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Abstract Due to the emergence of e-commerce and the 
proliferation of liberal return policies, product returns 
have become daily routines for many companies. 
Considering the significant impact of product returns on 
the company’s bottom line, a growing number of 
companies have attempted to streamline the reverse 
logistics process. Products are usually returned to initial 
collection points (ICPs) in small quantities and thus 
increase the unit shipping cost due to lack of freight 
discount opportunities. One way to address this issue is 
to aggregate the returned products into a larger 
shipment. However, such aggregation increases the 
holding time at the ICP, which in turn increases the 
inventory carrying costs. Considering this logistics 
dilemma, the main objectives of this research are to 
minimize the total cost by determining the optimal 
location and collection period of holding time of ICPs; 
determining the optimal location of a centralized return 
centre; transforming the nonlinear objective function of 
the proposed model formulation by Min et al. (2006a) into 
a linear form; and conducting a sensitivity analysis to the 
model solutions according to varying parameters such as 
shipping volume. Existing models and solution 
procedures are too complicated to solve real-world 

problems. Through a series of computational 
experiments, we discovered that the linearization model 
obtained the optimal solution at a fraction of the time 
used by the traditional nonlinear model and solution 
procedure, as well as the ability to handle up to 150 
customers as compared to 30 in the conventional 
nonlinear model. As such, the proposed linear model is 
more suitable for actual industry applications than the 
existing models. 

Keywords Reverse Logistics, Optimization, Linear 
Transformation 

               
1. Introduction 
 
Returned products come in all different sizes, shapes, and 
conditions. Many of them are received damaged, without 
original packages, and mixed up with other products. As 
such, returned products are more difficult and costly to 
handle than original products. Indeed, the logistics of 
handling returned products accounts for nearly 1% of the 
total U.S. gross domestic product (Gecker, 2007). To 
elaborate, a study conducted by the Reverse Logistics  
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Industry sector % of products returned within 
first warranty period 

% of revenue spent on 
reverse logistics costs 

% of initial value recaptured 
from returned products 

Best-in-Class 5.7% 9% 64% 
Consumer Goods 11% 10% 31% 
High-Tech. 6% 8% 28%
Telecom/Utilities 8% 8% 28%
Aerospace & Defence 5% 11% 10%
Medical Device Manufacturing 11% 15% 22%
Industrial Manufacturing 12% 13% 22%

Source: Gecker, R. (2007). Industry best practices in reverse logistics. Unpublished White Paper, Aberdeen Group. 
Table 1. The Impact of Product Returns on Industry-Wide Revenue  
 
Executive Council once reported that U.S. companies 
spent more than $35 billion annually on handling, 
transportation, and processing of returned products 
(Meyer, 1999). More recently, it was found that product 
returns cost businesses more than $100 billion a year and 
caused an average profit loss of 3.8% (Petersen and 
Kumar, 2010). This estimate does not even include the 
expenditure associated with disposition, redistribution, 
administration, and transformation of returned products 
with limited commercial value into productive assets. In 
addition, other hidden costs may be incurred from 
compliance with the Sarbanes-Oxley Act for returned 
inventory reporting, the risk of returned products ending 
up in the grey market, and customer credit reconciliation. 
In 2011 alone, for example, product returns cost U.S. 
consumer electronics retailers and manufacturers nearly 
$17 billion: an increase of 21% since 2007. Product return 
rates over the past three to five years have increased by 
57% and 43%, according to retailers and manufacturers, 
respectively, as surveyed by Accenture (Baig, 2011). 
Unfortunately a high rate of product returns is not 
confined to the manufacturing and retail industry: across 
the various industries, Norman and Sumner (2006) 
reported that the total U.S. revenue impacted by product 
returns is estimated between $52 billion and $104 billion. 
As shown in Table 1, some industries in which return 
rates are nominal can still suffer significantly from poor 
management of returned products.  
 
Despite increasing attempts to reduce return rates, 
product returns have become a necessary evil. In general, 
product returns stem from two phenomena: (1) consumer 
returns of products to the retailer due to defects, damages 
during transit, product recalls, impulse purchases, and 
inaccurate order fulfilments; and (2) supplier returns of 
overstocked or unsold items to the manufacturer as part 
of the ‘buyback’ policy. Regardless of product type, 
reverse logistics involving product returns presents 
different types of logistical challenges. Products are 
usually returned to ICPs in small quantities and thus 
increasing the unit shipping cost due to lack of freight 
discount opportunities. One way to address this issue is 
to aggregate the returned products into a larger 
shipment. However, such aggregation increases the 

holding time at the ICP, which in turn increases the 
inventory carrying costs. Considering this logistics 
dilemma, the main objectives of this research are to: (1) 
minimize the total cost by determining the optimal 
location of ICPs and direct customers to designated ICPs; 
determining the optimal collection period of holding time 
at the ICP; and determining the optimal location of a 
centralized return centre (CRC); and then (2) to transform 
the nonlinear objective function of the proposed model 
formulation into a linear form that significantly eases the 
computational complexity; and (3) conduct a sensitivity 
analysis to the model solutions according to varying 
parameters such as shipping volume.  
 
2. Literature Review 
 
Reflecting the growing worldwide attention to eco-
efficient supply chain management, there exists abundant 
literature dealing with various kinds of reverse logistics 
problems (see, e.g., Fleischmann et al., 2000; Fleischmann, 
2003; Mead et al., 2007; Srisvastava, 2007; Chanintrakul et 
al., 2009; Pochampally et al., 2009; Pokharel and Mutha, 
2009; Min and Kim, 2012). Generally speaking, reverse 
logistics is concerned with distribution activities 
involving product returns, source reduction/conservation, 
recycling, substitution, reuse, disposal, refurbishment, 
repair, and remanufacturing (e.g., Stock, 1992; Guide et 
al., 2003; Van Wassenhove and Guide, 2003; Min et al., 
2006a). Some of the earlier pioneering studies on reverse 
logistics include Min (1989), Geoffrion and Graves (1974), 
Melachrinoudis et al. (1995), and Del Castillo and 
Cochran (1996). 
 
To elaborate, Min (1989) developed a multiple objective 
mixed integer program (MIP) designed to select the most 
desirable shipping options (direct versus consolidated) 
and transportation modes for reverse logistics involving 
recalled products. Although he considered a trade-off 
between transportation time and cost associated with 
reverse logistics, his model did not take into account 
inventory carrying costs. Geoffrion and Graves (1974) 
developed, implemented, and successfully applied a 
solution technique to a real problem for a major food firm 
based on Benders’ decomposition. Considering a multiple 
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planning horizon, Melachrinoudis et al. (1995) developed 
a multiple objective integer program for the dynamic 
location of capacitated sanitary landfills. Following suit, 
Jayaraman et al. (2003) presented a MIP to solve the two-
level hierarchical location problem involving the reverse 
logistics operations of hazardous products. They also 
developed heuristic concentration procedures combined 
with heuristic expansion components to handle relatively 
large problems with up to 40 collection sites and 30 
refurbishment sites. Schultmann et al. (2003) combined a 
two-stage location model with a simulation model for 
planning a reverse-supply network involving the 
recycling of spent batteries in the steelmaking industry. 
Despite their success in solving practical reverse logistics 
problems, none of these prior studies dealt with the 
possibility of making trade-offs between freight rate 
discounts and inventory cost savings resulting from 
consolidation of returned products. 
 
More recently, Zaarour et al. (2014) developed a 
mathematical model that analysed both discrete and 
continuous cases of collection periods for product returns 
in the sustainable supply chain. Min et al. (2006a, b) 
presented a nonlinear integer program for solving the 
multi-echelon reverse logistics problem involving 
product returns. To overcome inherent computational 
complexity involved in the non-linear program structure, 
they utilized genetic algorithm (GA). Their contributions 
include the consideration of freight consolidation 
possibilities across geographical areas and holding time. 
In particular they explored a possibility that returned 
products would be aggregated at the ICPs and then held 
up for a few days for freight consolidation before those 
returned products would be trans-shipped from the ICPs 
to the CRCs for asset recovery, remanufacturing or 
disposal. Their models and solution procedures were 
designed to determine the optimal locations of ICPs and 
CRCs from sets of candidate locations, the optimal 
collection period at the ICPs, and the most desirable 
shipping volumes from the ICPs to the CRCs. Srivastava 
(2008) further conceptualized a product return process 
within the reverse logistics network consisting of 
collection centres and two types of rework facilities set up 
by original equipment manufacturers (OEMs) or their 
consortia for a few categories of product returns under 
various strategic, operational and customer service 
constraints. Tan and Kumar (2008) approached a reverse 
logistics model from a profit-maximization perspective 
rather than a typical cost-minimization perspective. Min 
et al. (2008) employed an MIP and GA to solve the 
reverse logistics problem involving the consolidation of 
product returns in e-commerce environments. Chandiran 
and Rao (2008), and Kannan et al. (2009) went a step 
further from these prior studies by considering a two-
way flow coordination/integration of both forward and 
reverse logistics activities. Also, Du and Evans (2008) 

considered two conflicting objectives of reverse logistics: 
costs and tardiness of cycle time. In addition, Chang et al. 
(2011) proposed routing strategies that optimally 
integrate forward distribution and reverse collection to 
help logistics service providers reduce their operating 
costs when providing transportation services. 
 
Given a lack of effort in combining the location-routing 
problem with the balanced allocation problem in the 
closed-loop supply chain network, Sheriff et al. (2013) 
proposed a paper to include the simultaneous 
consideration of location, allocation, and routing 
decisions. 
 
However, these prior studies assumed away the 
stochastic nature of customer demands and product 
returns, despite the fact that product returns were often 
characterized by considerable uncertainty on their timing 
and quantity (de Brito and van der Laan, 2009). To handle 
the uncertain and random nature of returned products, 
Zhou and Min (2011) developed a stochastic reverse 
logistics model that could determine the number and 
location of CRCs where unknown quantities of returned 
products from retailers or end-customers were collected 
for manufacturers’ or distributors’ repair facilities. As 
summarized above, a majority of existing reverse logistics 
models have, thus far, focused on only the product 
recovery, recycling, and reuse opportunities of the 
reverse logistics network for used products which have 
ended their life cycles, while neglecting various 
consolidation and channel selection decisions for 
returned products that may help the eco-efficiency of the 
closed-loop supply chain (Mead et al., 2007; Srisvastava, 
2007; Chanintrakul et al., 2009; Pochampally, 2009; 
Pokharel and Mutha, 2009). Also, none of these prior 
studies examined the dynamic interplay between 
shipping volume (i.e., return rates) and the collection 
period for returned products. To overcome the 
aforementioned shortcomings of these prior studies, this 
linearization allowed us to optimally solve a large reverse 
logistics network problem that has not been solved 
efficiently by the existing models and approximation 
solution procedures. In particular, to better reflect reality, 
the proposed model was designed to consider both 
capacity restrictions and service requirements, while 
taking into account different types of costs, including 
facility establishment/maintenance costs, inventory 
carrying costs, handling costs, and shipping costs with 
potential freight discount opportunities. Furthermore, 
this paper performs sensitivity analyses by varying 
product return rates, and then assesses their impacts on 
multiple collection periods and total reverse logistics 
costs.  
 
Thus, the paper develops a model under a special 
structure that allows the decision maker to make the 
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optimal trade-off between inventory carrying and 
shipping costs. In an effort to improve the chance of 
industrial applications, the linearization of the nonlinear-
MIP—commonly employed by the previous studies—
enables an increase in the geographical service areas and 
shipping volumes between the ICPs and the CRCs.  
 
3. Model Design 
 
Prior to developing a model that built upon the 
nonlinear-MIP proposed by Min et al. (2006a) and 
transforming it into a linear form with the expanded 
variables and constraints, we made the following 
assumptions: (1) the possibility of direct shipment from 
customers to a centralized return centre is ruled out due 
to a small volume of individualized returns; (2) the 
transportation cost between customers and their ICPs is 
negligible given the short distances between the two 
parties; (3) the location/allocation plan covers a planning 
horizon in which customer demand patterns and 
transportation infrastructure remain stable without 
dramatic changes; (4) an ICP has adequate capacity to 
hold returned products during the collection period; (5) 
all customer locations are known and fixed a priori.  
 
The rest of the paper is designed as follows: section 3 
presents the linearization of the objective function, the 
model experiments and the computational results, and 
section 4 deals with the concluding remarks and 
proposed future research to handle potential limitations. 
 
Indices: 
i = index for customers; Ii ∈  
j = index for ICPs; Jj ∈  

k = index for centralized return centres; Kk ∈  
 
Decision variables: 

jkX  = volume of products returned from ICP j to 

centralized return centre k  
 

if customer i is allocated to ICP j  
 
otherwise 
 

 

if an ICP is established at site j  
 
otherwise 
 

T  = length of a collection period (in days) at each ICP  
 

if a centralized return centre is established 
at site k )( Kk ∈  

otherwise 

Model parameters: 
aj = annual cost of renting ICP j 
b = daily inventory carrying cost per unit 
w = annual working days 
ri = volume of products returned by customer i per day 
hj = handling cost of unit product at ICP j  
ck = annual cost of establishing and maintaining 
centralized return centre k 
mk = maximum processing capacity of centralized return 
centre k in new returns per day 
dij = distance from customer i to ICP j 
djk = distance from collection point j to centralized return 
centre k 
l = maximum allowable distance from a given customer to 
an ICP 

T  = maximum length of a collection period (in days) at 
an ICP. This upper bound on the length of collection days 
is necessary to assure that return lead time is not too long 
for the customers 

Ci = { }ldj ij ≤| set of ICPs that are within distance l 

from customer i 
Dj = { }ldi ij ≤| set of customers that are within distance 

l from ICP j 
( ) jkjkjkjk EdXf βα=,  unit transportation cost 

between collection point j and return centre k
 

where E is the standard freight rate ($/unit), jkα  is the 

freight discount rate according to the volume of shipment 
between ICP j and centralized return centre k, and jkβ  is 

the penalty rate assessed for the distance between ICP j 
and centralized return centre k. 
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Figure 1 shows how much we are benefitting from the 
economies of scale (i.e., freight discounts) and/or 
penalized due to distance for a certain shipment jkX  
between ICP j and CRC k that are jkd  distance away. 
Although only two price (freight rate) breakpoints are 
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specified for consolidated shipment (P1 and P2) and 
distance (Q1 and Q2), any number of breakpoints can be 

accommodated by the proposed model, which can mimic 
class (freight) rates in practice. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Unit transportation cost function 
 
Mathematical formulation: 
Minimize 
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                    (9) 

 
The objective function (1) minimizes the total reverse 
logistics costs, which comprise five annual cost 
components: the cost of renting the ICPs, the cost of 
establishing and maintaining the CRCs, the handling 
costs at the ICPs, the inventory carrying cost, and the 
transportation cost. Constraint (2) assures that a customer 

is assigned to a single ICP. Constraint (3) prevents any 
return flows from customers to be collected at a closed 
ICP (M is an arbitrarily set big number). Constraint (4) 
makes the incoming flow equal to the outgoing flow at 
each ICP. Constraint (5) ensures that the total volume of 
products shipped from ICPs to a centralized return centre 
does not exceed the maximum capacity of the centralized 
return centre. Constraint (6) preserves the non-negativity 
of decision variables jkX . Constraint sets (7)-(9) declare 

decision variables ijY , jZ  and kG as binary.  

 
3.1 Linearization of the objective function 

The non-linearity of the summation term 
( )jkjkjk dXfX ,  of the objective function can be 

converted to a linear term as follows: 
 
For any given (j,k) pair, jkβ can be easily determined by 
the known value of jkd . Parameter jkα , however, 
depends on the value of decision variable jkX and 
therefore cannot be determined in advance. We use the 
following transformation to linearize the term( )jkjkjk dXfX , . Let 1

jkU , 2
jkU  and 3

jkU  be 

djk 

Xjk 
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continuous variables associated with ranges [ ]1,0 P , 
( ]21 , PP  and ( )∞,2P , respectively, such that  
 

321
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where 1
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jkW  are binary variables and M is a big 

number. Accordingly, when 1
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and 

2
jkW

 
take the value of 1, then jkX  is in the third range 

(See Figure 2). The term ( )jkjkjk dXfX ,  can now be 

mathematically expressed as a linear function of Ujk’s and 
Wjk’s:  

1 1 2 2

1 2 1 3 3 2 3 2
1 2
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where jkjk Er β=1 , jkjk Er βα1
2 =  and jkjk Er βα 2

3 =  
are the slopes of function ( )jkjkjk dXfX , , as shown in 
Figure 2: 

 
Figure 2. Transportation cost function 
 
According to (10) and (11), each continuous variable jkX  

is replaced by ( )1+n  KJ  continuous variable Ujk 

values and n  KJ  binary variables Wjk’s, where n is 

the number of breakpoints (Pl) in shipment volumes. Two 
breakpoints are used above (n = 2) to illustrate discounts 
in shipping costs. Moreover, the problem has additional 
constraint (10) and 3 + 2n additional constraints (11) for 
each original variable jkX . Although the new problem 

has more variables and constraints, it is still a linear MIP 
for a fixed value of T and can be solved to optimality by 
readily available commercial software such as LINGO  
 

Version 14.0 (2013). By solving sequentially the MIP for 

the possible values of T = 1, …,T , the optimal solution to 
the original problem (1) – (9) can be obtained. 
 
3.2 Model experiments and computational results 

For comparative purposes, we used the same problem 
solved by Min et al. (2006a), although their model was 
designed to solve simpler reverse logistics problems than 
our proposed model. The problem consisted of 30 
customers, ten ICP locations, and five centralized return 
centre locations. The input data are recapitulated in Table 3. 
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Parameter Symbol Value Unit 
Annual cost of renting an ICP aj 200 $ 
Daily inventory carrying cost per unit b 0.1 $ / day-unit 
Working days per year w 250 Day 
Unit handling cost at the collection point hj 0.1 $ / day-unit 
Annualized cost of establishing and maintaining a CRC ck 3000 $ 
Capacity of a centralized return centre per day mk 1000 units / day 
Spatial service coverage l 25 Miles 
Unit standard transportation cost E 1 -- 
Discount rate with respect to shipping volume between ICP & CRC α1 0.8 -- 
 α2 0.6 -- 
Volume breakpoints for freight discount rates P1 200 units 
 P2 400 units 
Penalty rate with respect to distance between ICP and CRC β1 1.1 -- 
 β2 1.2 -- 
Distance breakpoints for penalty rates Q1 25 miles 
 Q2 60 miles 

Table 3. Parameter values for an example problem 
 

Costs AutoCAD Nonlinear MIP model MIP model 
Total annual cost of renting ICPs  $1,800  $800  $1,000 
Total cost of establishing CRCs  $15,000  $6,000  $6,000 
Total inventory costs  $31,875  $35,350  $31,875 
Total handling costs  $21,250  $21,250  $21,250 
Total transportation costs  $169,200  $148,170  $130,900 
Total Annual Reverse Logistics Costs  $239,125 $211,570  $191,025

Table 4. Cost breakdown results of models using the data given in Table 3 
 
We used the modelling language and optimizer LINGO 
Version 14 (2013) to solve our model. The average 
computational time it took LINGO to solve the example 
problem with 30 customers, ten ICP sites, and five CRC sites 
was 12 seconds. Table 4 compares our results to those 
obtained by the nonlinear MIP model developed by Min et 
al. (2006a) along with the results obtained by a naïve greedy 
approach using AutoCAD (by assigning each customer to its 
closest ICP and each ICP to the closest CRC site). Our results 
show an improvement of almost 10% over the nonlinear 
MIP model. At the additional $200 cost of opening one more 
ICP, our MIP model yielded both inventory and 
transportation cost savings at the combined amount of 
$20,745 over the nonlinear MIP model. This discrepancy can 
be explained by the fact that the MIP model is solved for the 
exact optimal solution, while the nonlinear MIP model is 
solved by an approximate algorithm for a local optimum. 
Due to such a significant cost-saving opportunity made 
possible by the proposed model, this model can encourage 
companies to better exploit reverse logistics situations with 
more complexity and on a greater scale. 
 
Looking at the breakdown of the different costs, the linear 
model managed to minimize the total cost by lowering the 
total annual cost of renting ICPs through renting fewer of 
them, lowering the total inventory costs, and lowering the 

total transportation costs. The total annual reverse logistics 
costs showed an improvement of almost 10%. To check the 
ability of the proposed linearized model to solve large 
problems and to find a relationship between the optimal 
collection period T and the parameters of the model, we 
broadened the scope of the work by increasing the 
geographical service area to 100 by 100 miles. We then 
tested the model on three different problem sizes with 50, 
100 and 150 customers. For each customer group size we 
ran ten replications, where the geographical locations of 
the customers, ICPs and centralized return centres were 
randomly generated every time. The daily return rates for 
the customers were also randomly generated within a 
range [0, 20]. The number of ICPs and CRCs remained 
unchanged at ten and five, respectively. 
 
Starting with 50 customers, the results summarized in Table 
5 show that the optimal collection period T obtained was 
four days in one instance, three days in eight instances, and 
two days in one instance. Next, for each replication, we 
added 50 customers to the existing data and re-ran the 
model. We did this one more time by adding another 50 
customers to each replication. We noticed that by increasing 
the number of customers from 50 to 100, and then to 150, the 
optimal collection period stays as it is, or moves to a lower 
value in a similar fashion (see columns of Table 5).  
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Number of Customers Optimal Collection Period T (days)
50 4 3 3 3 3 3 3 3 3 2 

100 2 2 2 2 2 2 2 2 2 2 
150 2 1 1 1 1 1 1 1 1 1 

 

Table 5. Behaviour of T as the number of customers increases 
 
As the number of customers is increased the daily return 
rate also increases, and therefore the volume of products 
returned from the ICPs to the CRCs increases. This means 
that the full effect of the economies of scale operates right 
from the beginning. On the other hand, computational 
results indicate that the optimal collection period increases 
as the daily return rate decreases and/or the breakpoints 
for freight (shipping) discount increase (P1 and P2). 
 
4. Concluding Remarks 
 
Despite being a common occurrence, product returns 
should not be viewed as a bitter pill to swallow but as a 
company’s core ‘value-adding’ activity in terms of their 
profit potential. With this in mind, we developed a new 
mathematical model that can help companies to minimize 
the waste of returned products while reducing the costs of 
collecting, consolidating, and trans-shipping returned 
products. Furthermore, to demonstrate the robustness of 
the proposed model, we conducted a series of sensitivity 
analyses according to varying product volumes and 
collection periods. Furthermore, to increase the chance of 
actual industrial applications, we succeeded in 
transforming the complex non-linear form of the model 
into a simpler linear form. This linearization allowed us to 
optimally solve a large reverse logistics network problem 
that has not been solved efficiently by existing models and 
approximation solution procedures. In particular, to better 
reflect reality, the proposed model was designed to 
consider both capacity restrictions and service 
requirements, while taking into account different types of 
costs including facility establishment/maintenance costs, 
inventory carrying costs, handling costs, and shipping 
costs with potential freight discount opportunities. 
 
To elaborate, this paper makes both practical and 
theoretical contributions to the closed-loop supply chain 
literature. Given the growing tendency of customers to 
return products due to more lenient return policies and 
more frequent online purchases, the handling of product 
returns has become more challenging than ever before. 
Thus, the proposed model was designed to cope with the 
various challenges of product returns. In particular, the 
model can be applied to practical reverse logistics 
problems involving the returns of various consumer 
products including apparel, home appliances, mobile 
devices, copiers, compact discs, and computer 
peripherals. From a theoretical standpoint, the proposed 
model was proven to be efficient in determining a 
functional relationship between the product return rate 

and the optimal collection period. It also helps to find the 
minimum cost solution for typical reverse logistics 
situations where multiple customers return their 
products to multiple ICPs during different periods and 
then these returned products are trans-shipped to 
multiple CRCs. Herein, multiple customers were divided 
into clusters where each cluster was within the market 
segment (territory) covered by a single ICP. In addition, 
the linearization of the model eased computational 
complexity and thus enabled us to find the optimal 
solution for larger customer bases, while handling the 
problem with broader geographical service areas and 
varying shipping volumes between the ICP and the CRC, 
and predicting where and when the optimal solution 
would occur.  
 
Future research is proposed to deal with both 
deterministic and probabilistic models and to be able to 
provide solution algorithms to both cases. In addition, 
further sensitivity analysis will be required to handle 
bigger geographical areas and a larger number of 
customers, ICPs and centralized return centres. To handle 
these and other challenges related to inventory and 
transportation costs, an attempt to collect real data is 
underway to test the validity of the model proposed. 
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