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Abstract: In the present paper, we give the best estimates for the norm of pre-Schwarzian derivatives
||T f (z)|| = sup

|z|<1
(1 − |z|2)

∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣ for subclasses of bi-univalent functions.
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1. Introduction and definitions

LetA be the class of functions f of the form

f (z) = z +

∞∑
n=2

anzn (1.1)

which are analytic in the open unit disk ∆ = {z ∈ C : |z| < 1} and normalized by the conditions f (0) = 0
and f ′(0) = 1. An analytic function in a domain D is said to be univalent in D if it does not take the
same value twice i.e, f (z1) , f (z2) for all pairs of distinct points z1 and z2 in D.

The Koebe one-quarter theorem et al [3] ensures that the image of ∆ under every univalent function
f ∈ A contains the disk with the center at origin and of the radius 1/4. Thus, every univalent function
f ∈ A has an inverse f −1 : f (∆)→ ∆, satisfying f −1( f (z)) = z, (z ∈ ∆) and

f
(

f −1(w)
)

= w
(
|w| < r0( f ); r0( f ) ≥

1
4

)
.

Moreover, it is easy to see that the inverse function has the series expansion of the form

f −1(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a2

3 − 5a2a3 + a4)w4 + ...; w ∈ ∆,
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which implies that f −1 is analytic. The derivative of f −1 (see pp. 1038 [4]) is given by

d
dw

(
f −1 (w)

)
=

1
f ′ (z)

.

A function f ∈ A is said to be bi-univalent in ∆ if both f and f −1 are univalent in ∆. We denote the
class of bi-univalent functions by σ.(see [2])
The function f in class A is said to be starlike of order α where 0 ≤ α < 1 in ∆ if it satisfies the
condition

Re{
z f ′(z)
f (z)
} > α,

where z ∈ ∆. We denote the class of starlike functions of order α by S ∗(α). The function f of the form
(1) is said to be bi-starlike function of order α where 0 ≤ α < 1 if each of the following conditions are
satisfied

Re{
z f ′(z)
f (z)
} > α

and
Re{

wg′(w)
g(w)

} > α,

where f ∈ σ, g = f −1 and w = f (z). We denote the class of bi-starlike functions of order α by S ∗σ(α)
(see [5]). If f and g are analytic functions in ∆, we say that f is subordinate to g, written as f ≺ g,
if there exists a Schwarz function w analytic in ∆, with w(0) = 0 and |w(z)| < 1 (z ∈ ∆), such that
f (z) = g (w(z)). In particular, when g is univalent then the above definition reduces to f (0) = 0 and
f (∆) ⊆ g(∆).
The pre-Schwarzian derivative of f is denoted by

T f (z) =
f ′′(z)
f ′(z)

and its norm is given by

||T f || = sup
|z|<1

(1 − |z|2)
∣∣∣∣∣ f ′′(z)

f ′(z)

∣∣∣∣∣ .
This norm have a significant meaning in the theory of Teichmuller spaces. For a univalent function f
it is well known that ||T f || < 6. This is the best possible estimation.
Defining two subclasses for bi-univalent functions as follows

Definition 1.1. A function f given by (1) is said to be in the class S ∗σ [A, B] , if the following conditions
are satisfied

z f ′ (z)
f (z)

≺
1 + Az
1 + Bz

,

w g′ (w)
g (w)

≺
1 + Aw
1 + Bw

,

where f ∈ σ, g = f −1, w = f (z), w ∈ ∆ and −1 ≤ B < A ≤ 1.

Remark 1.1. If we take A = (1 − 2α) and B = −1 in the above Definition 1.1 where 0 ≤ α < 1, the
class becomes S ∗σ[(1 − 2α),−1] ≡ S ∗σ(α).
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Remark 1.2. If we take A = 1 and B = −1 in the above Definition 1.1, the class becomes S ∗σ[1,−1] ≡
S ∗σ.

Definition 1.2. A function f given by (1) is said to be in the class V∗σ [A, B] , if the following conditions
are satisfied (

z
f (z)

)2

f ′ (z) ≺
1 + Az
1 + Bz

,(
w

g (w)

)2

g′ (w) ≺
1 + Aw
1 + Bw

,

where f ∈ σ, g = f −1, w = f (z), w ∈ ∆ and −1 ≤ B < A ≤ 1.

Remark 1.3. If we take A = (1 − 2α) and B = −1 in the above Definition 1.2 where 0 ≤ α < 1, the
class becomes V∗σ[(1 − 2α),−1] ≡ V∗σ(α).

Remark 1.4. If we take A = 1 and B = −1 in the above Definition 1.2, the class becomes V∗σ[1,−1] ≡
V∗σ.

In this paper, we shall give the best norm estimation for the classes S ∗σ[A, B] and V∗σ[A, B].

2. Main result

Theorem 2.1. Let the function f given by (1) be in the class f ∈ S ∗σ [A, B], then

∥∥∥T f

∥∥∥ ≤ min
{

2 (A − B) (A + 2)
(A + 1)

,
2 (A − B) |A|

(A + 1)

}
.

Proof. Since f ∈ S ∗σ [A, B], let us assume that

h (z) =
z f ′ (z)
f (z)

≺
1 + Az
1 + Bz

= p(z).

Using the definition of subordination, there exists a Schwarz function φ : ∆ → ∆ with φ (0) = 0 and
|φ (z) | < 1, such that

h(z) = p o φ(z) =
1 + Aφ (z)
1 + Bφ (z)

.

Hence, h(z) becomes

h (z) =
z f ′ (z)
f (z)

=
1 + Aφ (z)
1 + Bφ (z)

. (2.1)

By logarithmic differentiation of (3), we get

1
z

+
f ′′ (z)
f ′ (z)

−
f ′ (z)
f (z)

=
A

(1 + Aφ(z))
−

B
(1 + Bφ(z))

.

Above equation gives us the pre-Schwarzian derivative of f , i.e,

T f (z) =
f ′′(z)
f ′(z)

=
(A2 − AB)φ(z) + 2(A − B)

(1 + Aφ(z))(1 + Bφ(z))
,
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Setting φ (z) = id∆ (as φ belongs to the class of Schwarz functions and φ (z) ≺ z on ∆) and rearranging
the terms, we get (

1 − |z|2
) ∣∣∣T f (z)

∣∣∣ =
(
1 − |z|2

) ∣∣∣∣∣∣∣∣
(
A2 − AB

)
z + 2 (A − B)

(1 + Az) (1 + Bz)

∣∣∣∣∣∣∣∣ .
Taking the supremum value both sides in the unit disc, the above equation becomes

sup
|z|<1

(
1 − |z|2

) ∣∣∣T f (z)
∣∣∣ ≤ sup

|z|<1

(
1 − |z|2

) 
(
A2 − AB

)
|z| + 2 (A − B)

(1 + A |z|) (1 + B |z|)

 .
As −1 ≤ B, we get (1 − |z|) ≤ (1 + B |z|), therefore the above inequality becomes

sup
|z|<1

(
1 − |z|2

) ∣∣∣T f (z)
∣∣∣ ≤ sup

|z|<1
(1 + |z|)


(
A2 − AB

)
|z| + 2 (A − B)

(1 + A |z|)

 .
The above inequality gives us the norm of pre-Schwarzian derivative of f , denoted by ||T f ||. To estimate
the upper bound of ||T f || in the unit disc ∆, z must lead to 1 and therefore

lim
z→1

(1 + |z|)


(
A2 − AB

)
|z| + 2 (A − B)

(1 + A |z|)

 =
2 (A − B) (A + 2)

(A + 1)
.

Finally we get ∥∥∥T f

∥∥∥ ≤ 2 (A − B) (A + 2)
(A + 1)

. (2.2)

For the second part of the proof, let us assume that

k(z) =
w g′ (w)

g (w)
≺

1 + Aw
1 + Bw

= p (w)

where z = f −1(w) = g(w). By definition of subordination, there exists a Schwarz function φ : ∆ → ∆

with φ (0) = 0 and |φ (z) | < 1, such that

k(z) = p o φ(z) =
1 + Aφ (z)
1 + Bφ (z)

.

Since f ∈ σ , both f and f −1 are analytic and univalent in ∆. The derivative of f −1 is given by

d( f −1(w))
w

=
1

f ′(z)
.

Therefore, k(z) can be expressed as

wg′(w)
g(w)

= k (z) =
f (z)

z f ′ (z)
=

1 + Aφ (z)
1 + Bφ (z)

. (2.3)

Taking logarithmic differentiation of (5), we get

f ′ (z)
f (z)

−
1
z
−

f ′′ (z)
f ′ (z)

=
Aφ′ (z)

(1 + Aφ (z))
−

Bφ′ (z)
(1 + Bφ (z))

.
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Setting φ (z) = id∆ (as φ belongs to the class of Schwarz functions and φ (z) ≺ z on ∆), we have

f ′′ (z)
f ′ (z)

=
Az (A − B)

(1 + Az) (1 + Bz)
.

Following the previous steps and using (1 − |z|) ≤ (1 + B |z|), we get

sup
|z|<1

(
1 − |z|2

) ∣∣∣T f (z)
∣∣∣ ≤ sup

|z|<1
(1 + |z|)

[
|A| (A − B) |z|

(1 + A |z|)

]
.

For upper bound of ||T f ||, z must lead to 1, i.e,

lim
z→1

(1 + |z|)
|A| (A − B) |z|

(1 + A |z|)
=

2 (A − B) |A|
(A + 1)

.

Therefore ∥∥∥T f

∥∥∥ ≤ 2 (A − B) |A|
(A + 1)

. (2.4)

Combining (4) and (6), the proof is complete. �

Let A = (1 − 2α) and B = −1 in the above theorem where 0 ≤ α < 1, the class becomes
S ∗σ[(1 − 2α),−1] ≡ S ∗σ(α).

Corollary 2.1. If f ∈ S ∗σ(α), then ||T f || ≤ min{6 − 4α, |2 − 4α|}.

If f is analytic and locally univalent in ∆ such that f ∈ S ∗(α),where 0 ≤ α < 1 then ||T f || ≤ (6 − 4α),
which is due to Yamashita [1]. The above corollary generalizes the result for bi-univalent functions.

Let A = 1 and B = −1 in the above theorem, the class becomes S ∗σ[1,−1] ≡ S ∗σ.

Corollary 2.2. If f ∈ S ∗σ, then
∥∥∥T f

∥∥∥ ≤ 6.

The above corollary generalizes the norm estimation for bi-univalent functions.

Theorem 2.2. Let the function f (z) given by (1) be in the class V∗σ [A, B], then∥∥∥T f

∥∥∥ ≤ min
{

2 (3 + 2A) (A − B)
(A + 1)

,
2 (A − B) (1 + 2A)

(A + 1)

}
.

Proof. Since f ∈ V∗σ [A, B], let us assume that

k(z) =

(
z

f (z)

)2

f ′ (z) ≺
1 + Az
1 + Bz

= p(z).

Therefore, there exists a Schwarz function φ : ∆→ ∆ with φ (0) = 0 and |φ (z) | < 1 such that

k(z) = p o φ(z) =
1 + Aφ (z)
1 + Bφ (z)

.

Therefore, k(z) can be expressed as

k(z) =

(
z

f (z)

)2

f ′ (z) =
1 + Aφ (z)
1 + Bφ (z)

. (2.5)

AIMS Mathematics Volume 3, Issue 4, 600–607



605

By logarithmic differentiation on (7), we get

2
z
−

2 f ′ (z)
f (z)

+
f ′′ (z)
f ′ (z)

=
Aφ′ (z)

(1 + Aφ (z))
−

Bφ′ (z)
(1 + Bφ (z))

,

f ′′ (z)
f ′ (z)

=
2 f ′ (z)

f (z)
−

2
z

+
Aφ′ (z)

(1 + Aφ (z))
−

Bφ′ (z)
(1 + Bφ (z))

.

Hence, the pre-Schwarzian derivative of f becomes

T f (z) =
f ′′ (z)
f ′ (z)

=
2 (1 + Aφ (z))
z (1 + Bφ (z))

−
2
z

+
Aφ′ (z)

(1 + Aφ (z))
−

Bφ′ (z)
(1 + Bφ (z))

.

Setting φ (z) = id∆, we get

T f (z) =
f ′′ (z)
f ′ (z)

=
B (A − B) + 2Az (A − B)

(1 + Az) (1 + Bz)
=

(A − B) (3 + 2Az)
(1 + Az) (1 + Bz)

.

Therefore

sup
|z|<1

(
1 − |z|2

) ∣∣∣T f (z)
∣∣∣ ≤ sup

|z|<1
(1 + |z|)

[
(3 + 2A |z|) (A − B)

(1 + A |z|)

]
.

Again, to estimate the upper bound of ||T f ||, z must lead to 1 and hence we get

lim
z→1

(1 + |z|)
(A − B) (3 + 2A |z|)

(1 + A |z|)
=

2 (A − B) (3 + 2A)
(A + 1)

.

Finally ∥∥∥T f

∥∥∥ ≤ 2 (A − B) (3 + 2A)
(A + 1)

. (2.6)

For the second part of the proof, its given f ∈ V∗σ [A, B] and therefore we assume

k(z) =

(
w

g (w)

)2

g′ (w) ≺
1 + Aw
1 + Bw

= p(w)

where w = f (z), g = f −1 and w ∈ ∆. Since f ∈ σ (as explained in the second part of previous theorem)
we see,

g′ =
d

dw

(
f −1 (w)

)
=

1
f ′ (z)

.

Using above equation, k(z) can be expressed as

k(z) =

(
f (z)

z

)2 1
f ′ (z)

=
1 + Aφ (z)
1 + Bφ (z)

.

By logarithmic differentiation of above equation, we get

f ′′ (z)
f ′ (z)

=
2 (1 + Aφ (z))
z (1 + Bφ (z))

−
2
z
−

Aφ′ (z)
(1 + Aφ (z))

+
Bφ′ (z)

(1 + Bφ (z))
.
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Setting φ (z) = id∆, the pre-Schwarzian derivative of f becomes

T f (z) =
f ′′ (z)
f ′ (z)

=
(A − B) (1 + 2Az)
(1 + Az) (1 + Bz)

Following the similar steps as in the first part of this theorem, we get

||T f || ≤ sup
|z|<1

(1 + |z|)
(A − B) (1 + 2A |z|)

(1 + A |z|)
.

Finally, ∥∥∥T f

∥∥∥ ≤ 2 (A − B) (1 + 2A)
(A + 1)

. (2.7)

Combining (8) and (9), the proof is complete. �

Let A = (1 − 2α) and B = −1 in the above theorem where 0 ≤ α < 1, the class becomes V∗σ[(1 −
2α),−1] ≡ V∗σ(α).

Corollary 2.3. If f ∈ V∗σ(α), then ||T f || ≤ min{10 − 8α, 6 − 8α}.

The above corollary deduces to the exact same norm estimation for analytic and bi-univalent
functions in ∆ which lies in a similar class denoted by V∗σ(α) and is studied by Rahmatan [4].
Let A = 1 and B = −1 in the above theorem, the class becomes V∗σ[1,−1] ≡ V∗σ.

Corollary 2.4. If f ∈ V∗σ, then
∥∥∥T f

∥∥∥ ≤ 6.
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