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Hydraulic parameters of rock mass are the most effective 

factors that affect rock mass behavioral and mechanical 

analysis. Aforementioned parameters include intensity and 

density of fracture intersections, percolation frequency, 

conductance parameter and mean outflow flowrate which 

flowing perpendicular to the hydraulic gradient direction. In 

order to obtain hydraulic parameters, three-dimensional 

discrete fracture network generator, 3DFAM, was developed. 

But unfortunately, hydraulic parameters obtaining process 

using conventional discrete fracture network calculation is 

either time consuming and tedious. For this reason, in this 

paper using Artificial Neural Network, a tool is designed 

which precisely and accurately estimate hydraulic parameters 

of discrete fracture network. Performance of designed 

optimum artificial neural network is evaluated from mean 

Squared error, errors histogram, and the correlation between 

artificial neural network predicted value and with discrete 

fracture network conventionally calculated value. Results 

indicate that there is the acceptable value of mean squared 

error and also a major part of estimated values deviation 

from the actual value placed in acceptable error interval of (-

1.17, 0.85). On the other hand, excellent correlation of 0.98 

exists between the predicted and actual value that proves the 

reliability of the designed artificial neural network. 
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1. Introduction 

In designing infrastructures such as dams, tunnels, and caverns which involved in the rock mass, 

hydraulic behavior and connectivity of fractures play important role. The significance of 

aforementioned parameters will be highlighted if the project site placed in zones with high pore 

pressure like underground caverns and tunnels of dams, underground hydrocarbon reservoirs and 

as well as host zones of nuclear waste. Predominantly Hydraulic behavior of discontinuous 

media such as rock mass is controlled by geometry and connectivity of fractures [1-5]. In rock 

mass hydraulic behavior study, due to inaccessibility and direct immeasurability of connectivity 

and flowrate, rock mass fracture network simulating using statistical fracture data such as 

orientation, size and spatial location and density of fracture, which named Discrete fracture 

network(DFN) model, is accepted and common approach [6-9]. Fracture network modeling is an 

important part of the design and development of natural energy resource systems including 

geothermal and petroleum reservoirs and aquifers [10-14]. Robinson studied fracture 

connectivity by percolation theory and numerical methods in 2D and tried to generalize the 

results to the 3D state. He considered fractures as segments which are positioned randomly in 

space, and their orientation follows a distinct distribution function [15]. In discrete fracture 

network model, percolation theory was used by several researchers such as Englman et al., 

Charlaix et al., Long and Witherspon, Stauffer. These researchers used the theory to study effects 

of trace length and size of fractures on the amount of fracture connectivity in 2D [3, 16-18]. Bour 

et al. and Bour & Davy, assuming an exponential distribution function, studied different 

properties of fracture connectivity by percolation theory in 2D and 3D [19-20]. Darcel et al., 

investigated fracture connectivity in a discrete fracture network, using fractal correlation 

coefficients, by theoretical and numerical methods [21]. Due to the extreme importance of 

underground cavities for nuclear waste disposal, and to overcome uncertainties of seepage 

situation in the studied area, Xu et al. introduced fracture connectivity index as a parameter to 

quantify the state of fracture connectivity of a region [22]. Xu et al. investigated fracture 

connectivity in geothermal systems by discrete fracture network and studied concept and effect 

of this parameter on the behavior of these systems [23]. During the process of developing a 

discrete fracture network, they used an integrated method of Markov Chain- Monte Carlo. 

During their study on fracture connectivity parameter, Fadakar et al., suggested a new parameter, 

referred to as field fracture connectivity, which represents characteristics of true degree of spatial 

fracture connectivity in geothermal systems [24]. They provided some relations between field 

fracture connectivity, P_21 parameter and density of discontinuities, as well. Discrete fracture 

network is the main element of the study in all of the above methods. But, it should be noted that, 

when using discrete fracture network by generating compact models to achieve a representative 

element volume model, study of discrete fracture network in terms of hydraulics becomes very 

cumbersome. Considering these conditions, obtaining a faster but considerably accurate solution 

is a requirement. 

Addressing this need, in this article, it is attempted to design an optimal neural network. Using 

appropriate structural properties such as proper cell model, the exact determination of suitable 

weighted matrix, training algorithm and an activation function, hydraulic parameters intended for 

discrete fracture network were generated receiving input parameters. Application of artificial 
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neural network (ANN) has a long history of use in different aspects of rock mechanics. Most of 

the investigations use the artificial neural network to predict required physical and mechanical 

properties. Ji et al. used ANN as an assistant tool in back-analysis method to calculate 

permeability tensor [25]. Benardos et al. applied ANN to predict TBM
1
 performance [26]. 

Bowden et al. and Kingston et al. used ANN in water resources studies [27,28]. Kung et al. and 

Kim et al. used capabilities of ANN to estimate ground settlement due to underground 

excavations [29-30]. Padmini et al. used an integrated technique of Fuzzy- neural network for 

calculation and estimation of the ultimate bearing capacity of shallow foundations [31]. 

Kulatilake et al. and Menjazi et al. used ANN to predict mean size of rock fragments resulting 

from explosion operations in open mines [32-33]. Nejati et al. and Gokceoglu et al. used ANN to 

obtain deformation modulus of rock mass [34-35]. Aforementioned research works are only part 

of the worked paper which show the applicability of ANN in a different field of rock mechanics. 

This work with several other works indicates of great power of ANN in engineering disciplines. 

For this reasons, ANN is selected as a powerful predicting tool to overcome problems of robust 

calculations of DFN. 

2. Artificial Neural Network (ANN) 

Inspired by the nervous system of living organisms, Artificial Neural Networks have various 

capabilities. Neural networks are in fact parallel processors that perform a large amount of 

computation on input data. The structure of the neural network is composed of units known as 

neurons and neural layers that offer great flexibility and a large degree of freedom. Operating 

based on the generation of smart algorithms, these networks have a great capacity for correction 

and generalization. Many different models of neural networks were presented with various 

structures and algorithms. However, despite different structures, they are all similar in terms of 

basic characteristics such as learning ability and versatility, generalizability, parallel computing, 

robustness, and general approximation capability [36]. 

Every neural network has three structural features in all of which the structure self-organization 

is evident: neural cell model (function type), neural network structure (topology type), and 

learning in the neural network (learning type). The neural cell model is determined based on the 

transfer function. The real output of each neuron depends on the specific transfer function that is 

selected, and it must satisfy the criteria required by the problem that the neural cell is used to 

solve [36]. 

All the elements of the input vector are multiplied by their weight in a neural network and are 

given to the transfer function or the activation function after summation by the bias of each 

neuron. Each layer of the neural network has an input vector, a bias vector, a weight matrix, and 

finally, an output vector which acts as the input vector for the next layer. In Fig 1, P represents 

the input vector with 𝑃1, 𝑃2... 𝑃𝑅 elements. The vector n is the input vector of each neuron which 

is obtained by multiplication of the input vector elements by the weight of each neuron. The 

weight matrix of the network is 𝑤𝑖𝑗
𝑘 , where i represents the number of neurons in each layer, j 

                                                 
1
 Tunnel Boring Machine 
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represents the number of input vector elements, and k is the number of layers. Moreover, the 

vector a is the vector of outputs which is calculated by the transfer function f [37]. 

 
Fig. 1. Structure of multilayer Artificial Neural Network(ANN) [37]. 

In multilayer feedforward neural networks with backpropagation capabilities, that are commonly 

used in solving rock and soil mechanics problems, neurons are sorted in the form of layers 

including an input layer, an output layer, and one or more middle layer (hidden layers). Fig 2 

shows a schematic view of a neural network. 

 
Fig. 2. ANN neurons and calculation process schematic [45]. 

Every processor unit (neuron) in a certain layer is connected to all or some of neurons from other 

layers by weights. the numerical value of the weights actually controls the intensity of the 

connection between neurons. Zero weight implies no connection among the neurons while 

negative weight implies no connection is allowed among them. Neurons receive weighted inputs 

from a large number of other neurons and send it to the transfer function after adding their bias to 

it; consequently, the output of the transfer function act as the input for the next layer. The bias 

value is applied for correct scale adjustment at neuron input, improving network convergence. 

Considering the artificial neural network in Fig 2, the aforementioned procedure could be 

presented by Eqs. 1 and 2 for neuron j [38]: 

𝐼𝑗 = 𝜃𝑗 + ∑ 𝑤𝑗𝑖𝑥𝑖
𝑛
𝑖=1  (1) 

𝑦𝑗 = 𝑓(𝐼𝑗) (2) 
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in which 𝐼𝑗 is activation level of neuron j, 𝑤𝑗𝑖 is connection weighs between j and i neurons, 𝑥𝑖 is 

inputs from neuron i (𝑖 = 0. 1. 2. … . 𝑛), 𝜃𝑗  is bias of neuron j, 𝑦𝑗 is output of neuron j, 𝑓(. ) is 

transform function [37]. 

3. ANN training data generation 

In order to use ANN, firstly it is need to provide a series of data as network input and another 

series of data as network output. In this work regarding of demand data, common and effective 

methodology was applied in order to create network necessary data. Data generation process and 

steps of data preparation are in followed parts: 

3.1. Discrete Fracture Network (DFN) generation 

In order to generate the 3D model of the fracture network, the 3D code of 3DFAM was 

developed in MATLAB Programming Language. In 3DFAM Code, the fractures center has been 

defined on the basis of modified Beacher disk and the number of fractures has been generated 

with the homogenous Poisson process [7]. The uniform distribution has been used in order to 

simulate the fractures location in 3-D [39]. Having generated the 3D block of the discrete 

fracture network, it would be possible to create sections in any direction or even inclined (with 

any dip and dip direction) and any location. The fractures, which are situated outside the study 

limits, are omitted. In addition, the external trace length of the fractures, which some parts of 

them are inside the window, is omitted as well. The main object of truncation of the traces length 

is to leave out the edge effect [40]. 

All the trace lengths existing inside the window under consideration are studied after creating 

sections in the required directions. In order to study the effective connectivity between the 

fractures, it is needed to omit the fractures or cluster of fractures which are hydraulically inactive 

and do not contribute to transferring the flow after creating the section. This process is called 

Fractures Regulation. 

Connectivity is a comprehensive parameter that is a function of orientation, size, spacing and 

density of the joint sets. Such characteristics are used to define the connectivity portion in the 

rock mass [41]. The flow routes and the number of connected fractures along the flow routes are 

computed by regulating the network. In order to assess the effect of the geometrical 

characteristics of the fractures on the network and the parameters corresponding to the effective 

connectivity as well as the hydraulic conductivity of the fracture network, 3DFAM Code is able 

to compute a number of these parameters for the cases before and after regulating the fractures. 

The percolation frequency (total connectivity) (ξ), hydraulic conductivity (η), intersection 

density (𝑃20), intersection intensity (𝑃21) and termination index (𝑇𝑖) are the most outstanding 

parameters which are going to be calculated after regulating so as to study the status of the 

fracture network effective connectivity. 

The percolation frequency is the very degree of interconnection or total connectivity of a fracture 

network which is computed using Relation 3: 
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𝜉 =
𝑛𝑛𝑜𝑑𝑒

𝑛
 (3) 

Where 𝑛𝑛𝑜𝑑𝑒 is number of intersection nodes and n is total number of fractures in fracture 

network [42]. 

The conductivity parameter, η, represents the connectivity in the fracture network. When the 

opening is characterized by a uniform distribution, the conductivity Parameter has linear 

correlation with the hydraulic conductivity of the fracture networks. This parameter is calculated 

using Relation 4: 

η =
𝑛𝑙̅

2
√

1+2𝑛𝑛𝑜𝑑𝑒 𝑛⁄

𝐴
 (4) 

Where 𝑛𝑛𝑜𝑑𝑒 is the number of intersection nodes, n is total number of fractures, A is the model 

area and 𝑙 ̅is the arithmetic mean of all fracture lengths in fracture network [42]. 

The intersection density (𝑃20) and intersection intensity (𝑃21) represent the connectivity in the 

fracture network. These parameters are equal to the number of intersections and the sum of 

fracture trace length divided by the area of the fracture network. 

3.2. DFN data acquisition 

In order to get hold of the real conditions, 4 synthetic joint sets are simulated. In 84 simulations, 

the input data include Fisher's constant, mean and standard deviation of trace length, diameter, 

aperture and frequency and output parameters include percolation frequency, hydraulic 

conductivity, intersection density (𝑃20), intersection intensity (𝑃21) and total discharge at outflow 

boundary of fracture network in horizontal (𝑄13) and vertical (𝑄24) direction flow. 

One of the most important parameter in definition of discontinuities orientation is Fisher's 

constant. K is the coefficient of the Fisher's constant and a positive number which indicates the 

degree of data scattering. The larger amount of this coefficient depicts less scattered data. The 

larger amount of this coefficient depicts less scattered data [43,44]. The Fisher's constant is 

generally in the range of 5 to 440. The range of input data variation are presented in table 1. 

Table 1. 

Variation limits of simulations input parameters. 

Frequency 

(𝑚−1) 
Aperture(m) Diameter(m) Trace Length 

Standard 

Deviation(m) 

Mean 

Trace 

Length(m) 

Fisher 

coefficient 

0.99 0.0005 0.99 0.21 0.77 5 
1.25 0.000725 1.25 0.31 1 50 
1.59 0.000725 1.6 0.4 1.27 100 
1.86 0.000725 1.86 0.48 1.5 250 
1.93 0.000725 1.93 0.53 1.72 250 

 

In all simulations, shape of fractures is assumed circular and DFN is generated in 3-D block with 

dimensions of 5 × 5 × 5 𝑚3. A sample of generated DFN and a 2-D cross-section of model in 

either non-regulated and regulated form is shown in figure 3. In each block, simulation comprise 
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3 DFN realizations. Hence in this study that include 84 simulations, 252 realizations of DFN is 

analyzed.  

 

 
Fig. 3. ANN Data generation: A. Generated DFN by circular fractures, B. 2-D cross-section of DFN 

(simulated fracture traces) in non-regulated form, C. 2-D cross-section of DFN (simulated fracture traces) 

in regulated form. 

In order to flow analyzing in DFN, literatures mostly recommended two type of boundary 

condition which is prescribed on model. In first type of boundary condition, hydraulic gradient is 

assumed horizontal and flow is calculated based on outflow of boundary 3. In second type of 

boundary condition, hydraulic gradient is assumed vertical and flow is calculated based on 
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outflow of boundary 4. Input and output Pressure head in both condition respectively is 5 and 1 

meter. Figure 4 shows aforementioned boundary conditions. 

 
Fig. 4. Boundary conditions which is applied to DFN floe calculations: A. horizontal hydraulic gradient, 

B. vertical hydraulic gradient [44]. 

4. Optimum ANN design 

In optimal neural network designing, the correct selection of input variables has a large impact 

on the efficiency of the network [36]. In this study, six parameters (Fisher coefficient, the length 

of the fractures, the standard deviation of the length of the fractures, the diameter of the fracture, 

the number of discontinuities in the unit length of the scan line and the opening of the fractures) 

were assumed as the inputs of the neural model. Given the number of input parameters, the input 

layer has 6 neurons. On the other hand, the outputs of the neural model have 6 parameters, 

namely: density of fracture intersections (𝑃20), the intensity of fracture intersection (𝑃21), 

frequency of permeation (ζ), conduction parameter (CP), the average exiting flow rate on the 

boundaries normal to the gradient direction and parallel to the horizontal flow (𝑄13) and parallel 

to the vertical flow (𝑄24), that are hydraulic parameters of the discrete fracture network. Given 

the number of network outputs, the output has 6 neurons. The neural network that was employed 

in this study is a multilayer feedforward network with backpropagation. Using the neural 

network toolbox of MATLAB, 50 various models of neural networks with different structures 

were investigated. Ultimately, the neural network model in Fig. 5 yielded the best responses with 

the least error and the highest correlation between model outputs and target values. Parameters 

and characteristics of the optimal neural network is presented in Table 2.  

 
Fig. 5. Optimal designed ANN blocks. 
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Gradient Moments decreasing can train any network as long as its weight, net input, and transfer 

functions have derivative functions. Backpropagation is used to calculate derivatives of 

performance perf with respect to the weight and bias variables X. Each variable is adjusted 

according to gradient descent with momentum: 

𝑑𝑋 =  𝑚𝑐 ∗ 𝑑𝑋𝑝𝑟𝑒𝑣 +  𝑙𝑟 ∗ (1 − 𝑚𝑐) ∗ 𝑑𝑝𝑒𝑟𝑓/𝑑𝑋 (5) 

where dXprev is the previous change to the weight or bias, parameter lr indicates the learning 

rate, derivatives of performance dperf with respect to the weight and bias variables X and 

parameter mc is the momentum constant that defines the amount of momentum. mc is set 

between 0 (no momentum) and values close to 1 (lots of momentum). A momentum constant of 1 

results in a network that is completely insensitive to the local gradient and, therefore, does not 

learn properly. 

Training stops when any of these conditions occurs: 

•The maximum number of epochs (repetitions) is reached. 

•The maximum amount of time is exceeded. 

•Performance is minimized to the goal. 

Table 2. 

Characteristics of optimal designed ANN. 
Levenberg – Marquad Learning Function  

Gradient Moments decreasing  Weighs and bias training Algorithm 
78 Total data number 

2 Network layer Number 
6 Input Layer Neurons Number 
10 Hidden Layer Neurons Number 
6 Output Layer Neurons Number 

 

5. Results and discussion 

Various methods can be used in order to evaluate the performance of the neural network. Mean 

squared error diagrams, error histograms, and also correlation coefficient between the outputs of 

the neural network and actual values were used in this study for evaluation of the designed neural 

network performance. The neural network performance was evaluated through investigation of 

mean squared errors by common techniques. Fig 6 shows the mean squared errors calculated for 

every frequency of the alternative neural network computation along with its descending 

development for the optimal designed neural network. 
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Fig. 6. Optimal designed ANN calculation epochs Mean Squared Error(MSE). 

Experimental and evaluation data curves showed similar behavior proving the stability of the 

designed network and its reliability. According to Fig 6, the best (the least) mean squared error of 

evaluation data, being 2.278, was obtained at the 7th stage of the learning process. If the test data 

curve showed a significant increase ahead of the evaluation data, it would have implied a fault in 

network performance which is not seen in Fig 6.  

Fig 7, shows the difference histogram for actual and computed values. Blue bars in the figure 

show learning data error, green bars show evaluation data error and the red bars show the 

network test data error. The error histogram shows the majority of error values to be between -3 

and 2. Fig 7 shows that more than 90% of the data, have very low errors in the range of -1.16 to 

0.85. Only few data are associated with a larger error, showing the accuracy of performance. 

 
Fig. 7. Optimal designed ANN Error Histogram. 
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The most important metric for evaluating the performance of the neural network is the 

correlation between actual target data and data computed by the neural network. Fig 8 shows the 

correlation between actual target data and computed data for all three groups of learning, 

evaluation and test data. 

  

  
Fig. 8. Optimal designed ANN Error Histogram. Correlation Coefficient between predicted and actual 

data. 

Diagrams in Fig 8 show an excellent correlation coefficient between actual target data and 

computed data. This shows the desirable performance of the designed neural network. 

Correlation coefficient values are very close to 1 and are presented in Table 3. 
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Table 3. 

Relation between actual and predicted value using optimal designed ANN. 

Relation between predicted and actual data Correlation Coefficient Data type 

𝑃𝑟𝑖𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 0.99 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 + 0.6 0.99 Training data set 

𝑃𝑟𝑖𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 0.99 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 + 0.46 0.99 Validation data set 

𝑃𝑟𝑖𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 0.97 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 + 0.48 0.97 Test data set 

𝑃𝑟𝑖𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 0.99 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 + 0.62 0.99 All data 

 

6. Conclusion 

In this paper, Given the importance of hydraulic parameters of the discrete fracture network, and 

their time-consuming computation for dense real models, a predicting model was designed and 

developed drawing on the capabilities of the artificial neural network. The model predicts 6 

hydraulic parameters upon receiving six input parameters, namely: The Fisher coefficient, length 

of the fractures, standard deviation of the length of the fractures, diameter of the fracture, the 

number of discontinuities in unit length of the scan line and opening of the fractures. The 

hydraulic parameters are: the density of fracture intersection (P20), the intensity of fracture 

intersection (P21), frequency of permeation (ζ), conduction parameter (CP), average exiting flow 

rate on boundaries normal to fluid gradient direction (Q13), and the average exiting flow rate on 

boundaries parallel to the fluid gradient (Q24). The discrete fracture network model was created 

using the developed 3DFAM software by the help of which neural network output and input 

parameters were computed. The high accuracy of the designed neural network provides a more 

accurate analysis of the hydraulic behavior of the discrete fracture network by predicting the 

aforementioned hydraulic parameters. Robust fitting tools that are capable of receiving multi-

dimensional inputs and generating multi-dimensional outputs is a characteristic of this network. 
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