can facili-
tate the orienting response towards regions that are more
likely to contain the target (if one is present). This might
happen even before evidence accumulation for all items
within the region containing the target completes. In
other words, imagine a scene where low lure-target simi-
larity items are to the left of fixation and high lure-target
similarity items are to the right (where the target is). On
average, the left region will finish processing sooner than
the right region. Once the left region is rejected, the eyes
can start moving to the right of fixation, even before infor-
mation about the specific target location is represented.
This possibility too can be tested in future work.

It is also interesting to consider how our results relate
to other accounts of heterogeneity effects in visual search.
The Signal Detection Theory model of visual search has
been shown to offer a natural explanation of the hetero-
geneity effect (Palmer, Verghese, & Pavel, 2000), based on
the increased external noise as a result of heterogeneity
in the search scene. This account assumes that represen-
tations of individual items are independent, while the
heterogeneity effect arises from statistical influences of
a reduced signal-to-noise ratio in a decision stage. This
independence assumption is different from our current
proposal as well as Duncan & Humphreys (1989)'s. The
Attention based on Information Maximization model
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(AIM) of visual saliency proposed by Bruce & Tsotsos
(2009) also accounted for common heterogeneity effects
gracefully, based on the idea that when distractor set is
heterogeneous, each item is intrinsically rarer than when
the set is homogeneous. Hence heterogeneity effect arises
purely from bottom-up saliency computation according
to AIM, without the comparison of search items to a tar-
get template. While it is not immediately clear how these
models can account for our present finding that hetero-
geneity seems to introduce a relatively constant increase
in search efficiency (within our experiment conditions),
both models are highly specific and can make testable
predictions with appropriate adjustments. Future work
is needed to contrast these accounts with ours, although
neither of the two models seem compatible with our basic
finding of a logarithmic time cost function of stage-one
processing.

In sum, current data present a challenge to traditional
views of the distractor homogeneity effects and suggest
that further study is needed to understand the mecha-
nisms underlying this search facilitation effect. A poten-
tial avenue for further testing this facilitative interaction
between homogeneous items is through the use of the
capacity coefficient (Townsend & Wenger, 2004; for an
example of application, see Godwin, Walenchok, Houpt,
Hout, & Goldinger, 2015), which could provide more
direct evidence for the violation of the independent pro-
cessing in stage one.

Limitations

It is important to note that the visual search task used in
this study was a target discrimination task, where there
is always a target present in the display, and the partici-
pants had to locate it in order to make a decision about
its details (i.e., the relative location of the red dot). This is
different from the target detection task also used in the
literature, where the presence or absence of a target is to
be reported (e.g. Jonides & Gleitman, 1972; Treisman &
Gelade, 1980), and linear search slopes are often reported.
How much does the nature of the search task matter?
Detection and discrimination tasks very likely induce
different processing strategies, especially in the case of
efficient visual search. In a target discrimination task,
the need to extract details from the target compels par-
ticipants to fixate or at least focus spatial attention on the
target (Bravo & Nakayama, 1992), even when all distrac-
tors can be efficiently rejected or filtered out. In a target
detection task, there is no such demand, and when tar-
get and distractors are highly dissimilar, the presence or
absence of the target may create strong differences in the
global pattern or topology of the search scene. Hence, the
whole search scene could be processed as a single ‘struc-
tural unit’ (Duncan & Humphreys, 1989) or ‘object file’
(Kahneman, Treisman & Gibbs, 1992). As soon as a global
topological feature is detected, a response decision can
be made, and there is no need to find out the exact loca-
tion of the target. Going back to the evidence monitor-
ing mechanism proposed above, presence/absence tasks
with lures that are very dissimilar from the target may
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be completed solely based on information at that more
global level of analysis where precise locations are not rep-
resented. In contrast, in target-discrimination tasks, even
if a global or regional evidence monitoring mechanism
were to help reject lure regions, an observer would still
have to recover precise target location information (at the
local accumulators’ level) to be able to make a response
in a trial. That said, we should point out that in spite of
these differences, there are indications in the literature
(Treisman & Gelade, 1980; Palmer, Ames & Lindsey, 1993)
that even in a target detection tasks, logarithmic functions
can be observed if one samples set size appropriately (see
also, Lleras, Madison, Cronin, Wang & Buetti, 2015).

Conclusion

In a target discrimination task with a fixed target, efficient
visual search is best characterized as arising from a system
that processes all items in a parallel, unlimited capacity,
and exhaustive fashion. Under this conceptualization, a
lawful relationship between heterogeneous and homo-
geneous search performance was predicted by simulation
and confirmed by experiments with a novel methodol-
ogy. Results indicated that, rather than being completely
independent, individual items facilitate each other’s pro-
cessing when they appear in the context of other identi-
cal items. This facilitation effect can be characterized by
a multiplicative factor in logarithmic space that does not
change with set size. This result presents a challenge for
traditional accounts of distractor homogeneity effects,
like spreading suppression. These findings also extend the
application of Buetti et al.'s (2016) theory to real-world
objects and heterogeneous search tasks and demonstrate
the computational specificity of our model of stage-one
processing. Therefore, early parallel processing in visual
search is non-trivial: it systematically contributes to reac-
tion time, plays an important role in achieving the search
goal, and can be mechanistically understood. More gen-
erally, this paper presents a novel approach for studying
visual search: a predictive inference approach. While most
studies in visual search draw mechanistic inferences based
on descriptive data for a given set of manipulated condi-
tions (i.e., the mean/slope in condition A is smaller than
the mean/slope in condition B, therefore . . .), here we
suggest that great experimental and theoretical validity
is afforded by making specific predictive inferences to new
experimental conditions. More specifically, making pre-
dictions about what processing times ought to be in het-
erogeneous displays allowed us to quantitatively estimate
for the first time the effects of homogeneity facilitation,
independently of other factors like lure-target similarity.
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Notes
! An additional underlying assumption is that measures
of lure-target similarity generalize across subjects, at
least at the group level. Thus, we can use the estimates
from one set of participants and use them to predict
performance in a new set of participants.
2 With 2 types of items, for example, the essential inte-
gral to be solved takes the following form:
]nﬂ

ool S Bl
Sl )

’)‘l t ? Z)‘\ ’/\1 t 3
T[T*] ™ T[T“]
e'\" Jyene'\"
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where n,, n, are the numbers of two types of items, and
A, u,, A, u, are corresponding parameters, @(x) is the
CDF of standard normal distribution. We welcome any
ideas or suggestions about how to find an analytical
solution to this problem.
? The measure of log likelihood is a measure of how
likely the regression model is given the observed data.
The higher log likelihood value, the more likely a spe-
cific model is. The relative likelihood ratio between
two models can be computed by exp (L, - L,) where L,
and L, are log likelihood values.
The relative likelihood ratio between two linear mod-
els can be computed using AIC values by the for-
mula exp ((AIC, - AIC,)/2). Thus the regression model
based on Equation 1 was ew wj
times more likely than the Equation 2 base
exp w times more likely than the
Equation 3 based model, and expw — 2786147
times more likely than the Equation 4 based model.

IS

=20527.07
model,

=166.00
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