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ABSTRACT

In model-based climate sensitivity studies, model errors may grow during continuous long-term inte-
grations in both the “reference” and “perturbed” states and hence the climate sensitivity (defined as the
difference between the two states). To reduce the errors, we propose a piecewise modeling approach that
splits the continuous long-term simulation into subintervals of sequential short-term simulations, and up-
dates the modeled states through re-initialization at the end of each subinterval. In the re-initialization
processes, this approach updates the reference state with analysis data and updates the perturbed states
with the sum of analysis data and the difference between the perturbed and the reference states, thereby
improving the credibility of the modeled climate sensitivity. We conducted a series of experiments with a
shallow-water model to evaluate the advantages of the piecewise approach over the conventional continuous
modeling approach. We then investigated the impacts of analysis data error and subinterval length used
in the piecewise approach on the simulations of the reference and perturbed states as well as the resulting
climate sensitivity. The experiments show that the piecewise approach reduces the errors produced by the
conventional continuous modeling approach, more effectively when the analysis data error becomes smaller
and the subinterval length is shorter. In addition, we employed a nudging assimilation technique to solve
possible spin-up problems caused by re-initializations by using analysis data that contain inconsistent errors
between mass and velocity. The nudging technique can effectively diminish the spin-up problem, resulting
in a higher modeling skill.
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1. Introduction

Model-based climate sensitivity studies facilitate
isolating the impact of an individual external forcing
on climate change and extreme weathers from other
forcings. They have been extensively used to iden-
tify the major causes of the observed climate anomaly
by differentiating various anthropogenic forcings (e.g.,
greenhouse gas emissions, land use and land cover
changes, etc.) from natural forcings (e.g., volcanic
eruptions, changes in solar output, etc.) that together
contribute to historical and present climate changes

(e.g., Meehl et al., 1996, 2000; Santer et al., 1996,
2003; Wei et al., 2012; Dong et al., 2014). In addition,
they have been used to diagnose possible influences of
anomalous external forcings (e.g., ocean temperature,
ice and snow cover, soil moisture, etc.) on extreme
weathers (e.g., Huang et al., 2006; Zhou and Yu, 2006;
Kim and Hong, 2007; Li et al., 2007; Lian et al., 2009;
Seol and Hong, 2009; Mohino et al., 2011; Peings et al.,
2012; Notaro et al., 2013; Vavrus et al., 2013; Peings
and Magnusdottir, 2014; Wang et al., 2015). These
model sensitivity studies require to run a model at
least twice: a “control run” and a “perturbation run”.
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The control run simulates the historical or present at-
mospheric state as realistic as possible while consider-
ing as many forcings as possible, producing a “ref-
erence state”. The perturbation runs with an (or
several) individual external forcing(s) being modified
(while others being fixed) produce hypothetical atmo-
spheric states or “perturbed states”. The averaged
differences between the perturbed states and reference
state over a long period are then regarded as climate
sensitivities to (or the climatic impact of) the modified
external forcing(s). The credibility of the climate sen-
sitivity depends on the accuracy of these model sim-
ulations, although model errors may be partially off-
set in the differences between reference and perturbed
states.

Through decades of development, state-of-the-art
climate models are still problematic to accurately sim-
ulate climate dynamics due mainly to the nonlinearity
of the atmospheric dynamics as well as the interac-
tions between various components of the complex cli-
mate system. As such, model errors may grow during
continuous long-term integrations of both the refer-
ence and perturbed climates, decreasing the credibil-
ity of the modeled climate sensitivity (Stainforth et
al., 2005; Douglass et al., 2008; Klocke et al., 2011;
Sanderson, 2011). Improving the realism of the mod-
els’ dynamics and physics is undoubtedly a pathway,
but a daunting task, for enhancing the credibility of
the sensitivity studies. In this study, we explore alter-
native ways to reduce the model errors by improving
simulation approach on the basis of existing models.

In dynamical climate downscaling, many re-
searchers have used atmospheric reanalysis data or
general circulation models’ (GCMs) outputs to con-
strain their simulations through re-initialization (Qian
et al., 2003) or nudging (von Storch et al., 2000; Lo et
al., 2008; Harkey and Holloway, 2013). Their results
suggested that re-initialization or nudging mitigates
accumulation of systematic errors in the continuous
long-term simulations, producing better downscaling
results (Lo et al., 2008). Analogous to the downscal-
ing, in this study, we attempt to use historical data
to constrain all simulated states, including the refer-
ence field and the perturbed field. Because there was

no such data for the perturbed states, we proposed
a piecewise modeling approach to solve this dilemma
(Zhang et al., 2008). For the reference state, the ap-
proach is similar to the conventional re-initialization
that divides the entire integration period into a num-
ber of subintervals for a series of sequential short-term
simulations, and at the end of each subinterval, the
simulated fields are updated with analysis data. For
the perturbed states, the approach is different from
the conventional re-initialization, the data used for up-
dating the simulated fields are the sum of the analysis
and the difference between the perturbed and reference
states. In such a way, the resulting climate sensitiv-
ity to changes in the external forcing can be improved
with greater credibility. We tested the approach with
a simple six-parameter model, and the preliminary re-
sults indicated that the approach is able to effectively
correct the drifts of the modeled climates, resulting
in higher model accuracy (Zhang et al., 2008). How-
ever, the model was too simple with a very low degree
of freedom, and the experiments designed were too
specific. In this study, we will more comprehensively
assess the performance of the piecewise approach and
its applicability under broader scenarios through ex-
periments with the shallow-water model. The focus of
this study is on assessing the influence of the analysis
data error and subinterval length on the simulation
skill. We also explore ways to mitigate the spin-up
problems caused by frequent re-initializations.

2. The piecewise simulation approach and

nudging technique

2.1 The piecewise simulation approach

For simplicity, a climate model can be expressed
as

∂x

∂t
= F (x), x(t0) = x0, (1)

where F (x) is the model forcing terms, x is model
prognostic variable, and x0 is its initial state. Con-
ventionally, the model is integrated in a continuous
way from time t = t0 to time t = TN to produce
a simulated atmospheric state that evolves with time
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under forcings F (x). For climate sensitivity stud-
ies, the above model should be run at least twice with
different external forcings. The first run with actual
forcings F r(x), named as a control run, produces a
reference state, xr. The conventional continuous inte-
gration can be written as

xr(tn+1) = xr(tn) + F r[xr(tn)]Δt,

n = 0, 1, 2, . . . , N − 1, (2)

where Δt is the time step size, and subscript n repre-
sents the number of time steps. The other run with
modified forcings F p(x) produces a perturbed state,
xp:

xp(tn+1) = xp(tn) + F p[x(tn)]Δt,

n = 0, 1, 2, . . . , N − 1. (3)

Subtracting Eq. (2) from Eq. (3) results in the
difference between the two states:

δx(tn) = xp(tn) − xr(tn), n = 1, 2, . . . , N. (4)

The averaged difference over a long period is then
defined as climate sensitivity, which is regarded as
the effects of the modified forcings. Conventionally,
both the reference and the perturbed states are ob-
tained through the above continuous long-term model
integrations. To improve the realism of the mod-
eled climate, the reference state, in particular, can
be constrained with the observations or analysis data
through nudging or re-initialization, when observa-
tions or analysis data are available for the reference
state. However, the perturbed state is produced as
a result from free model integration without any con-
straint for lack of such data. For this reason, reanalysis
or observations have rarely been used in climate sen-
sitivity studies. In the followings, we present a piece-
wise method, through which analysis data (including
reanalysis) can be introduced to constrain not only the
reference state but also the perturbed state to improve
the simulation accuracy.

In the piecewise approach, the entire integration
period (NΔt) is divided into a number of short-term
subintervals, whose lengths are σ = mΔt (m << N);
at the end of each subinterval, the modeled states are

then updated with the analysis. Considering that the
analysis is usually not available for all the prognos-
tic variables, we separate the prognostic variables into
two categories: xr = ((xr

v)
T, (xr

u)T)T, where xr
v repre-

sents the variables that are available, xr
u represents the

variables that are not available in the analysis, and the
superscript T denotes transpose of a matrix. In such a
case, only xr

v is updated, while xr
u remains unchanged.

For the kth subinterval (from t = tkm to t = t(k+1)m)
the reference state can be written initially as

xr(tkm) = (x̂r
v(tkm)T,xr

u(tkm)T)T, (5.1)

and subsequently,

xr(tkm+j+1) = xr(tkm+j) + F r[xr(tkm+j)]Δt,

j = 0, 1, . . . , m − 1, (5.2)

where x̂r
v is the analysis fields of xr

v.
The perturbed state is updated with the sum of

the analysis and the difference between the reference
and the perturbed state, at the end of each subinter-
val, kmΔt:

xp(tkm) = ((x̂r
v(tkm) + δxv(tkm))T,

(xp
u(tkm))T)T, (6.1)

xp(tkm+j+1) = xp(ttm+j) + F p[xp(tkm+j)]Δt,

j = 0, 1, . . . , m − 1, (6.2)

where δxv(tkm) = xp
v(tkm)−xr

v(tkm) is the difference
for the variables with available analysis data at the
end of the (k− 1)th subinterval. The above procedure
from Eq. (5) Eq. (6) is performed at each subinterval
in turn until the expected end time TN .

Subtracting Eq. (5.1) from Eq. (6.1) and Eq.
(5.2) from Eq. (6.2) results in the difference between
the reference and perturbed states at times km and
km + j + 1, respectively:

δx(tkm) = xp(tkm) − xr(tkm)

= ((δxv(tkm))T, (δxu(tkm))T)T, (7.1)

δx(tkm+j+1) = δx(tkm+j) + (F p[xp(tkm+j)]

−F r[xr(tkm+j)])Δt,

j = 0, 1, . . . , m − 1, (7.2)

where δxu(tkm) = xp
u(tkm)−xr

u(tkm). Equations (7.1)
and (7.2) indicate that the piecewise simulation ap-
proach does not deform the governing equations and
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integration processes for the difference field, although
the integration processes are changed for the refer-
ence and perturbed states. Integration of the refer-
ence state in the piecewise approach is actually the
same as conventional re-initializations that are widely
used in weather forecasting to reduce systematic error
growth in the long-term continuous integrations. It
has been well documented that dynamical downscal-
ing with regional climate models that are re-initialized
periodically produced better results than those from
continuous runs (Qian et al., 2003; Z̆agar et al., 2006;
Lo et al., 2008). In a nonlinear system, such as the
climate system, the sensitivity to external forcing may
depend on the quality of reference state. Therefore,
the piecewise approach may produce more accurate
reference states and help improve the simulation ac-
curacy of perturbed states and the climate sensitivity,
as will be demonstrated with the shallow-water model
in the following.

2.2 Nudging technique

A major concern when applying the piecewise
simulation method is whether the simulated state as
represented by the analysis data that are used in the
re-initialization deviates significantly from the mod-
eled state, inducing a “spin-up” problem. To avoid
the possible spin-up problem, we use the Newtonian
relaxation or “nudging” assimilation techniques to “re-
assimilate” the original analysis data to the piecewise
runs. The nudging method (Charney et al., 1969; Hoke
and Anthes, 1976; Stauffer and Seaman, 1990) has
been extensively used in data assimilation for numer-
ical weather prediction, dynamical downscaling (von
Storch et al., 2000; Lo et al. 2008; Salameh et al.,
2010; Harkey and Holloway, 2013), and estimating and
correcting model errors of global circulation models
(Danforth et al., 2007). The nudging method relaxes
the model states toward the observed states by adding
an artificial tendency based on the difference between
the two. Following Stauffer and Seaman (1990), the
nudging can be expressed as:

∂x

∂t
= F + Gxwtεx(x̂ − x), (8)

where x is the modeled state, and x̂ is the correspond-
ing observational state (in our experiments it is ac-

tually the analysis data); F represents the forcings,
wt a temporal weight, and εx a quality factor, which
ranges between 0 and 1 depending on the accuracy
of the observational data (εx = 1 for all variables in
this study). Following Stauffer and Seaman (1990),
the nudging factor Gx = 3×10−4 s−1 for all the prog-
nostic variables, and the temporal weighting function
is

wt = 1, 0 � t − ts < 0.5τ, (9.1)

wt =
τ − (t − ts)

0.5τ
, 0.5τ � t − ts � τ, (9.2)

wt = 0, t − ts > τ, (9.3)

where t is time, ts is the time of the analysis data,
and τ is a predetermined time window over which the
analysis data affect the model simulation and in our
experiments τ = 6 h. The nudging run re-assimilates
the original analysis data to obtain new analysis data
for updating the reference and the perturbed states at
the end of each subinterval (Fig. 1).

3. Model and experimental design

3.1 The shallow-water model

The two-dimensional shallow-water model with
the f -plane with rolling bottom is used to test the
piecewise method. The prognostic equations are:

∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
+ fv − g

∂h

∂x
, (10.1)

∂v

∂t
= −u

∂v

∂x
− v

∂v

∂y
− fu − g

∂h

∂y
, (10.2)

∂h

∂t
= −u

∂(h − hs)
∂x

− v
∂(h − hs)

∂y

−(H + h − hs)(
∂u

∂x
+

∂v

∂y
). (10.3)

where u and v represent the current velocity at x and
y directions, respectively; h the perturbation height;
f the Coriolis parameter; H (= 3000 m) the basic
depth; and hs the terrain height, which is set up as a
circular cone at the center of the model domain with a
radius of 12 grids. The maximum terrain height hsmax

is 120 m for the “perfect” model and 105 m for the
“imperfect” model in the following experiments. The
model domain is specified as a 61 × 61 domain with a
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Fig. 1. Computational flow chart of the piecewise approach with nudging. The entire integration period (NΔt) is

divided into a number of short-term subintervals, whose lengths are σ = mΔt (m << N). At the end of the (k − 1)th

subinterval, the reference state xr
k is updated with the analysis data x̂r

k, while the perturbed state xp
k is updated with

the sum of the analysis and the difference between the reference and the perturbed states x̂r
k + δxk. The nudging run

adjusts the model states toward the analysis by adding an artificial tendency based on Eq. (8) before assimilating the

original analysis data. Note that the notation of the modeled states is a simplified representation (e.g., xr
k in the diagram

represents xr(tkm)).

grid spacing of 200 km (a relatively coarse resolution to
maintain computational stability). Periodic boundary
conditions are used, and the time step size Δt is 60 s.
The initial perturbation height is shown in Fig. 2, and
the initial velocity is given as a result of geostrophic
balance. The model runs for 90 days.

3.2 Experimental design

The experiments are designed to assess the effect
of the modified Coriolis parameter f on predictions of
the height. The control run is conducted with a lin-
early increasing f with time from 1.0 × 10−4 to 1.2
× 10−4 s−1 at the end of the simulations, while the
perturbation run is conducted with f as a constant of
1.0 × 10−4 s−1. The reference state of height hr (re-
sulting from the control run with perfect model) and
δh (the difference between the control and perturba-
tion runs with the perfect model, of which hsmax = 120
m), are regarded as the “truth” and used to evaluate
the imperfect model, of which hsmax = 105 m. As a
result from the continuous long-term simulations (the
control and perturbation runs), the standard deviation
(STD) of δh from the perfect model increases steadily
and reaches a maximum of 7.07 m by the end of the
simulations, and the root mean square error (RMSE)

of hr and hp from the imperfect model increases to a
maximum of about 11.3 m on day 84 (Fig. 3). This
suggests that the impact of model error on the simu-
lation accuracy exceeds that of the modified forcings
in the following experiments.

Two key factors affecting the simulations of the
piecewise approach are the length of the subinterval
and data quality including the number of analysis vari-

Fig. 2. The initial perturbation height and wind. The

contour interval is 20 m for the perturbation height. The

vectors are for the wind, and the vector scale (10 m s−1)

is labeled at the bottom of the panel.
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Fig. 3. Temporal variations of the root mean square error

(RMSE) of the reference state hr and the perturbed state

hp resulting from the runs with the “imperfect model”,

and standard deviation (STD) of δh resulting from the

runs with the “perfect model” (see definitions in the text).

ables and data accuracy. To examine the impacts of
these two factors on the simulations, we design the
following three groups of experiments, in which the
analysis data with different error levels are used.

Group A: analysis data are perfect; the “true”
states of h, u, and v produced by the perfect model
are directly used as analysis data.

Group B: analysis data contain consistent er-
rors between height (h) and velocity (u and v); they
are consistently produced as a result from iteratively
smoothing the “truth” 12 times through the following
smoothing operators:

xij = sxi,j + 0.25(1 − s)(si+1,j + si−1,j

+xi,j+1 + xi,j−1), (11)

where the subscripts i and j are grid point index at
x and y directions, respectively, and x is the result of
smoothing. The smoothing factor s is equal to 0.5 for
all the three variables. The domain-averaged RMSEs

of the resulting analyses are 1.12 m for h, 0.08 m s−1

for u, and 0.12 m s−1 for v, respectively, which are
approximately equal to 7 times the error of the 24-h
simulation with the initial fields (Fig. 2).

Group C: analysis data have inconsistent errors;
the analysis of h is the same to that in Group B with a
smoothing factor of 0.5, while the analyses of u and v

result from iteratively smoothing the “truth” 6 times
with a smoothing factor of –0.25 in Eq. (11). The re-
sulting domain-averaged RMSE decreases to 0.07 and
0.08 m s−1, respectively. Compared with Group B, the
analysis of h has the same errors, but the errors in the
analyses of u and v decrease. As such, the dynamic
equilibrium in the analyses may be broken, because of
the opposite smoothing factors that are applied to h,
u, and v through Eq. (11). The inconsistence between
height and velocity may lead to model spin-up prob-
lems. We then designed some experiments to examine
the impacts of the spin-up problems on the simulation
accuracy and the ability of the nudging technique to
solve the spin-up problems.

As shown in Table 1, each group of the experi-
ments consists of one continuous simulation (denoted
as C) and six simulations using the piecewise approach
(P). In Groups A and B, three simulations are updated
with all the variables (A), while the other three are
updated with h only (H); the piecewise subintervals
are 12, 48, and 96 h, respectively. In Group C, all
the six piecewise simulations are updated with all the
three variables h, u, and v, and the piecewise subinter-
vals are also 12, 48, and 96 h, respectively. However,
three simulations are with nudging (the analyses are
obtained from the nudging assimilation, denoted as
N), while the other three are without nudging.

Table 1. List of the experiments

Group Continuous run Piecewise run

A AC Update all variables: APA12, APA48, APA96

Update h only: APH12, APH48, APH96

B BC Update all variables: BPA12, BPA48, BPA96

Update h only: BPH12, BPH48, BPH96

C CC Without nudging: CPA12, CPA48, CPA96

With nudging: CPA12N, CPA48N, CPA96N

Note: The first letter stands for group; the second letter C for continuous run and P for piecewise simulation; the third letter A

for updating all three variables and H for updating h only; the following two numbers for the length of subinterval (in h); and the

last letter N represents that the analysis data result from the nudging.
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4. Results

4.1 Group A experiments

The errors of hr and hp from the continuous run
(experiment AC) grow with time, but this growing fea-
ture disappears in all the six piecewise runs (Fig. 4).
The errors of hr, hp, and δh from the piecewise runs
with updating of all the variables (APAs) are generally
smaller than those with updating of h only (APHs).
However, these errors increase with subinterval length
for APHs. For instance, the piecewise runs with a
smaller subinterval length (e.g., 12 or 48 h) perform
better than those with a greater length (96 h), more
obviously from days 15 to 45 (Fig. 4). The δh er-
ror resulting from APH96 exceeds the error from the
continuous run AC in the first 30 days and becomes
smaller after day 45 (Fig. 4c). The δh errors from
the other five piecewise runs, which are close to each
other, increase with time till the end of the simula-
tion. Those δh errors are close to that from AC in
the first 20 days but about 3 times smaller than that
from AC by the end of the simulation period. Over-
all, the piecewise approach is superior to the contin-
uous approach in such a case that no errors exist in
the analysis data. The advantage of the piecewise ap-
proach over the continuous approach is more apparent

for a longer integration, because the errors resulting
from the piecewise control and perturbed runs are al-
most at the same level as those from AC on day 7, but
much less afterwards.

Table 2 lists the RMSE in averaged hr, hp, and
δh over the last 30 days (from days 61 to 90) from
the seven experiments of Group A, which means that
the results are shown from a climate standpoint. The
simulation errors produced by the six piecewise runs
are much less than those by the continuous run. The
errors of averaged hr increase with subinterval length;
these errors produced by the piecewise runs with up-
dating of h only are about 2–3 times larger than those
by the runs with updating of all the three variables.
However, the errors of averaged hp do not increase
(even decrease) with subinterval length when all the
three variables are updated simultaneously; but they
increase with subinterval length when only h is up-
dated. Generally, the errors of averaged hp are smaller
when all the variables are updated, except for the run
with a 12-h subinterval length (APA12), which pro-
duces an error slightly larger than does the run with
updating of h only (APH12). The errors of averaged
δh over the last 30 days produced by the piecewise
runs are generally three times smaller than those by
the continuous runs. For a longer subinterval length,

Fig. 4. Temporal variations of the root mean square error (RMSE) of (a) reference state, (b) perturbed state, and (c)

difference δh resulting from Group A experiments.
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Table 2. RMSE in averaged hr, hp, and δh from the seven experiments in Group A

AC APA12 APA48 APA96 APH12 APH48 APH96

RMSE (hr) 10.70 0.06 0.24 0.45 0.23 0.74 1.27

RMSE (hp) 10.65 0.77 0.69 0.68 0.71 0.93 1.29

RMSE (δh) 2.84 0.79 0.78 0.77 0.72 0.83 1.03

The means are calculated from days 61 to 90

e.g., 96 h, the piecewise approach prefers updating all
the variables to updating h only. However, when less
analysis variables (only h in this testing case) are avail-
able, a shorter piecewise subinterval (< 48 h) is pre-
ferred.

4.2 Group B experiments

The temporal variations of hr, hp, and δh er-
rors resulting from the seven runs resemble those from
Group A experiments, except that the errors of hr and
hp resulting from the piecewise runs are larger than
those from Group A because of the larger analysis data
errors (figure omitted).

Table 3 lists the RMSE of averaged hr, hp, and δh

over the final 30 days. The error of the continuous run
(BC) is slightly different from that of Group A (AC),
indicating the continuous simulation is not very sen-
sitive to the analysis data error. Although the errors
of averaged hr and hp resulting from the six piecewise
runs become larger, the error of averaged δh does not
increase much, because the errors of averaged hr and
hp mostly offset within the short subintervals in the
piecewise runs. The impacts of the subinterval length
and the number of updated variables on the simula-
tion skill are similar to that of Group A. The errors
from the six piecewise runs are also much less than
that resulting from the continuous simulation even if
greater errors exist in the analysis data.

Table 3. RMSE in averaged hr, hp, and δh from the seven experiments in Group B

BC BPA12 BPA48 BPA96 BPH12 BPH48 BPH96

RMSE (hr) 10.26 1.18 1.20 1.25 1.19 1.34 1.65

RMSE (hp) 10.15 1.39 1.40 1.42 1.45 1.55 1.79

RMSE (δh) 2.76 0.99 0.99 0.99 0.96 0.96 1.06

The means are calculated from days 61 to 90.

4.3 Group C experiments

The errors of hr produced by the six piecewise
runs of Group C, are close to each other, and remain
stably smaller than that by CC (Fig. 5a). The errors
of hp resulting from CPA12 grow more rapidly after
day 45, becoming larger than those from CPA48 and
CPA96 (Fig. 5b). However, when the nudging tech-
nique is applied, this situation disappears. The δh er-
rors from the three runs with the nudging analysis are
generally smaller than those without nudging, which
differ significantly from each other (Fig. 5c). Without
nudging, the error produced by CPA12 exceeds that by
CC after day 24, with a maximum error (5.37 m) be-
ing larger than that by CC (3.92 m). CPA48 performs
much better than does CPA12, reaching a maximum
of 2.52 m by the end. CPA96 (though its error grows
faster during the initial stage) performs better than

CPA48 after day 44, reaching a maximum of 2.17 m
by the end. This indicates that less frequent updating
of the states with analysis data that contains inconsis-
tent errors (between height and velocity) may result
in a better model performance in simulating climate
sensitivity, when no nudging is applied.

Averaged over the last 30 days, the error of aver-
aged hr from the three piecewise runs without nudg-
ing (CPA12, CPA48, and CPA96; listed in Table 4)
is smaller than those from Group B (BPA12, BPA48,
and BPA96) due likely to the fact that the analysis
data error of u and v in Group C is smaller than
that in Group B. However, the error of averaged hp

from CPA12 is larger than that from BPA12 but de-
creases with increasing subinterval length (CPA48 and
CPA96), indicating that less frequent updating is pre-
ferred in the case of inconsistent errors existing in the
analysis data. However, the use of nudging technique
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Fig. 5. As in Fig. 4, but for Group C experiments.

Table 4. RMSE in averaged hr, hp, and δh from the seven experiments in Group C

CC CPA12 CPA48 CPA96 CPA12N CPA48N CPA96N

RMSE (hr) 10.36 1.07 0.92 0.91 0.76 0.87 1.02

RMSE (hp) 10.25 3.80 1.42 1.24 1.15 1.20 1.31

RMSE (δh) 2.87 3.61 1.71 1.42 1.23 1.27 1.33

The means are calculated from days 61 to 90.

significantly reduces the errors of averaged hr, hp, and
δh, which become smaller with a shorter subinterval
length, indicating that more frequent updating is pre-
ferred when nudging is applied.

5. Conclusions

Model-based climate sensitivity studies are pow-
erful tools for studying the impact of modified external
forcings on climate change and for understanding the
mechanisms of climate anomaly. Usually, the sensitiv-
ity experiments require at least two simulations: one
is conducted with as many external forcings as possi-
ble, resulting in a reference state; while the other with
modified forcings, resulting in a perturbed state. The
difference between the two states averaged over a long
term is then regarded as the effect of the modified ex-
ternal forcings, or climate sensitivity. However, model
errors may grow during the continuous long-term inte-
grations in both the reference and perturbed climate

states and hence the climate sensitivity.
To reduce the errors, we propose a piecewise mod-

eling approach that splits the continuous long-term
simulation into a number of subintervals of sequen-
tial short-term simulations, and updates the mod-
eled states through re-initialization at the end of each
subinterval. Many researchers have already applied re-
initialization or nudging in dynamical climate down-
scaling with regional climate models. Following these
previous climate downscaling studies, the piecewise
approach updates the reference state with the anal-
ysis data. Moreover, the piecewise approach further
updates the perturbed states with the sum of analysis
data and the difference between the perturbed and the
reference states at the end of each subinterval, thereby
improving the credibility of the modeled climate sen-
sitivity.

To investigate the impacts of analysis data errors
and subinterval lengths on the simulation of climate
sensitivity using the piecewise approach, we designed
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Groups A and B experiments with the shallow-water
model, both with subinterval lengths varying from 12,
48, to 96 h. The analysis data for updating the model
states contain larger errors in Group B experiments
than in Group A experiments. Considering analysis
data availability, we also divide the experiments into
two categories: updating with all variables and up-
dating with only one variable. The conclusions with
regard to the modeled climate sensitivity drawn from
the experiments are as follows.

1) Errors produced by the piecewise approach is
about 2–3 times smaller than those by the continuous
approach under most cases, either with no or large
analysis data errors, or updating one variable or more
variables.

2) When fewer analysis variables are available,
a shorter piecewise subinterval (< 48 h) is preferred.
For a larger piecewise subinterval (e.g., 96 h), the
piecewise approach prefers updating all the variables
to updating only one.

To investigate the impact of the spin-up prob-
lems induced by inconsistent analysis data errors on
the modeled climate sensitivity, we designed Group
C experiments by employing opposite factors in the
smoothing operator (–0.25 for velocity and 0.5 for
height) to generate inconsistent analysis data errors.
We also used a nudging assimilation technique to
solve the spin-up problems. The conclusions drawn
from Group C experiments and through comparing it
with Groups A and B experiments are:

1) Inconsistent analysis data errors result in larger
model errors but still are much smaller than the con-
tinuous approach in the case of nudging.

2) Without nudging, less frequent updating of
the modeled states with analysis data that contain
inconsistent errors may result in a better model per-
formance.

3) The use of nudging technique significantly re-
duces the model errors and more frequent updating is
preferred.

The piecewise modeling approach is promising for
climate sensitivity studies as evidenced from the above
experiments with the shallow-water model. However,
the simple model does not include a feedback mech-

anism, with which the change in climate states in
response to changes in an external forcing may feed
back to the external forcing. Therefore, the approach
needs to be further tested with a more complex model
with greater climatic realism. Furthermore, since the
approach can be used only when the observations or
analysis data are available for one of the simulated
states, it cannot be used in the prediction of future
climate.
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