AIMS Mathematics, 4(1): 1-11.
ATIMS Mathematics DOI:10.3934/Math.2019.1.1
% : Received: 24 September 2018
o Accepted: 09 December 2018
http://www.aimspress.com/journal/Math Published: 18 December 2018

Research article

A note on the Euler-Voigt system in a 3D bounded domain: Propagation of
singularities and absence of the boundary layer

Luigi C. Berselli'-*and Davide Catania’

! Dipartimento di Matematica, Universita di Pisa, Pisa, 156127, Italy
2 Sezione Matematica (DICATAM), Universita degli Studi di Brescia, Brescia, 125133, Italy

* Correspondence: Email: luigi.carlo.berselli@unipi.it; Tel: +390502213846.
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1. Introduction

The aim of this short paper is to understand at which extent the incompressible equations can be
considered as a significant approximation of the 3D Euler equations. The role of this approximation
(and related viscous ones) has been extensively studied in the space periodic case by Cao, Lunasin
and Titi [13], Larios [19], Larios and Titi [20, 21]. Here, we consider a problem which contains
the additional technical difficulties of the boundary and which is physically relevant. To this end we
consider, for @ > 0, the following Euler—Voigt system of partial differential equations:

I-a*Aou+@w-VYu+Vp=0  in[-T,T]xQ, (1.1)
Viu=0 in[-T,T]xQ, (1.2)

in the bounded domain Q c R?, with smooth boundary I, where the vector field u : Q — R? is the
velocity, while the scalar p : Q — R is the pressure. We recall that @ > 0 is a parameter having the
dimensions of a length and, when the system is used in Large Eddy Simulations, it can be related to the
smallest resolved scale, see [9]. (We recall also the recent result in a bounded domain from Busuioc,
Iftimie, Lopes Filho, and Nussenzveig Lopes [12] for the different —but related— a-Euler system.)
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To model the motion of a turbulent flow in a bounded domain, we investigate here about this system
in presence of suitable boundary conditions. The main point is that we want to understand whether
it is possible to supplement the Euler—Voigt equations with boundary conditions in such a way to
have uniqueness of weak solutions (for arbitrary positive and negative times) and — even with more
relevance — consistency with the solution of the incompressible Euler equations starting with the same
data, that is with the smooth solutions to

ouf + Wt -VHyuF +vpF =0 in[-T,T1xQ,
V-uf =0 in[-T,T] x Q.

We recall that the Euler equations are naturally supplemented with the (slip) impenetrability condition
u®* n=0 on[-T,TIxT,

where n is the external unit normal to the boundary, and consequently it is natural to supplement also
the Euler—Voigt equations (1.1) with the same impenetrability boundary condition. In the case of the
Euler—Voigt (which is not a first order system of partial differential equations) one single condition is
not enough to determine uniquely the solution «.

The issue of the boundary conditions to be used to supplement the Euler—Voigt equations has been
raised especially in Larios [19], with many intuitions and investigations on related equations, but
without a simple and definitive answer.

Here, we investigate from the analytical point of view a reasonable set of boundary conditions which
makes the equations well-posed, showing three main results: a unique weak solution exists globally
in time; there is not an increase or decrease in the available regularity; the solution u converges, as
a — 0, to the smooth solution u of the 3D Euler equations (in its interval of existence). To give a
further support to our investigations we also recall that the equations have been introduced and studied
in [13,19-21] in the context of Large Eddy Simulations and turbulence models, showing that they have
good stability and approximation properties, in the space-periodic case, even if Voigt models are much
older and known in the theory of visco-elastic fluids, see Oskolkov [25]. One very relevant feature,
which is important to interpret Voigt models as tools for turbulent flows, is that the Voigt regularization
is very stable and appealing from both the numerical and theoretical point of view, see for instance the
recent computations in Larios, Wingate, Petersen, and Titi [22], where the model is used to investigate
the finite-time blow up of the 3D Euler equations.

The relevance of the Voigt model is specially emphasized also in the context of viscous problems,
that is when considering the so called Navier—Stokes—Voigt equations

I-a?ANou—-vAu+@w-VYu+Vp=0  in[-T,T]xQ,

with a viscosity v > 0. These latter equations represent a viscous approximation which can be treated
also in presence of boundaries, still with the Dirichlet conditions. Later, the structural stability and
sharp convergence results as both @, v — 0 have been proved in [8] in the space-periodic setting. See
also the connections with the Bardina model and with the work in Layton and Lewandowski [24].

The full system that we propose here as a “reasonable” boundary-initial-value-problem is given by
the 3D equations supplemented with Navier (slip-with-friction) boundary conditions:

I-a?*N)ou+@w-Vyu+Vp=0 [-T,T]xQ, (1.3)
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V-u=0 [-T,T] x Q, (1.4)
u-n=0 [-T,T]xT, (1.5)
[(m-V)u+Buly, =0 [-T,T]xT, (1.6)
u(0,-) = uy, Q, (L.7)

where f > 0 is a parameter representing possible friction forces at the boundary, the subscript “tan”
denotes the tangential component to the boundary. The boundary condition (1.6) means that [(n-V)u +
Bu]l-T =0onT, for every vector T tangential to the boundary I'. We assume that u satisfies (1.4)—(1.6)
(considered at time # = 0). These boundary conditions have been introduced for the Navier—Stokes
equations by Navier himself, and they are widely used in turbulence modeling, see [10, 15,17,23,26].
Since the Euler—Voigt system can be considered a special large scale method for the simulation of
turbulent flows, adopting the Navier condition seems particularly sound.

The presence of the sets of boundary conditions is justified by the order of the partial differential
equation (1.3), which in the case with viscosity can be considered as a pseudo-parabolic system [14,
Ch. 3], even if in our case it is something which can be classified as pseudo-hyperbolic. Actually, when
considering the Navier boundary conditions, the boundary condition (1.6) is generally replaced by

[2Du - n+ Bul., =0, (1.8)

where Du denotes the deformation tensor field, of components D;; = (0;u; + 0;u;)/2. We will present
our results assuming the condition (1.6), but we will show the little modifications needed to apply the
same arguments when (1.8) holds.

We also observe that taking a partial derivative with respect to time, we deduce that the boundary
conditions (1.5)—(1.6) and (1.8) also hold for d,u, and clearly we have as well V- 9,u = 0 on the whole
space-time.

The Navier boundary conditions recently attracted interest also for their analytical properties, see
for instance the work in [1-4, 27]. The role of the Navier boundary conditions in singular limits is
studied in [5, 6, 18,30, 31] and further information can also be found in the review paper [7].

We will use the standard Sobolev spaces W*P(Q) and H*(Q) = W*?(Q) and, in order to properly
define the notion of weak solution and to state our results, we introduce the following function spaces
(which are typical of the Navier—Stokes equations with Navier condition, see Beirdo da Veiga [2])

H:={pecl?’(Q)’:V-¢=0inQ, ¢-n=00nT},
V::{¢€H1(Q)3:V-go:OinQ,go-n:OonF},

and denote by V' the topological dual space to V. We denote by || .|| the L?(Q)-norm and by ||. || the
L*(I") one, while ||. ||y coincides with the Hé (Q)-norm. We define a regular weak solution as follows:

Definition 1.1. We say thatu: [-T,T] x Q — R? is a regular weak solution of (1.3)—(1.7) in the time
interval [-T,T] ifu € €'([-T,T1; V) is such that

f |0a() - @ + *0,Vu(t) : Vo + () - V)u(®) - | dx + B o’ f@,u c@dS =0,
Q r

for every t € [-T,T] and for every ¢ € V, and if the initial condition (1.7), with uy € V, holds in
classical sense.
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Notice that if A, B are second order tensors, we set A : B := 3, i A;;B;;.

Remark 1.2. When the boundary condition (1.6) is replaced by (1.8), the weak formulation becomes

f |0u() - @ + 2070, Du(t) : Voo + () - Vu(r) - o] dx + B o’ f du-pdS =0,
Q r
since 2div Du = Au, thankstoV -u = 0.
In both cases, the weak formulation is formally obtained by testing the equation (1.3) against ¢,
integrating by parts, and using the properties described in Lemma 2.1 below.

We have the following two results, which are the counterpart of those proved in the periodic setting
in [13].

Theorem 1.3 (Short-time existence and uniqueness). If uy € V, then there exists a time
T = T*(lluglly) > O such that the problem (1.3)—(1.7) admits a unique regular weak solution in the
time interval [T, T*].

This result is proved by a contraction principle and this explains the small time-interval in the
statement. On the other hand, by a continuation principle it turns out that the interval of existence is
infinite and the following result holds true.

Theorem 1.4 (Long-time existence). If uy € V then, for any fixed T > 0, there exists a unique regular
weak solution of the problem (1.3)—(1.7) in the time interval [-T,T].

By uniqueness, we obtain a unique solution defined on the whole real line. Moreover, the energy (of
the model) identity

2 2 2 2 2 2 2 2 2 2
leOI” + &~ IIVu@)|” + Ballu@llr = lluoll” + & lIVuoll™ + B a”lluollr,

holds for every t € 1—o00, ool.

In addition, if the data are more regular, also the solution is more regular. Contrary to parabolic
problems, there is not an instantaneous gain in regularity. For instance, the solution will not belong to
H*(Q), for t # 0. On the other hand, an extra assumption about the summability of u (for a critical
exponent) reflects in a gain of regularity for u itself or, more precisely, for u — u.

Theorem 1.5 (Extra regularity). Assume that uy € V N W>*3(Q)? is such that [(n- V) ug + Sug)an = 0
and denote by u the unique regular weak solution of (1.3)—(1.7) in the time interval [-T,T]. If we
define v := u — uy, then we have v € €°([-T,T]; V N HX(Q)%).

Further comments on the regularity are also stated in Section 2.3.

The last (and probably the most important) result is that of convergence toward solutions to the
Euler equations. Assume now, in addition, that uy € V N H3*(Q)? and denote (for 0 < T <T) by
ub € €°(-T,T; HNH Q) N € ([-T, T1; H N HX(Q)?) the unique solution (see Bourguignon and
Brezis [11], and Temam [28]) of the incompressible Euler system with initial datum u:

out +W® - VHuF+vpE =0 [-T,TI1xQ, (1.9)
V-ub =0 [-T,T]xQ, (1.10)
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ut -n=0 [-T,T]xT, (1.11)
ut0,-) = u, Q. (1.12)

Recall that a lower bound on T can be obtained in terms of ||uo|l3. Denote then by u® the solution
of (1.3)—(1.7) (whose existence and uniqueness come from Theorem 1.4) corresponding to the same
uo with a given @ > 0. The following theorem shows the absence of the first boundary layer.

Theorem 1.6 (Absence of the first boundary layer). Let uy € V N H*(Q)?, and let u® and u®, with
u® € €"([-T,T1; V) andu® € €°([-T,T1; HNH(Q)*) N € ([-T,T1; HNHA(Q)?), denote the unique
solutions of the systems (1.3)—(1.7) and (1.9)—(1.12), respectively.

Then, it holds

lim lu® — u®||l 02 =0,
where ||||l4o12 denotes the standard norm of the space €° ([—7, TI; LZ(Q)3).
2. Existence and regularity

In this section, we prove the basic existence and regularity results, while the study of the limit @ — 0
is postponed to the last section.

Before going on, we recall some useful identities which are used in this section and in the following,
cf. [2,29]. The subsequent lemma holds for any vector field u, v, w and any scalar field p satisfying the
stated hypotheses (in particular, we do not require that (u, p) is a solution of the Euler—Voigt or Euler
system).

Lemma 2.1. (a) Letu,v,w €V, then

f(u-V)v-wdx:—f(u-V)w-v dx,
Q Q

and in particular

f(u-V)v-vdx:O.
Q

Moreover, if p € H'(Q) andu € V, then fQ Vp-udx =0.
(b) Ifu,v € VN H*(Q)® are such that [(n - V)u + fuly,, = 0 on T, where B € R, then

fAu~vdx:—,8fu-vdS—fVu:Vvdx. 2.1
Q r Q

Remark 2.2. Formula (2.1) still holds when the boundary condition (1.6) is replaced by (1.8).

2.1. Short-time existence and uniqueness

We introduce the orthogonal Leray projector P: L*(Q)* — H and project the bilinear term
obtaining, as usual, P[(u - V) u] (see [16,29]). The equation (1.3) can be rewritten as

(I- a*PA)du = —P[(u-V)ul,
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Oor even as
du = —I—-a*PA)'Pl(u-V)u]l, (2.2)

which turns out to be a differential equation in the Banach space V.

The basic existence and regularity results for the steady Stokes problem with Navier conditions can
be found in [2,4,27], showing for instance (and this is enough for our purposes) the H 2—regularity and
the characterization of the domain of A = —PA as made by divergence-free functions in H>(Q)*, which
satisfy (1.5)—(1.6).

Proof of Theorem 1.3. In order to show existence of weak solutions, we can formulate the problem as
follows: find u € €' ([-T, T]; V) such that

f(I—a/ZA)u(t)-tpdxzf(l—azA)uo-gadx—f f[(u(r)-V)u(T)]-godxdT,
Q Q 0 Q

for every ¢ € V. Existence and uniqueness can be proved by a fixed point argument as done in [13] for
the space periodic case. In particular, it is sufficient to show that the right-hand side of (2.2) is locally
Lipschitz in the Hilbert space V. To this end let u;,u, € V and setu := u; — u,. We have

(L= @?PA)' Pl(u - V) uy] = (1= @* PAY Pl(uz - V) us]lly
< Cli(wy - Vyuy = (uz - Vyuslly: = Cllu - V)uy + (uz - Vyully
<C sup (@ Vyui+ @ V)u, o)

peVillelly=1

<C sup |((u V), uy) + ((u2- V) e, u)|

peVlielly=1
< Clll [y + lleezlly)lley = ully,

by the H? regularity of the Stokes operator, Lemma 2.1, the Holder (L*-L2-L*) inequality and the 3D
Gagliardo—Nirenberg inequality |lu|;+ < C|lu||y. In particular, we used the regularity result from [2,
Thm. 1.1], applied to the system where to the second order differential operator —a’A is added a
zeroth order term. The L?-theory for the operator u — oA, with the divergence constraint and with
Navier conditions, is the same as that considered in the reference [2], but with the simplification of the
uniqueness in any smooth and bounded domain, due to the presence of the zeroth order term which
forces the kernel to vanish, since the rigid motions are not allowed.

In order to prove the locally Lipschitz regularity, we may assume |ju,||y + |uzlly < C, so the

conclusion easily follows as in the cited references. Then, one can find a 7* > 0 small enough such
that the mapping v — u defined by

u(t) = ug — f (I - &*PA)'P[(v(7) - V) v(7)] dr fort e (-T*,T"),
0

is a strict contraction. This gives immediately existence and uniqueness. m|

We observe that for a function in V, the boundary condition (1.6) is not well-defined. On the other
hand, our solution satisfies this in a proper weak sense, which is hidden in the weak formulation from
Definition 1.1. The problems are exactly the same arising in the study of the Stokes problem with
the same conditions, see discussion in [2]. Anyway, with the same machinery it is easy to show that
if uy € VN H*(Q)? satisfies the boundary condition (1.6), then the unique weak solution belongs to
H?*(Q)? for all times, and the boundary condition is satisfied in the usual trace sense.
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2.2. Long-time existence

By using standard continuation arguments, one can show that the solution exists globally. To this
end it is sufficient to show that ||u||,, remains finite on the maximal time interval of existence. This
can be easily obtained by an energy-type estimate. We test the equation (1.3) against u, and this is
completely justified as a duality pairing in V’. Hence, once we have a weak solution as in the previous
theorem, we can perform calculations which are not formal, but completely justified.

Proof of Theorem 1.4. We test the equation (1.3) against u; by using the identities provided by

Lemma 2.1, we obtain the equality

d
= (Il + *ValP + po?ullt) = 0,

and hence, integrating over [0, ¢] ] — T, T*[ (or [z, 0]), we get
lu®I + & IIVu@)I* + B lu@®lif = lluoll® + a||Vuol* + B o lluoll;: .

Since in (1.1) the friction term satisfies 8 > 0, this estimate proves that ||u(?)||,;, remains bounded in any
interval [T, T], only in terms of |[u||y. O

2.3. Further regularity

In this section we discuss the possible propagation of singularities for the equations. First, we recall
that if we setv := u — ug, thenv € €' ([-T,T]; V), 0,v = du, and v(0) = 0.

Proof of Theorem 1.5. We can write the equation satisfied by v as follows
(I-a?A) oy +Vp=—@+uy) -V +up).
Projecting on H through P, we deduce
A+ a?A) 8y = —P[(v + up) - V(v + up)] . (2.3)

We test against Av = —PAv. Note that this test is formal since, concerning the spatial regularity, we
have that both the terms of the equation and the test functions belong to H™'(Q)?.

Since P is self-adjoint and commutes with time-differentiation, we obtain (see the case (b) in
Lemma 2.1) the following identities

1d
~(@w. PAV) = = (PO, Av) = ~(0v, &v) = S (V1P + BIWIE) ; (2.4)
2
d
X (PAdv, PAY) =a(,PAv, PAV) = %EHPMHZ. 2.5)

Hence, we deduce

1d
535 (VI + PIPAVIE + BIvIIE) <

fP[(v +ugy) - Vv +ug)] - PAv
Q

<N+ uo) - Vv + )| [|PAV] .
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We need to estimate four terms. We will resort to the 3D Sobolev embeddings
W243(Q) s WH25(Q) s L12(Q)
and the 3D Gagliardo—Nirenberg inequality
Wil < CIvIP S lAvlPS .

By exploiting the regularity of v, especially that v € L*(V), and the equivalence between the norms
|[PA -|| and ||A - || for functions belonging to the domain of the operator A, see [2], we have

I - V) wIHIPAYI <IWILIVVILIPAV]L < CIIVYIP2|Av] 2| PAV]|

C 2
<ClPAYIP < = + S 1PaviP;
a 4

v - V) uol[ [IPAV|| <|WllLil[VaollLis||PAV]|
3/8 5/8
<CIWIP*||AVIP"® llsol w5 | PAY|
<Cllugllwzss |PAV]|®

2
16/3 (04 2
S(1,26/3 ||u0||W2,4/3 + Z”PAV” ;

1o - V) IIPAYI <lluollLslVvliLsIPAYI < ClIVuoll [[VvI[ %[ PAVI

C a?
S—6||V140||4 + —|IPAV|*;
104 4

a,2

c 4 2
1o - V) ol IPAVI] <[lolly 2 [IVarollvzss |PAVI] < 5 ltollyass + Z-IPAVIF.
Collecting these estimates and setting

X(0) =Vl + IIPAVIP + BIVIE,

C 1 4 4 C 16/3
= (J + JIIVuoll + |leeollyy2as + Wlluollwz,4/3 )

we obtain X’(f) < X(r) + M. Integrating over [0, t] (with ¢ possibly negative), we deduce X(¢) < M e?,
which shows thatv € L™ (—T, T;vn HZ(Q)3). Here, we are exploiting again the equivalence between
the norms [|PA-|| and ||A-]|.

Now, testing (formally) the equation (2.3) against A 9,y = —PAd,v and using the improved regularity
of v, which implies that v € L*(=T, T; W>*3(Q)), we get (see (2.4)—(2.5))

VoI + @ IPAGYIE + BlIOVIE <

fP[(v +ug) - V(v + uy)] - PAOy
Q
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<IN +uo) - V¥ + u)l| [|PAOw|| < v + wollLelIV(V + uo)llp s | PAGy]|
<Cv + ully245 IPAGYI < C(1 + lluollwesr) |PAG|
C o?
<= (1 + llugllwzs)* + —[IPAGI .
a 2
Exploiting again the equivalence between ||PA:|| and ||A-||, and the previous estimate, we obtain d,v €
L>® (—T, T:V N HZ(Q)3). In particular, we have both v, d,v € L2 (—T, T:VnN HZ(Q)3); by interpolation,
we conclude that v € €° (—T, T:VnN HZ(Q)3). O
This result shows that, even if the regularity does not increase in terms of number of generalized
derivatives, there is an increase in the summability exponent, from 4/3 up to 2. This is due to the fact

that the regularization changes the nature of the equations, which are not anymore purely hyperbolic,
with the Laplacian term acting on the time derivative.

3. Absence of the first boundary layer

In this section we prove the main result of the paper, namely the convergence Theorem 1.6. The
theorem itself is now an easy consequence of the previous theorems, but it gives the main justification
for the use of the equations as a computational tool.

Proof. We set u := u® — u® and write the equation satisfied by u:
o + a?0,Au® + V(p* - p) =@ - Vyu® — " - V)u®
=—@-V)u" - @ - Vyu.
We notice that u satisfies (1.4) and (1.5), and test the previous equation against #. Such a test is

allowed, since u € €'([-T,T]; V) and all terms in the equation live at least in ‘50([—7, TI; V).
We obtain (see the case (b) in Lemma 2.1)

1d

P (lell® + ?1IVull + B llullf) = = (- V) u®, w) + o® (8,Vu", Vu) +Ba? (9", u)_
<IVa el + o116, Va®| [[Val| + B o |0 | lully
<C (llull* + @?IVul’ + B a’llullt) + C(1 + B,

which can be recast as U’() < KU(t) + Ba?, where K :=2C > 0, B := 2C(1 +8) > 0 and

U® = @) + PIVu@)l® + B lu@llf,  UO) =0,

(since uf(0) = u*0) = uo). Integrating (or using the Gronwall inequality), we deduce
U(t) < a®?BK'eX" < o?BK~'eXT. Letting @ — 0 and recalling the definition of U(t), we finally get
the claim. m|

4. Conclusions

We showed in a simple and elementary way that the Euler—Voigt system, for which there exists a
unique global solution, even with initial datum in V, can be considered as a reasonable approximation
of the Euler system. This holds because solutions of the former converge to solutions of the latter as
the parameter @ — 0, even in presence of boundaries.
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