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Abstract: The dynamic response of an elastic pounding oscillator subjected to harmonic excitation is investigated with dimensional analysis.
To model the pounding process, a linear viscoelastic model is used to simulate the contact force. Through dimensional analysis, the peak struc-
tural response parameters of the pounding oscillator, including structural displacement, velocity, and penetration displacement, are character-
izedbya set of dimensionless terms (denotedby theBuckinghamnotationP). The reducedP-set explicitly describes the interaction between the
oscillator and the rigid barrier. Analytical solutions to dimensionless contact time, displacement, and velocity response are derived in this study
and are further verified against the numerical simulation. The effect of pounding on the oscillator’s response is illustrated using three well-
divided spectral regions (i.e., amplified, deamplified, and unaffected regions), which are defined based on the dimensionless system frequency
parameterPv. Parametric studies show that the penetration displacement for different levels of contact stiffness is insensitive to the dimensionless
gap size Pd but is affected significantly by changes in the coefficient of restitution Pr.DOI: 10.1061/(ASCE)EM.1943-7889.0000858. © 2014
American Society of Civil Engineers.
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Introduction

Numerous investigators have reported that pounding between ad-
jacent structures is one of the main reasons for structural damage
during earthquakes (Anagnostopoulos 1995, 1996; Jeng and Tzeng
2000). For example, over 15% of the 330 collapsed or severely
damaged structures in the 1985Mexico City earthquake were caused
by pounding (Rosenblueth and Meli 1986). During the 1989 Loma
Prieta earthquake, over 200 pounding instances were observed in-
volving more than 500 buildings (Kasai and Maison 1997). During
the 1995 Kobe earthquake, many buildings were severely damaged
because of the pounding interaction between adjacent structures
(Comartin et al. 1995). And during the 2008 Wenchuan earthquake,
pounding-related damage also was observed between many adjacent
structures (Li et al. 2008).

In general, two different approaches are used to simulate col-
lision between adjacent buildings. The first is based on the impact
laws of mechanics, with a coefficient of restitution (Papadrakakis
et al. 1991; Athanassiadou et al. 1994; Malhotra 1998; DesRoches
and Muthukumar 2002). Davis (1992) derived the closed-form so-
lution to impact velocity for a single oscillator interacting with a rigid
barrier. The work of Davis was extended by Chau and Wei (2001),
who investigated pounding between two single-degree-of-freedom
(SDOF) oscillators. The analytical solutions obtained in these two
efforts were both based on the stereomechanical approach. However,
if the duration of impact is long enough, this approach is no longer

valid because it does not consider transient stresses and defor-
mations in the impacting bodies (Jankowski 2005; Muthukumar
and DesRoches 2006).

The second approach directly models the pounding force by a
contact-element method. This approach is a force-based approach
that considers the deformation of the colliding bodies and can provide
a better approximation of the real contact physics (Anagnostopoulos
1995). Themost frequently used impact element is a linear viscoelastic
model because of its simplicity and the clearly defined mathematical
relationship between the element’s damping ratio and the coefficient
of restitution (Anagnostopoulos and Spiliopoulos 1992; Jankowski
et al. 1998).

Pounding is a highly nonlinear process involving numerous
material and geometric variables. As such, one of the major chal-
lenges in studying the pounding response is to grapple with the
large and wide variety of parameters that govern the response of
pounding structures, which has resulted in some conflicting con-
clusions in the literature. One of the promising approaches to
dealing with this parametric complexity in the field of earthquake
engineering research is dimensional analysis, which offers a con-
densed presentation of the seismic response and brings forward the
fundamental physical similarities that describe the structural be-
havior. Using dimensional analysis, Makris and Black (2004a, b)
and Makris and Psychogios (2006) revisited the inelastic response
of elastoplastic and bilinear systems under pulse-type excitations;
Zhang and Tang (2009) evaluated the inertial soil-structure in-
teraction effects on linear and bilinear structures subjected to near-
fault ground motions. In addition, Dimitrakopoulos et al. (2009,
2010, 2011) introduced the dimensional analysis approach into the
study of structural pounding for elastic and inelastic oscillators
subjected to distinct pulses based on the impact laws of mechanics
with a coefficient of restitution. Different from Dimitrakopoulos’s
work, the contact-element method is used in this paper, which con-
siders the deformation of colliding bodies and can trace the structural
response during the contact.

In this paper, the pounding response of a single oscillator against
a rigid barrier subjected to harmonic excitations is investigated with
dimensional analysis. To trace the structural response during contact,
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the linear viscoelastic model is adopted. Analytical solutions to
dimensionless contact time, displacement, and velocity, expressed
by the dimensionless P-parameters, are derived in this study, and
numerical simulations are carried out to examine the applicability of
the analytical solution. Parametric studies are conducted to assess
the effects of contact stiffness, gap distance, coefficient of restitu-
tion, and frequency ratio of the oscillator to excitation on the struc-
tural pounding responses.

Mathematical Models

Modeling of Pounding Force

The model of dynamic pounding between a single oscillator and
a rigid barrier at a distance d is shown in Fig. 1. The oscillator
is characterized by mass m, lateral stiffness k, and damping co-
efficient c. The relative displacement of the oscillator to the ground
is X, with the direction toward the barrier defined as positive.
The ground motion is simply treated, and sinusoidal excitation is
used to represent seismic ground motions. The pounding force F
during impact is expressed based on the linear viscoelastic model
(Anagnostopoulos 1988)

F ¼
(
b ×Gþ c × _G G$ 0

0 G, 0
(1)

whereG5 penetration deformation of colliding members (5X2 d);
_G 5 relative velocity (the superimposed dot denotes the derivative
with respect to time t); b 5 impact element’s local stiffness at the
contact point, which is a function of the elastic properties and ge-
ometry of the contact bodies (Goldsmith 1960); and c 5 impact
element’s damping coefficient, which can be obtained from the fol-
lowing equation (Anagnostopoulos 2004):

c ¼ 2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

m ×m2

mþ m2

r
(2)

Because the mass of barrier m2 is assumed to be much greater than
that of the oscillator, i.e.,m=m2 → 0, damping c can be simplified as

c ¼ 2z
ffiffiffiffiffiffiffiffiffiffi
b ×m

p
(3)

where z 5 damping ratio correlated with the coefficient of resti-
tution r, which is defined as (Anagnostopoulos 2004)

z ¼ 2
ln rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ ðln rÞ2
q (4)

The coefficient of restitution expresses the inelasticity of impact. A
value of r5 1 corresponds to the case of a fully elastic collision,
whereas a value of r5 0 corresponds to a fully plastic collision.

The linear viscoelastic model has a shortcoming that results in
negative impact force toward the end of contact. However, this model
has been used widely for the simulation of structural pounding be-
cause of its simplicity and the clearly defined mathematical relation-
ship between the element’s damping ratio and the coefficient of
restitution. According to Jankowski (2005), the linear and non-
linear viscoelastic models have a similar precision in simulating
the pounding-force time histories during impact. Because the sim-
plicity of the linear viscoelastic model is beneficial and convenient
for application of the dimension analysis method, the authors use
the linear viscoelastic model in this study.

Equation of Motion

The equation of motion of a single pounding oscillator of massm can
be written as

m €XðtÞ þ c _XðtÞ þ kXðtÞ þ FðtÞ ¼ 2m€ugðtÞ (5)

or, equivalently, as

€XðtÞ þ 2zv _XðtÞ þ v2XðtÞ þ FðtÞ
m

¼ 2€ugðtÞ (6)

where X 5 relative displacement of the oscillator; t 5 time; F
5 pounding force; and €ug 5 seismic ground acceleration, which
assumes a harmonic form

€ugðtÞ ¼ ap × sin
�
vp × t

�
(7)

where ap 5 acceleration amplitude; and vp 5 circular frequency.
Indeed, the most realistic and efficient way to analyze the earthquake-
induced pounding is to use real recorded ground motions, and the
harmonic excitation is not a perfect approximation of real ground
motions because of the complexity of earthquake ground motions.
However, for the convenience of implementing dimensional analysis
and deriving analytical solutions, harmonic excitation is adopted.

Eq. (6) can be rewritten in dimensionless form as

€xþ 2z
v

vp
_xþ v2

v2
p
xþ F

map
¼ 2sin t (8)

where the superimposed dot denotes the derivative with respect to
normalized time t. In Eq. (8), the normalized time variable t and
other definitions include

t ¼ t

vp
, X ¼ le × x ¼ x × ap

v2
p
, _X ¼ _x × ap

vp
, z ¼ c

2mv
, v2 ¼ k

m

(9)

where v 5 natural frequency of the oscillator; and le 5 ap=v2
p is

a characteristic length scale of the ground excitation (Makris and
Black 2004b).

Fig. 1. Model configuration of single-impact oscillator subjected to
excitation
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Using the definitions in Eq. (9), the normalized pounding force
F=map is obtained

F
map

¼

8>>>><
>>>>:

v2

v2
p
×
�
x2

d
le

�
þ 2z

v

vp
× _x x2

d
le
$ 0

0 x2
d
le
, 0

(10)

where v 5 circular frequency of the contact element, defined by

v ¼
ffiffiffiffiffiffiffiffiffi
b=m

p
(11)

Based on Eqs. (8) and (10), when x2 d=le $ 0, a collision occurs;
during this phase, the motion equation of the pounding oscillator is

€xþ 2

�
z
v

vp
þ z

v

vp

�
_xþ
 
v2

v2
p
þ v2

v2
p

!
x ¼ 2sin t þ v2

v2
p
×
d
le

(12)

When x2 d=le , 0, no pounding occurs; the corresponding equa-
tion of the oscillator therefore is

€xþ 2z
v

vp
_xþ v2

v2
p
x ¼ 2sin t (13)

Dimensional Analysis

Based on the preceding governing equations and definitions, the
parameters governing the responses of a single pounding oscillator
(i.e., the maximum response displacement Xmax, the maximum ve-
locity _Xmax, and the maximum penetration displacement Xcon) in-
clude the circular frequency of the oscillator v, the damping ratio of
the oscillator z, the pulse amplitude ap, the circular frequency vp, the
coefficient of restitution r, the gap size d, and the circular frequency
of the contact element v. Thus

Xmax or _Xmax or Xcon ¼ f
�
z, r,v,v, d,vp, ap

�
(14)

Theeight variables inEq. (14) involve only two reference dimensions,
the length ½L� and the time ½T �. According to Buckingham’s P the-
orem, the number of independent dimensionless P-products can be re-
duced as ð8 variablesÞ2 ð2 reference dimensionsÞ5 6P-parameters.

Herein, the dimensionally independent parameters ap and vp are
selected as repeating variables. Oscillator displacement is normal-
ized by the energetic length scale of the excitation le 5 ap=v2

p, and
velocity is normalized by ap=vp. Accordingly, Eq. (14) reduces to

Xmaxv
2
p

ap
or

_Xmaxvp

ap
or

Xconv
2
p

ap
¼ f

 
z, r,

v

vp
,
v

vp
,
dv2

p

ap

!

(15)

or

Pu or Pv or Pucon ¼ f
�
Pz,Pr ,Pv,Pv1,Pd

�
(16)

with

Pu ¼
Xmaxv

2
p

ap
, Pv ¼

_Xmaxvp

ap
, Pucon ¼

Xconv
2
p

ap
,

Pz ¼ z, Pr ¼ r, Pv ¼ v

vp
, Pv1 ¼ v

vp
, Pd ¼ dv2

p

ap

(17)

The new terms proposed in this study to describe the pounding
responsearePv1 andPucon.Pv1 suggests that the circular frequency of

the contact element can be scaled to the excitation. Some researchers
(Maison and Kasai 1992; Jankowski et al. 1998; Muthukumar and
DesRoches 2006) have employed the stiffness of the impact element
as an axial stiffness of the superstructure segment. In this study, the
product termPv1 can be used to choose the appropriate value of the
impact stiffness, and Pucon means that the maximum penetration is
scaled to the energetic length scale of the excitation ap=v2

p.
Pz is the damping ratio of the oscillator. Pr is the coefficient of

restitution, which is a dimensionless parameter describing the in-
elasticity of the impact. According to Eq. (4), the damping ratio of
the contact element z varies withPr.Pv is the natural frequency of
the examined oscillator normalized to the frequency of the exci-
tation. The product term Pd proposed by Dimitrakopoulos et al.
(2009, 2010) indicates the gap size that is normalized to the ener-
getic length scale of the excitation ap=v2

p.

Analytical Solution of Impact

Duration of Contact

The duration of contact is defined as the process from the moment the
oscillator comes into contact with the barrier to the moment that
the oscillator detaches from the barrier. The contact process with
initial displacement Gð0Þ5 0 and velocity _Gð0Þ5V0 is shown in
Fig. 2. The collision of the oscillator with the barrier is simulated
with the spring-dashpot element, which is activated when the os-
cillator comes into contact with the barrier. The motion equation of
the oscillator during the collision, when the impact element has been
activated, is written as

m€GðtÞ þ c _GðtÞ þ kGðtÞ þ FðtÞ ¼ 0 (18)

where the contact force F is defined in Eq. (1); and t 5 time for the
penetration process, which is activated at the onset of contact. When
t5 0, the oscillator begins to make contact with the barrier. When
t5Dt, the oscillator detaches from the barrier. Dt is the time span of
contact. Eq. (18) can be rewritten in dimensionless form as

€dðtÞ þ 2
�
zPv þ zPv1

�
_dðtÞ þ �P2

v þP2
v1

�
dðtÞ ¼ 0 (19)

where d5G=le 5 normalized penetration displacement. The super-
imposed dot denotes the derivative with respect to normalized time
t 5vp × t.

The corresponding solutions to Eq. (19) can be obtained as
follows:

dðtÞ ¼
�
c1 cos

ffiffiffiffiffiffiffiffi
2D

p
2

t þ c2 sin

ffiffiffiffiffiffiffiffi
2D

p
2

t

�
e2ðzPvþzPv1Þt (20)

Fig. 2. Model of single-impact oscillator during contact process sub-
jected to excitation

© ASCE 04014138-3 J. Eng. Mech.
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_dðtÞ ¼ 2
�
zPv þ zPv1

��
c1 cos

ffiffiffiffiffiffiffiffi
2D

p
2

t

þ c2 sin

ffiffiffiffiffiffiffiffi
2D

p
2

t

�
e2ðzPvþzPv1Þt

þ
ffiffiffiffiffiffiffiffi
2D

p
2

�
2c1 sin

ffiffiffiffiffiffiffiffi
2D

p
2

t

þ c2 cos

ffiffiffiffiffiffiffiffi
2D

p
2

t

�
e2ðzPvþzPv1Þt (21)

where

D ¼ 4
h�
zPv þ zPv1

�2
2
�
P2

v þP2
v1

�i
D, 0 (22)

and c1 and c2 5 unknown constants to be determined by the initial
conditions

t ¼ 0, dð0Þ ¼ 0, _dð0Þ ¼ v0 (23)

where v0 5 dimensionless initial velocity of the oscillator when
impact occurs. By substituting Eq. (23) into Eqs. (20) and (21), the
constants c1 and c2 can be easily solved

c1 ¼ 0, c2 ¼ 2v0ffiffiffiffiffiffiffiffi
2D

p (24)

Based on Eqs. (20) and (24), the normalized penetration displace-
ment can be obtained as

dðtÞ ¼ e2ðzPvþzPv1Þt 2v0ffiffiffiffiffiffiffiffi
2D

p sin

ffiffiffiffiffiffiffiffi
2D

p
2

t (25)

From Eq. (25), if the penetration displacement returns at zero
[i.e., sinð ffiffiffiffiffiffiffiffi

2D
p

=2Þt5 0], the result is t5 2np=
ffiffiffiffiffiffiffiffi
2D

p
; therefore, the

first time the oscillator is separated from the barrier is t5 2p=
ffiffiffiffiffiffiffiffi
2D

p
,

which means that the time during contact is Dt5 2p=
ffiffiffiffiffiffiffiffi
2D

p
.

Solution for Oscillator’s Pounding Response

When x2Pd $ 0, the oscillator contacts the barrier. According to
Eqs. (12) and (17), the motion equation during the contact process
can be written as

€xþ 2
�
zPv þ zPv1

�
_xþ �P2

v þP2
v1

�
x ¼ 2sin t þP2

v1Pd (26)

The initial conditions are set as the oscillator just makes contact with
the barrier; therefore

t ¼ t0, xðt0Þ ¼ Pd , _xðt0Þ ¼ v0

t ¼ t0 þ Dt, xðt0 þ DtÞ ¼ Pd, _xðt0 þ DtÞ ¼ 2rv0
(27)

where t0 5 dimensionless time that the contact just occurs; and
Dt5 2p=

ffiffiffiffiffiffiffiffi
2D

p
5 dimensionless time during contact.

The solutions for Eq. (26) are

xðtÞ ¼ e2ðzPvþzPv1Þðt2t0Þ
"
c19 × cos

ffiffiffiffiffiffiffiffi
2D

p
2

ðt2 t0Þ þ c29 × sin

ffiffiffiffiffiffiffiffi
2D

p
2

ðt2 t0Þ
#
þ A9 × cos t þ B9 × sin t þ P2

v1×Pd

P2
v þP2

v1

_xðtÞ ¼ e2ðzPvþzPv1Þðt2t0Þ
�
2zPv 2 zPv1

�"
c19 × cos

ffiffiffiffiffiffiffiffi
2D

p
2

ðt2 t0Þ þ c29 × sin

ffiffiffiffiffiffiffiffi
2D

p
2

ðt2 t0Þ
#

þ e2ðzPvþzPvÞðt2t0Þ
 ffiffiffiffiffiffiffiffi

2D
p
2

!"
2c19 × sin

ffiffiffiffiffiffiffiffi
2D

p
2

ðt2 t0Þ þ c29 × cos

ffiffiffiffiffiffiffiffi
2D

p
2

ðt2 t0Þ
#
2 A9 × sin t þ B9 × cos t (28)

where

A9 ¼ 2
�
zPv þ zPv1

�
4
�
zPv þ zPv1

�2 þ �P2
v þP2

v1 2 1
�2 and

B9 5
1 2 P2

v 2 P2
v1

4
�
zPv þ zPv1

�2 þ �P2
v þP2

v1 2 1
�2

(29)

and the constants c19 and c29 can be obtained based on the initial
conditions by substituting Eq. (28) into Eq. (27). In addition,
sinð ffiffiffiffiffiffiffiffi

2D
p

=2ÞDt5 sinp5 0, and cosð ffiffiffiffiffiffiffiffi
2D

p
=2ÞDt5 cosp521.

The four initial conditions in Eq. (27) can be written as

c19 þ A9 × cos t0 þ B9 × sin t0 5
P2

v ×Pd

P2
v þP2

v1

(30)

�
2zPv 2 zPv1

�
× c19 þ

 ffiffiffiffiffiffiffiffi
2D

p
2

!
× c29 2A9 × sin t0 þ B9 × cos t0 ¼ v0

(31)

2c19e
2ðzPvþzPv1ÞDt þ A9 × cosðt0 þ DtÞ þ B9 × sinðt0 þ DtÞ

¼ P2
v ×Pd

P2
v þP2

v1

(32)

e2ðzPvþzPv1ÞDt × �zPv þ zPv

�
× c19

2 e2ðzPvþzPv1ÞDt ×
 ffiffiffiffiffiffiffiffi

2D
p
2

!
× c29 2A9 × sinðt0 þ DtÞ

þ B9 × cosðt0 þ DtÞ ¼ 2rv0 (33)

Constant c19 can be easily solved from Eq. (30) as

c19 ¼ P2
v ×Pd

P2
v þP2

v1

2A9 × cos t02B9 × sin t0 (34)

If v0 is eliminated between Eqs. (31) and (33), then the constant
c29 can be obtained as

© ASCE 04014138-4 J. Eng. Mech.
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c29 ¼
2
�
zPv þ zPv1

�
c19ffiffiffiffiffiffiffiffi

2D
p þ a2�

e2ðzPvþzPv1ÞDt 2 r
�� ffiffiffiffiffiffiffiffi

2D
p 	

2
�
(35)

where

a2 ¼ 2A9 sinðt0 þ DtÞ þ B9 cosðt0 þ DtÞ2 rA9 sin t0

þ rB9 cos t0 (36)

The objective then is to solve for t0. By substituting Eq. (34) into
Eq. (32) and then eliminating c19, an expression for t0 is obtained

w1 × sin t0 þ w2 × cos t0 ¼ w3 (37)

where

w1 ¼ B9e2ðzPvþzPv1ÞDt 2A9 sinDt þ B9 cosDt (38)

w2 ¼ A9e2ðzPvþzPv1ÞDt þ A9 cosDt þ B9 sinDt (39)

w3 ¼
�
e2ðzPvþzPv1ÞDt þ 1

�
×

P2
v ×Pd

P2
v þP2

v1

(40)

The solution to t0 in Eq. (37) is

t0 ¼ sin21

0
B@ w3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
1 þ w2

2

q
1
CA2 tan21

�
w2

w1

�
(41)

This value of t0 then can be used in Eq. (31) to find v0. Note that the
multiple branches of both the sin21 and tan21 functions imply the
existence of multiple solutions for t0. Only appropriate solutions for
which t0 lies between 0 and 2np and for which v0 . 0 should be
accepted.Apositive v0 guarantees that the oscillator collideswith the
barrier in the positive direction. The parameter n means that one
impact occurs in every n cycles of excitation. To this end, the re-
sponse of the oscillator in the contact phase is solved. In the next
section, the response of the oscillator detached and away from the
barrier is analyzed.

Solution for Oscillator’s Response between Impacts

The equation for the motion of the oscillator in the noncontact phase
can be derived by substituting Eq. (17) into Eq. (13)

€xþ 2zPv _xþP2
vx ¼ 2sin t (42)

The initial conditions are set as the state of the oscillator imme-
diately after an impact

t ¼ t0 þ Dt, xðt0 þ DtÞ ¼ Pd, _xðt0 þ DtÞ ¼ 2rv0 (43)

where t5 t0 1Dt 5 dimensionless time when the oscillator is just
detached from the barrier; and2rv0 5 dimensionless velocity of the
oscillator at that moment. The velocity can be obtained by solving
Eq. (33).

The solution to Eq. (42) can be expressed as

xðtÞ ¼ e2zPvðt2t0Þ ×


c3 × cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
Pvðt2 t0Þ

þ c4 × sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
Pvðt2 t0Þ

�
þ A × cos t þ B × sin t

(44)

_xðtÞ ¼ e2zPvðt2t0Þ × ð2zPvÞ ×


c3 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
Pvðt2 t0Þ

þ c4 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
Pvðt2 t0Þ

�
þ e2zPvðt2t0Þ

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

12 z2
q

Pv

�
×


2c3 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
Pvðt2 t0Þ

þ c4 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
Pvðt2 t0Þ

�
þ B × cos t2A × sin t

(45)

where

A ¼ 2zPv

ð2zPvÞ2 þ
�
P2

v 2 1
�2 and B ¼ 12P2

v

ð2zPvÞ2 þ
�
P2

v 2 1
�2
(46)

Substituting t5 t0 1Dt into Eqs. (44) and (45) and then in-
troducing in the results the initial conditions of Eq. (43) gives

e2zPvDt ×
�
c3 × cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt þ c4 × sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt

�

þ A cosðt0 þ DtÞ þ B sinðt0 þ DtÞ ¼ d
le

(47)

e2zP4Dt × ð2zPvÞ ×
�
c3 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt þ c4 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt

�

þ e2zPvDt ×
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

12 z2
q

Pv

�
×
�
2c3 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt

þ c4 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt

�
þ B cosðt0 þ DtÞ2A sinðt0 þ DtÞ

¼ 2rv0

(48)

From Eqs. (47) and (48), two unknown constants c3 and c4 can be
obtained

c3 ¼ p1 × cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt2 p2 × sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt (49)

c4 ¼ p1 × sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt þ p2 × cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

q
PvDt (50)

where

p1 ¼ b29e
zPvDt (51)

p2 ¼ zPvb29 þ b39ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 z2

p
×Pv

ezPvDt (52)
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b29 ¼ Pd 2A cosðt0 þ DtÞ2B sinðt0 þ DtÞ (53)

b39 ¼ zPvb29 þ A sinðt0 þ DtÞ2B cosðt0 þ DtÞ2 rv0 (54)

Hence, the analytical solutions for steady-state periodic impacts of
the oscillator during the phases of contact and noncontact are solved.
In addition, the analytical solution for the transient part of the
pounding response is not considered in this work, which is also
important in the case of seismic excitation. The transient part re-
sponse for real recorded ground motions will be investigated by
other methods (e.g., the numerical method) in future research work.

Verification of Analytical Solution

To verify our analytical solution for impact, the fourth-order Runge-
Kutta method with an adaptive step size control is used to integrate
Eq. (8) numerically, and a time step equal to 0.001 has been used
(Press et al. 1992). Modal damping of 5% is assigned to the os-
cillator. Subsequently, the analytical solutions derived in the pre-
ceding section are compared with the steady-state numerical results.
Davis (1992) proposed that after the numerical simulations for 40
cycles of excitation periods, the recorded impacts for a further eight
cycles should be used as the steady-state response. This treatment is
adopted herein for the verification that follows.

The numerically and analytically obtained dimensionless maxi-
mum displacement Pu and velocity Pv as functions of Pv are
illustrated in Figs. 3(a and b), respectively. In addition, the di-
mensionless displacement and velocity spectra for a single oscil-
lator without pounding are also included (no-pounding). Fig. 3
shows that the analytical solutions match well with the numerical
results, especially in the region ofPv $ 1. When the dimensionless
frequency is 0:4,Pv , 1, some discrepancies can be observed.
The reasons for the discrepancies are partly the result of the fact that
the analytical solution is not applicable to the case of nonperiodic or
chaotic impacts that may arise in this frequency region. Other
possible reasons include the unavoidable truncation error as well as
the round-off error. However, the discrepancies between the ana-
lytical and numerical solutions are acceptable and could demonstrate
the accuracy of the analytical solution. The analytical solution yields
a reasonable approximation to the numerically generated data.

The effect of pounding on Pu is evident through comparison of
the pounding case with the no-pounding case in Fig. 3(a). Three
distinct spectral regions are identified empirically. The first region is
0,Pv , 0:75, implying a relatively flexible structure colliding
with the rigid barrier. Within this region, the pounding tends to
amplify the maximum displacement of the oscillator. The second
region is characterized by 0:75#Pv # 1:6,whereinPu is obviously
decreased as a result of pounding. Notably, structural resonance is

hindered within this region because of the significant pounding-
related energy absorption. The third region is Pv . 1:6, implying a
relatively rigid structure. In this case, the pounding has a negligible
effect on the structural response. At a very large dimensionless
frequency (e.g.,Pv $ 4), the structure nearly vibrates as an inclusion
of the ground, yielding almost no relative displacement Pu and
hence no pounding.

The maximum velocity response Pv, shown in Fig. 3(b), has
presented three similar distinct spectral regions as in the displace-
ment spectrum. In the first region (0,Pv , 0:75), Pv is amplified
because of pounding. In the second region (0:75#Pv # 1:3),
pounding diminishes the maximum velocity. In the third region
(Pv . 1:3), it is noticed that the velocity is slightly amplified as
a result of pounding when 1:3,Pv , 3, whereas the displacement
appears nearly unaffected in this region. This can be attributed to the
fact that the change in velocity is so small that it fails to alter the
displacement in this region. When Pv $ 3, there is a negligible
effect of pounding.

The significance of applying the dimensional analysis is pre-
sented in Fig. 4, where the oscillator is subjected to excitation at
different intensity levels: ap 5 0:2, 0:5, and 0:8g. Fig. 4(a) plots
the velocity spectra with real physical units; Fig. 4(b) gives the
corresponding response in the dimensionless form. Note that the
response velocity curves are reduced into a singlemaster curvewhen
plotted in terms of the dimensionless P-terms. This observation
indicates that the normalized response is invariant with respect to
changes in the acceleration amplitude ap. This scale invariance is
known as self-similarity (Langhaar 1951; Barenblatt 1996). The
concept of self-similarity is the main advantage of the dimensional
analysis used in this paper. The usefulness of such reduction is also
reflected by dealing with the parametric complexity in the research
field of earthquake-induced pounding, through which application of
the dimensional analysis method offers a lucid interpretation of the
response of a pounding oscillator.

Parametric Analysis of Pounding

Effect of Contact Stiffness

In this study, the influence of contact stiffness on the pounding re-
sponse is investigated by means of the frequencyPv1. Fig. 5 shows
the normalized maximum penetration displacementPucon versus the
frequency ratio Pv for various Pv1 with respect to four different
values of dimensionless gapPd . As shown in Fig. 5, the penetration
displacement decreases notably with an increase inPv1. Noticeably,
large penetration displacement values can be unrealistically ob-
served in the first spectral region when Pv1 , 50. Thus, to avoid
unrealistic penetration, small contact stiffness values should not be

Fig. 3. Numerical and analytical dimensionless displacement and velocity spectra versus Pv for Pz 5 0:05, Pr 5 0:4, Pv1 5 100, and Pd 5 0:1
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used. What’s more, it is indicated that penetration displacement
tends to zero when the frequency ratioPv1 $ 500, meaning that there
is nearly no deformation if the contact stiffness is too large. As Pd

increases, the chance of pounding is reduced for a large frequency
ratioPv in the third spectral region. As Fig. 5(d) demonstrates, when

Pd reaches 1, no collision happens when Pv $ 1:6. In the first and
second spectral regions, the effect of contact stiffness on the pen-
etration displacement for different gap sizes is almost the same.

Figs. 6(a and b) show the dimensionless maximum displacement
Pu and the maximum velocity Pv versus the frequency ratio Pv for

Fig. 4. (a) Dimensional maximum velocity response of pounding oscillator subject to different amplitudes of excitation; (b) dimensionless maximum
velocity response by employing dimensionless P-terms

Fig. 5.Maximum penetration displacement spectra versusPv for various frequency ratiosPv1 with respect to four different values of dimensionless
gap Pd: (a) Pd 5 0:001; (b) Pd 5 0:01; (c) Pd 5 0:1; (d) Pd 5 1

Fig. 6. Maximum dimensionless displacement Pu and velocity Pv versus Pv for various frequency ratios Pv1

© ASCE 04014138-7 J. Eng. Mech.
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variousPv1, respectively. It is noted that the displacementPu and
the velocityPv in thefirst spectral region are slightly affected byPv1.
In general, largerPv1 leads to largerPu andPv. In addition, the effect
ofPv1 on the pounding response is not apparent whenPv1 $ 500. In
the second and third spectral regions, the displacement Pu and ve-
locity Pv of the oscillator are almost invariable for all the values of
Pv1, which is consistent with previous studies (Anagnostopoulos
1988; Maison and Kasai 1992), implying that the system response is
insensitive to changes in contact stiffness. The displacementPu and
velocity Pv come to peak values when Pv approaches 0.5.

Effect of Coefficient of Restitution

The dimensionless coefficient of restitution isPr , and it has a unique
significance in impact. The case of Pr 5 1 stands for a fully elastic
collision,whereas the case ofPr 5 0 denotes a fully plastic collision.
Pounding results in energy loss; thus, the coefficient of restitution
Pr should be less than 1. In fact, the value ofPr 5 0:65 has been used
in a number of numerical analyses (Jankowski 2008; Anagnostopoulos
1988). On the other hand, the experimental study conducted by Zhu
et al. (2002) shows that the value of Pr can be as low as 0.4. In this

paper, Pr 5 0:001, 0:4, 0:65, and 1 are chosen to study the effect of
the coefficient of restitution on pounding response.

Fig. 7 plots the relationship between normalized maximum
penetration displacement Pucon and the frequency ratio Pv for
various Pv1 and different values of Pr. It can be seen that when
Pv1 , 500, the effect of contact stiffness on the penetration dis-
placement is obviously influenced by the change in Pr. As Pr

increases, the penetration displacement increases. It is observed that
the maximum penetration displacement forPr 5 0:001 is obviously
much smaller than the Pucon caused by greater Pr in the first and
second spectral regions. This may be explained by the fact that the
response for Pr 5 0:001 is close to a fully plastic collision, and the
corresponding penetration displacement decreases rapidly because
of great energy dissipation. For Pr 5 0:4 and 0:65, unrealistically
large penetration displacement values can be observed when
Pv1 , 100. As Pr grows up to 1, there is no energy dissipation
during the collision, and much larger Pucon can be seen when
Pv1 , 500. In addition, when Pv1 $ 500, the penetration dis-
placement is nearly unaffected by Pr.

Figs. 8(a and b) show the normalizedmaximum displacementPu

and maximum velocityPv spectra versusPv for different values of

Fig. 7.Maximum penetration displacement spectra versusPv for various frequency ratiosPv1 with respect to four different values of dimensionless
coefficient of restitution Pr: (a) Pr 5 0:001; (b) Pr 5 0:4; (c) Pr 5 0:65; (d) Pr 5 1

Fig. 8. Maximum dimensionless displacement Pu and velocity Pv spectra versus Pv for various Pr

© ASCE 04014138-8 J. Eng. Mech.
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Pr, respectively. It is seen that the displacement and velocity in-
crease significantly for largerPr in the first spectral region, whereas
the responses in other spectral regions are almost identical irre-
spective of the variation inPr. The results shown in Fig. 8 are similar
to the conclusion in the literature (Ruangrassamee and Kawashima
2001) that neglecting energy dissipation resulting from impact
(Pr 5 1) overestimates the responses of the colliding system. The
counterintuitive behavior observed in the work of Dimitrakopoulos
et al. (2009) is not found in this work, and this may be attributed to
the difference in the excitation input and method of simulating the
contact. The displacement Pu and velocity Pv come to peak values
when Pv tends to 0.5.

Conclusions

In this paper, the dynamic response of a single pounding oscillator
subjected to harmonic excitations is investigated with dimensional
analysis with an explicit consideration of the contact process. A
linear viscoelastic impact model is used to simulate the pounding
force. Dimensional analysis leads to a condensed presentation of the
response and parametric analysis. The introduction of Buckingham’sP
theorem reduces the number of variables governing the response
from eight to six. When the response is presented in terms of the
dimensionless P-terms, the response curves are self-similar and
follow a singlemaster curve. This unveils the remarkable property of
self-similarity—a special type of symmetry that is invariant with
respect to changes in scale or size. Analytical solutions for dimen-
sionless contact time, impact displacement, and velocity expressed
by the dimensionless P-terms are derived in this study and agree
qualitatively with the numerical simulations.

The effect of contact stiffness is studied through the frequency
ratioPv1. The peak value of displacement and the velocity are nearly
unaffected by the contact stiffness. The penetration displacements
for different levels of contact stiffness (Pv1 values) are insensitive to
the dimensionless gap size Pd but are affected significantly by the
changes in the coefficient of restitution Pr.

In this study, to arrive at a conclusion in a convenient and feasible
way, the pounding response for harmonic excitation is considered.
To obtain a more realistic dimensionless pounding response under
earthquake excitation, the pounding responses for real recorded
ground motions need further investigation in future research.
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