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Background
A well-planned experiment allows the collection of relevant 
data while minimising unwanted or unexplained variation. 
Variation will always exist in complex biological systems, as 
will a degree of variation introduced by technical issues asso-
ciated with the method of data collection. With the use of 
new technologies, cost can also be a limiting factor in the 
scale of an experiment, which can lead to underpowered indi-
vidual studies. The acknowledgement that no study will be 
ideal does not mean that the data contained within small 
studies are without value. Issues of reproducibility between 
studies have been raised in many fields of science, including 
neuroscience.1 As such, methods to combine the data from 
multiple studies - meta-analysis - provide a critical way of 
providing a scientific consensus. Meta-analysis is widely used 
in clinical medicine and forms one of the cornerstones of 
modern evidence-based medicine, on which clinical guidance 
and policy decisions are based. Building upon the pioneering 
work of epidemiologist Archie Cochrane, the Cochrane 
Collaboration is a good example of where routine meta- 
analysis is used to provide and update guidance for a range of 
potential medical interventions.2,3

Preclinical medical sciences and fundamental biological 
research have been slower to embrace meta-analysis. In some 
fields, the type of experimental techniques may vary too much 
for direct comparison. Moreover, data are typically not  
deposited on publication, making further analysis challeng-
ing. However, one field where data deposition is common-
place is in transcriptomic studies.4 Transcriptomics poses a 
number of challenging statistical issues – in particular, the 

high false-positive rates that arise due to the simultaneous 
assessment of changes in very large numbers of transcripts. 
Conversely, when stringent methods are used to account for 
false positives, transcripts that are really changing may be 
excluded (false negatives).5 Transcriptomic meta-analysis 
provides a valuable future avenue for addressing these 
problems.

Vote Counting and Beyond
The simplest way to look for consistent changes in gene expres-
sion across multiple transcriptomic studies is look for common 
transcripts among genes identified in each study. This is typi-
cally represented by the ubiquitous Venn diagram, showing 
overlap between studies (Figure 1). However, not all studies are 
equal. Some may contain larger sample sizes or less biological 
noise. As a result, any candidate gene list will contain false pos-
itives and will be missing false negatives that do not reach the 
chosen significance level for inclusion. As a result, similar to 
many other areas of modern life, vote counting alone may not 
always lead to the best-informed decisions.

By contrast with simple vote counting, meta-analysis 
involves applying a weighting to each study to account for fac-
tors such as sample size and biological variation. For a tran-
scriptomic study, a simple approach to this is the use of inverse 
variance weighting, whereby increasing confidence is given to 
studies with lower variation. This provides a simple metric by 
which an effect size can be determined for each transcript 
across each study. Studies can then be compared to give a com-
bined effect size.
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Enrichment of Transcripts in the Suprachiasmatic 
Nuclei
We have recently applied transcriptomic meta-analysis to 
identify genes involved in circadian rhythms.6 Circadian 
rhythms are ~24-hour changes in physiology and behaviour 
that are found in virtually all organisms. The disruption of such 
rhythmicity has been associated with a wide range of disorders, 
ranging from changes in metabolism, cardiovascular function, 
mental health, and even cancer.7 In mammals, the primary cir-
cadian pacemaker is located in the suprachiasmatic nuclei 
(SCN), a paired structure of 20 000 neurons in the hypothala-
mus.8 The SCN receives light input via the retinohypothalamic 
tract, enabling endogenous biological time to be set by the 
external light/dark cycle.9 Circadian rhythms are generated by 
an intracellular transcriptional-translational feedback loop 
comprising a number of so-called ‘clock genes’.10 As many of 
these genes show 24-hour variations in expression, a number of 
studies have investigated cycling transcripts in the SCN as well 
as peripheral tissues, to identify genes important for circadian 
function.11–13 However, the overlap between transcripts identi-
fied as rhythmic in different studies is often limited. For exam-
ple, in the SCN, 2 studies identified 101 and 337 rhythmic 
genes, respectively.11,13 Of these, only 23 were common to 
both.14 A similar picture emerged in Drosophila microarray 
studies. To address this issue, Keegan et al15 used transcrip-
tomic meta-analysis to reduce the false discovery rate (FDR), 
identifying 81 previously identified cycling transcripts, as well 
as 133 transcripts that were not reported in any of the previous 
studies.

Not all genes important for circadian physiology are 
expected to be rhythmic, and many may play key roles in post-
transcriptional or post-translational circadian mechanisms. 
Furthermore, other genes may be involved in the development 
or intercellular communication within the SCN. Can we there-
fore identify genes important for circadian function via their 
selective enrichment in the SCN? This question led to our 
recent meta-analysis, based on 79 microarray and 17 RNA-Seq 
data sets. Our data showed enrichment of many genes known 

to play roles in the generation of circadian rhythms16,17 and 
previously identified markers18,19 but also a host of other tran-
scripts with little or no known role in circadian biology. The 
limitations of such an approach must also be acknowledged. 
We used data from tissue from different mouse strains col-
lected at different times across the circadian cycle. Although 
this may be expected to increase variance in both SCN and 
whole brain samples, the increased sample size still identified 
426 transcripts with a combined effect size of >3 and an FDR-
corrected P value of <.01. Such robust changes are rarely 
detected in individual transcriptomic studies.

Confidence in Your Candidate: Tackling the 
Ignorome
The process of identifying candidate genes or transcripts that 
play important roles in biological processes or disease is central 
to modern biomedical research. In broad terms, 2 approaches 
have been applied to address this issue. Forward genetics, based 
on identifying interesting phenotypes and determining the 
causative gene(s), has played a critical role in many areas of 
research. However, over the past 2 decades, reverse genetics, 
moving from a gene of interest to associated phenotypes, has 
become much more common, primarily due to the remarkable 
genomic resources now available.

Transcriptomic studies provide a way of identifying poten-
tial candidate genes for subsequent study in relation to a par-
ticular biological process. However, following up a candidate 
gene can take months or often even years. As such, the risks of 
pursuing the wrong candidate have major time and financial 
considerations and can be especially damaging to the career of 
the individual researcher who is tasked with such a project. 
This raises a transcriptomics dilemma: how can we be sure it is 
worthwhile following up a specific candidate gene?

A major problem in selecting a candidate for further study 
is that for many genes, little is known about their function. As 
a result, researchers tend to focus on genes which have already 
been well-characterised. This is well illustrated by the power-
law relationship in biomedical publication and funding, show-
ing that researchers favour the study of relatively few genes.20 
This is further emphasised by neuroscience studies showing 
that the top 5% of genes account for a remarkable 70% of the 
research literature. By contrast, around 20% of genes have 
effectively no neuroscientific literature. Such genes for which 
we lack any detailed biological understanding have been col-
lectively termed the ‘ignorome’.21 The use of transcriptomic 
meta-analysis provides increasing confidence that changes in a 
candidate gene are real and justify further study. This in turn 
should encourage more research on the uncharted regions of 
the genome.

The Future: Wide Open Data?
The number of scientific papers published each year featuring 
transcriptomic data has been rising steadily (Figure 2), as well 

Figure 1.  Possible approaches to meta-analysis; bringing together data 

from 3 different transcriptomic studies. An example of vote counting, 

where although the coverage of transcripts in more modern studies has 

improved, any agreement will be limited by those transcripts also present 

in earliest or lower-powered studies (left panel). Bringing together the 

effect sizes found in each study, placing greater confidence in those 

studies with lower variation (right panel).
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as the volume of data related to these publications (quadrillions 
of bases and counting).22,23 As a result, if a question can be 
addressed now using available public data, it may be possible to 
get a better answer next year, or even next month. Automated 
periodic checks for new data may also allow refinements or 
additional questions to be asked of the data, in the form of sub-
group analysis.

It should also be the case that the methods of analysis are 
clear but not immutable, with incremental refinements being 
made over time. To aid transparency, we published our full 
analysis as interactive notebooks, to allow others to follow our 
methods. We may have even made some errors but feel it is far 
better to be open about this possibility than to hide our analysis 
from the research community. Others are taking this approach 
further with innovations such as the Jupyter project (https://
jupyter.org/) and Binder (https://mybinder.org/)24 allowing for 
full analyses to be re-run in a Web browser. Reproducible 
research and open science are rightly being demanded by fund-
ing bodies and research communities alike.25 Luckily, the tools 
to facilitate these processes are improving rapidly.

Finally, it is worth stressing that transcriptomic meta-anal-
ysis is only possible because of the requirement for data deposi-
tion on acceptance of a paper for publication, along with 
minimal meta-data about the experimental design4 (although 
the more methodological detail the better).23 By contrast, 
widespread deposition of data in other fields does not always 
occur and is the first hurdle to overcome before meta-analysis 
becomes possible in other research areas. As well as improving 
candidate gene selection in transcriptomic studies, more 

broadly, meta-analysis provides an ideal way of improving the 
reproducibility and transparency of neuroscience research.
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Figure 2.  The increasing prevalence of meta-analyses and 

transcriptomic data in the scientific literature: even when controlling for a 

general increase in the volume of scientific literature, in the past 30 years, 

the number of scientific publications mentioning ‘meta-analysis’ each 

year is increasing. More recently, there has been an increasing 

proportion of publications that contain the terms ‘microarray’, ‘RNA-Seq’, 

or ‘transcriptomics’. However, transcriptomic data are the focus of less 

than 2% of the publications involving meta-analysis in any given year.
Terms searched using https://www.ncbi.nlm.nih.gov/pubmed, on January 2, 2018 
and taken as percentages of all publications in the database for said year.
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