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Abstract

Accurate prediction of survival of cancer patients is still a key open problem in clinical research. Recently, many large-scale
gene expression clusterings have identified sets of genes reportedly predictive of prognosis; however, those gene sets
shared few genes in common and were poorly validated using independent data. We have developed a systems biology-
based approach by using either combined gene sets and the protein interaction network (Method A) or the protein network
alone (Method B) to identify common prognostic genes based on microarray gene expression data of glioblastoma
multiforme and compared with differential gene expression clustering (Method C). Validations of prediction performance
show that the 23-prognostic gene classifier identified by Method A outperforms other gene classifiers identified by Methods
B and C or previously reported for gliomas on 17 of 20 independent sample cohorts across five tumor types. We also find
that among the 23 genes are 21 related to cellular proliferation and two related to response to stress/immune response. We
further find that the increased expression of the 21 genes and the decreased expression of the other two genes are
associated with poorer survival, which is supportive with the notion that cellular proliferation and immune response
contribute to a significant portion of predictive power of prognostic classifiers. Our results demonstrate that the systems
biology-based approach enables to identify common survival-associated genes.
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Introduction

The prediction of survival is critical when formulating a proper

treatment strategy for a patient with cancer. Clinicopathological

factors such as age, sex, and tumor grade are commonly used to

assess prognosis, but the prediction is limited. In glioma, tumor

grade is the most established predictor of disease outcome [1], but

patients with either grade III glioma or glioblastoma multiforme

(GBM), grade IV glioma, are nearly uniformly fatal [2–4]. The

subtle distinction of these two grades often misclassifies them into

either grade III glioma or GBM. Even histologically identical

tumors can behave in highly different manners from treatment

response to survival. Patients with GBM show remarkable

variations in survival from less than one week to more than three

years following diagnosis [5]. Thus, new prognostic classifiers are

urgently needed to more accurately predict the survival of

individual patients.

Microarray gene expression signatures have been reported to

predict survival of cancer patients [6]. However, sets of predictive

genes generated with the differential expression clustering share

few overlapping genes and exhibit less successful predictive power

in independent data [6]. The lack of agreement in prediction

raised doubts about the reliability and robustness of the reportedly

predictive genes. There are three major causes for the divergent

results: small groups of samples, complex nature of high-

throughput microarray technologies, and simplified analytical

methods in microarray data analysis. The use of small samples in

expression profiling makes it difficult to identify genes associated

with a condition or outcome, such as survival, from hundreds or

even thousands of genes that exhibit expression changes [6].

Highly variable microarray experimental conditions and the use of

different microarray platforms cause poor reproducibility of

microarray measurements within and between laboratories [7–

11]. Differential gene expression clustering (the SAM-based

analysis) is a common analytical tool used to analyze microarray

data. However, this method bases on only differential expression of

individual genes for target gene identification and ignores prior

knowledge of biological pathways that are composed of groups of

genes and interactions of their proteins, which is believed to be

more informative than expression changes of individual genes [7].

Several systematic approaches have been recently proposed to

address the problems. One approach uses a gene pathway-based

analysis, which identifies biological pathways (a priori defined gene

sets) by scoring the coherency of expression changes among their

member genes based on microarray data [7–9]. A gene set is an a

priori defined set of genes, in which genes share a similar biological
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function or belong to one gene signaling pathway. Such a method

allows biologists to incorporate previously accumulated biological

knowledge in the analysis and make a more biology-driven analysis

of microarray data, which can lead to identify interpretable

discriminative signature that gains insights into tumor biology and

potential therapeutic targets. In addition, this method enables to

identify moderately differentially expressed but functionally impor-

tant genes, which are missed in gene expression clustering [8]. The

method has been applied to discriminate irradiated from non-

irradiated yeast cells [9]. Another approach is a protein interaction

network-based method, which utilizes a recently available protein-

protein interaction network to identify sub-networks based on

coherent expression patterns of their genes [12,13]. A sub-network

refers to a smaller or more focused network within a large protein

interaction network. It has been applied to effectively differentiate a

metastatic from a non-metastatic breast tumor [10]. Both the

methods efficiently utilize co-expression information embedded

within the microarray gene expression data. However, the problem

of both the methods is that each gene set or sub-network identified

includes too many genes (,tens of genes each), which greatly limits

their clinical application.

Here, we develop a systems biology-based approach (Method A) by

combining gene sets and the protein interaction network to identify

prognostic genes using microarray expression data of primary GBMs

and compare with other two methods, Method B, which uses the

protein interaction network alone, and Method C, which is based on

differential gene expression patterns. We find that the 23-prognostic

gene classifier identified by Method A predicts not only the survival of

glioma patients, but also the survival of patients with other solid

tumors such as breast cancer, lung cancer, bladder cancer, and

ovarian cancer, with the success on 17 of 20 independent sample

cohorts compared with 5–9 of 20 performed by the classifiers

identified by other two methods. We find that the 23-gene prediction

is independent of tumor grade and patient age, and 21 of the 23 genes

are associated with cell proliferation while the other 2 genes

associated with immune response, supporting the notion that cell

proliferation and immune response exhibit a significant prognostic

power. Our findings suggest that the 23-gene classifier may have

general utility in predicting survival for solid tumors.

Results

Prognostic Classifier Development Using Systematic and
Gene Expression Clustering Approaches for Primary GBM

To sufficiently utilize microarray expression data and the

recently available protein interaction network, we developed a

systems biology-based approach to identify prognostic gene

classifiers based on microarray expression data of primary GBMs

by using either combined gene sets and the protein interaction

network (Method A) or the protein interaction network alone

(Method B), and compared with conventional gene expression

clustering (the SAM-based analysis) (Method C) for prognostic

gene identification. The overall method strategy was outlined in

Figure 1 and Materials and methods.

We collected five advanced glioma data sets, two GBM sets

from the cohorts UCSF-1 (MD Anderson cancer center database)

[14] and UCSF-2 (Stanford microarray database) [15] and three

HGG (grade III and GBM combined) sets from the cohorts UCLA

(GEO GDS1975) [3], MDA (GEO GDS1815) [4], and CMBC

(BROAD institute database) [2] (Table 1). Among the five cohorts,

UCLA, UCSF-1 and MDA have 35, 34, and 49 primary GBMs

respectively, while CMBC and USCF-2 have only 14 and 15

primary GBMs, separately. Therefore, we used the three larger

primary GBM sets (UCSF-1, UCLA, and MDA) to train a

molecular classifier and left out the rest two GBM sets from

UCSF-2 and CMBC, and the three HGG cohorts for validation.

Considering experimental variations, different microarray plat-

forms used, and diverse patient populations existed among the

three training cohorts, we decided to apply the method (A, B, and

C) to each cohort independently and then reconciled candidate

prognostic genes from the three data sets to derive a final list of

prognostic genes based on their overlaps between any two cohorts

and concordant expression across the three cohorts with significant

expression in at least two cohorts.

Using the median OS as a cutoff for each cohort, we divided

microarray data of patients into short-term versus long-term

survival groups. By applying Method A, we identified 124, 114,

and 78 significantly enriched gene sets between the two survival

groups for UCSF-1, MDA, and UCLA, respectively (Tables S1,

S2, S3). From those enriched gene sets, 198, 257, and 164

candidate prognostic genes were identified for the three cohorts,

respectively, (for candidate prognostic genes and their scores,

please see Tables S4, S5, S6). Based on overlap between any two

cohorts and concordant expression across the three cohorts with

significant differential expression (P,0.05) in at least two cohorts,

we identified 23 prognostic genes (Table 2), from which ‘‘cyclin-

dependent kinase 2’’ (CDK2) and ‘‘interferon gamma receptor 1’’

(IFNGR1) were selected to demonstrate the null distribution of

their S values (Figure 2).

By using Method B, We obtained 147, 278, and 162

significantly enriched sub-networks between the two survival

groups for UCSF-1, UCLA, and MDA, respectively. From those

enriched sub-networks, we found 139, 131, and 133 candidate

prognostic genes for UCSF-1, MDA, and UCLA, respectively, (for

candidate prognostic genes and their scores, please see Tables S7,

S8, S9). Similarly, we identified 6 prognostic genes overlapped

between any two cohorts and concordantly expressed across the

three cohorts with significant differential expression (P,0.05) in at

least two cohorts (Table S10).

In Method C, we performed two-class analysis (students’ t test)

of microarray gene expression data to identify genes associated

with survival using the SAM software. We selected the same

number of top discriminative genes as the number of genes

identified by Method A for UCLA, UCSF-1, and MDA cohorts,

respectively, (Table S11, S12, S13). Similarly, we identified 11

prognostic genes overlapped between any two cohorts and

concordant expression across the three cohorts with significant

differential expression (P,0.05) in at least two cohorts (Table S14).

Validation of Classifier Performance in Advanced Gliomas
To compare prediction performance of the three prognostic

gene classifiers identified by Method A, B and C, we validated

them in the three training primary GBM cohorts (UCSF-1, MDA,

and UCLA), two independent GBM cohorts (CMBC and USCF-

2), and three HGG cohorts (UCLA, MDA, and CMBC). As shown

in Table 3, the multivariate Cox regression analysis indicated that

the 23-gene classifier found by Method A was independently and

significantly associated with survival in six of eight cohorts and

moderately in CMBC-HGG (HR = 2.11; 95% CI, 1.03–4.35;

P = 0.055), but not significantly in the training set UCLA.

Similarly, the 6-gene classifier by Method B had a significant

association with survival in six of the eight cohorts, but failed in the

training cohort UCLA and the validation cohort UCLA-HGG.

However, the 11-gene classifier by Method C was the worst

predictor, which failed in four of the eight cohorts, the training

cohort UCLA and three validation cohorts CMBC-GBM, UCLA-

HGG, and MDA-HGG. While all the three gene classifiers were

not predictive in the training cohort UCLA, the 23-gene signature

Prognostic Gene Classifier
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seemed to have the best performance across all the cohorts

assessed, followed by the 6-gene signature and then the 11-gene

signature in advanced gliomas.

Then, we compared the classification power of the three gene

classifiers. We generated Kaplan-Meier plots to illustrate survival

differences in the two survival groups for both the validation and the

Figure 1. Flowchart of Methods A, B and C. Schematic method overview of a systems biology-based approach using either combined gene sets
and the protein interaction network (Method A) or the protein interaction network alone (Method B) and conventional gene expression clustering
(the SAM-based analysis) (Method C) for prognostic gene identification based on microarray gene expression data of primary GBMs.
doi:10.1371/journal.pone.0006274.g001
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training cohorts (Figure 3). The 23-gene classifier significantly

classified patients into two groups with distinctively different survival

time (Figure 3). Kaplan-Meier plots of the 6-gene and 11-gene

classifiers on all the cohorts were present in Figure S1, S2, S3, S4, S5,

S6. Alike the 23-gene classifier, the 6-gene classifier significantly

discriminated patients into two survival groups in all the cohorts

assessed, while the 11-gene classifier did not work well in two GBM

cohorts (UCLA and CMBC). The results indicate that the 23-gene

and 6-gene signatures are predictive of survival equally well on all the

eight advanced glioma cohorts, better than the 11-gene signature.

Validation of Classifier Performance in Other Tumor
Types

To assess the robustness of survival prediction of the three gene

classifiers for patients with other tumor types, we obtained 12

cohorts including five breast cancer cohorts: GIS (ArrayExpress E-

GEOD-3494) [16], CRCM (GEO GSE9893) [17], SUSM

(Stanford microarray database) [18], NCI (Rosetta inpharmatics

inc database) [19], EMC (GEO GSE2034) [20], five lung cancer

cohorts: DFCI (BROAD institute database) [21], PCH (GEO

GSE5843) [22], CAN/DF (caArray) [23], MSK (caArray) [23],

UM-HLM (caArray) [23], one bladder cancer cohort AUH (GEO

GSE5287) [24], and one ovarian cancer cohort MNI (GEO

GSE8842) with microarray expression data and clinicopathogical

information publicly available (detailed in Materials and methods)

(Table 1). According to the multivariate Cox regression analysis

(Table 4), we found that the 23-gene classifier achieved an

independent and significant association with survival in nine of the

12 cohorts, moderate in the cohort MSK (lung cancer)

(HR = 2.29; 95% CI, 0.98–5.33; P = 0.056), but not significant

in the two cohorts SUSM (breast cancer) and UM-HLM (lung

cancer). In contrast, the 6-gene and 11-gene classifiers were very

poorly associated with survival in those cohorts. They failed in ten

and nine of the 12 cohorts, respectively, and were only

significantly associated with survival in two cohorts: EMC (breast

cancer) and MNI (ovarian cancer), and three cohorts: CRCM

(breast cancer), EMC (breast cancer), and AUH (bladder cancer),

respectively. Altogether, the findings demonstrate that the 23-gene

classifier outperforms the other two gene classifiers in those tumor

types, supporting its validity of prognosis independent of tumor

grade or stage and patient age across solid tumor types.

We next examined the discriminative power of the 23-gene

classifier for survival by Kaplan-Meier analysis in all the 12

cohorts. It significantly classified patients into two different survival

groups on 11 of the 12 cohorts except for the cohort UM-HLM-

lung cancer (Figure 4A–D). For the four breast cancer cohorts that

had stages I, II, and III tumors combined (GIS, CRCM, SUSM

and EMC), we also used the 23-gene classifier to classify their

patients into three groups by hierarchical clustering, respectively,

and found that the three groups in each cohort were also

significantly associated with survival (P = 0.0001, 0.0001, 0.0001,

and 0.01 for GIS, CRCM, SUSM and EMC, respectively).

Table 1. Summary statistics of cohort data.

Tumor type Cohort (Ref) Platform
Median
OS(m)

Age mean
(sd) (yr) Outcome

Tumor grade/stage
(sample size)

Training cohort

Primary GBM UCLA [3] Oligos Affymetrix 14 54 (15) 22a IV (35)c

MDA [4] Oligos Affymetrix 17.5 49 (12) 46a IV (49)c

UCSF-1 [14] Oligos Affymetrix 17 NA 34a IV (34)c

Validation cohort

GBM CMBC [2] Oligos Affymetrix 12 NA 24a IV (28)c

UCSF-2 [15] Spotted cDNA 10 62 (21) 15a IV (20)c

HGG (Grade III+GBM) UCLA [3] Oligos Affymetrix 15 46 (16) 48a III (24); IV (50)c

MDA [4] Oligos Affymetrix 23 46 (13) 62a III (21); IV (55)c

CMBC [2] Oligos Affymetrix 17 NA 33a III (22); IV (28)c

Breast GIS [16] Oligos Affymetrix 122 65 (14) 54a I (62); II (121); III (51)c

CRCM [17] Spotted Oligos 66 68 (10) 38a I (21); II (94); III (33)c

SUSM [18] Oligos Agilent 87 44 (6) 79a I (75); II (101); III (119)c

NCI [19] Oligos Rosetta inkjet 65 NA 34b I (78)c

EMC [20] Oligos Affymetrix 86 NA 107b I+II+III (286)c

Lung DFCI [21] Oligos Affymetrix 50 64 (11) 31a I (49); II (13)d

PCH [22] Spotted Oligos 53 63 (10) 23a I (48)d

CAN/DF [23] Oligos Affymetrix 40 61 (10) 28a I (56); II (26)d

MSK [23] Oligos Affymetrix 47 67 (9) 23a I (63); II (20)d

UM-HLM [23] Oligos Affymetrix 56 66 (10) 118a I (160); II (48)d

Bladder AUH [24] Oligos Affymetrix 13 NA 30a III+IV (30)c

Ovarium MNI(GSE8842) Spotted cDNA 80 52 (12) 13a I (68)d

aDeath.
bMetastasis.
cTumor grade.
dTumor stage. NA, not available. m, month. Yr, year. Ref, reference.
doi:10.1371/journal.pone.0006274.t001
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Analyses of Additional Classifiers in Advanced Gliomas
and Other Tumor Types

To assess the predictive power of previously published prognostic

gene signatures for advanced glioma in those cohorts, we tested

three main prognostic gene classifiers, 35-gene [4], 44-gene [3], and

47-gene [14] classifiers derived from MDA-HGG, UCLA-HGG,

and UCSF-1-GBM, respectively, on the 20 cohorts. To align with

the original reports, we divided patients into three (for 35-gene

classifier), four (for 44-gene classifier), and two (for 47-gene classifier)

groups accordingly. The multivariate Cox regression analysis

showed that the associations between the three gene classifiers

and survival were much poorer than the 23-gene classifier. The

hazard ratios for the 35-gene, 44-gene and 47-gene classifiers were

not statistically significant in four, two, and four of the eight

advanced glioma cohorts, separately, and eight, nine and 11 of the

12 other tumor cohorts, respectively (Table S15 and S16).

Moreover, we applied the fold-change of at least 1.5 and false

discovery rate cutoff of 10% to Method C for identification of

candidate prognostic genes for cohorts UCLA, UCSF-1 and

MDA, respectively. There was no overlapped prognostic gene

identified between any two cohorts. Moreover, we also performed

SAM survival analysis as an attempt to identify prognostic genes

for the same cohorts. 153 and 137 candidate prognostic genes

were identified for cohorts UCSF-1 and UCLA with false

discovery rate of 1% and 5%, respectively. For MDA, 59

candidate prognostic genes were found with a false discovery rate

of 25%. Based on overlap between any two cohorts and

concordant expression across the three cohorts with significant

differential expression in at least two cohorts, there was only one

gene, ‘‘leucine-rich repeats and immunoglobulin-like domains 1’’

(LRIG1), identified as prognostic gene marker. We also applied

univariate Cox regression analysis to Method A to calculate the

correlation (S) between expression activity and survival phenotype

for prognostic gene identification. As a result, we found 25

prognostic genes, which had 15 genes overlapped with the 23

genes (Table S17). Tests for prediction in all the 20 cohorts showed

that both the 25-gene and 15-gene classifiers had less prognostic

power than the 23 genes. They failed in three and four of the eight

glioma cohorts, separately, and six and nine of the 12 other tumor

cohorts, respectively, (Table S18 and S19).

In addition, we performed the gene set approach alone without

incorporating the protein interaction network, and identified

enriched prognostic gene sets shared in at least two data cohorts

with concordant expression (Table S20). Prediction tests showed

that the prognostic gene sets with a total of 576 genes had much

poorer prognostic power than the 23 genes, failed in 3 of 5 glioma

cohorts (Table S21).

Table 2. List of prognostic genes developed by method A
from primary GBM data of UCLA, USCF-1, and MDA.

Description
Gene
Symbol

Entrez
ID

minichromosome maintenance deficient 6 MCM6 4175

gamma 1 TUBG1 7283

thymidylate synthetase TYMS 7298

cyclin B1 CCNB1 891

WEE1 homolog (S. pombe) WEE1 7465

cyclin A2 CCNA2 890

CDC28 protein kinase regulatory subunit 1B CKS1B 1163

cyclin B2 CCNB2 9133

cell division cycle 7 homolog CDC7 8317

uracil-DNA glycosylase UNG 7374

replication protein A3, 14 kDa RPA3 6119

CDC6 cell division cycle 6 homolog (S. cerevisiae) CDC6 990

CDC45 cell division cycle 45-like (S. cerevisiae) CDC45L 8318

cyclin-dependent kinase 2 CDK2 1017

replication protein A2, 32 kDa RPA2 6118

ribonucleotide reductase M1 polypeptide RRM1 6240

DNA (cytosine-5-)-methyltransferase 1 DNMT1 1786

proliferating cell nuclear antigen PCNA 5111

ribonucleotide reductase M2 polypeptide RRM2 6241

pituitary tumor-transforming 1 PTTG1 9232

gamma-glutamyl hydrolase GGH 8836

ras-related C3 botulinum toxin substrate 2 RAC2 5880

interferon gamma receptor 1 IFNGR1 3459

doi:10.1371/journal.pone.0006274.t002

Figure 2. The null distributions of S values of CDK2 and IFNGR1. The null distribution of S values of CDK2 and IFNGR1 are computed from
MDA-GBM data. The left panel is the null distribution of S value of cell proliferation-related gene CDK2; the right panel is the null distribution of S
value of immune response-related gene IFNGR1.
doi:10.1371/journal.pone.0006274.g002
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Gene Ontology and Overlap with Other Prognostic Gene
Lists

To understand biological functions of the 23 prognostic genes,

we performed gene ontology analysis [25] (Table S22). We found

that 22 of the 23 genes were significantly associated with either

mitotic cell-cycle (EASE score, 1610216), DNA metabolism

(EASE score, 6.27610210), cell growth and/or maintenance (Ease

score, 0.00027), DNA repair (Ease score, 0.0052), or response to

stress/immune response (Ease score, 0.019). The only left-out gene

is GGH, which is involved in glutamine metabolism. Furthermore,

we found that poorer survival was associated with decreased

expression of two immune response-related genes, IFNGR1 and

‘‘ras-related C3 botulinum toxin substrate 2’’ (RAC2) and

increased expression of 21 genes related to cell cycle (15/23

genes), DNA metabolism (12/23) and repair (4/23), and cell

growth/maintenance (16/23), which is consistent with recent

reports showing that those biological functions are essential for

tumor progression and patient survival [26–29].

We then extracted a protein interaction sub-network based on

the 23 gene-encoded proteins and their interacting partners from

the human protein interaction network. Through GO annotation,

we found that the sub-network seeded by 23 genes was related to

some important functions, such as cell cycle, regulation of mitosis,

regulation of apoptosis, JAK-STAT cascase, MAPKKK cascade,

etc (Table S23). Furthermore, we found that most of the

interacting proteins were significantly enriched in the biological

functions related to cell proliferation and immune response. Those

proteins were highlighted in nodes of red (cell proliferation), green

(immune response), or half red and half green (both cell

proliferation and immune response) (Figure 5).

Finally, we examined the overlap of the 23 prognostic genes

with the other prognostic gene lists described above. We found

that the 23 genes shared only one gene, CDK2, with 6 genes and

11 genes, and no common gene was found with the additional

three glioma prognostic classifiers [3,4,14].

Discussion

The systematic integration of gene sets, the protein interaction

network, and microarray gene expression data offers us three main

advantages: First, it enables us to sufficiently utilize the gene co-

expression information provided by the microarray data, which is

believed to be more informative than expression changes of

individual genes for target gene identification. Second, identified

prognostic genes provide insights into the biology of tumor and

potential therapeutic targets. Third, it allows identifying common

survival-associated genes independent of tumor types.

The use of the gene sets (Method A) as pre-selected gene sources

may introduce some bias and miss an opportunity of finding new

survival-associated genes. In the study, we, therefore, directly

applied the microarray data to the protein interaction network to

first search for significantly enriched sub-networks as proposed by

Chuang et al [10], from which we identified prognostic genes

(Method B). We found that Method B produced a simpler classifier

made up of only 6 genes with 2 in common CDK2 and

‘‘replication protein A2’’ (RPA2) with the 23 genes, and performed

slightly less optimally to the 23-gene classifier in the eight glioma

cohorts, but very poorly in the 12 other tumor cohorts. This is not

surprising as reported by Boutros et al (PNAS 2009) that there

exist perhaps hundreds or even thousands of prognostic signatures

made up of a small count of genes in large and complex datasets

Table 3. Multivariate Cox regression analysis in training and validation cohorts of advanced gliomas.

Glioma Cohort Covariate 23 genesa 6 genesb 11 genesc

P value HR (CI95%) P value HR (CI95%) P value HR (CI95%)

Training cohort

GBM UCLA cluster 0.131 1.96 (0.82–4.71) 0.095 2.48 (0.85–7.20) 0.590 1.30 (0.50–3.42)

age 0.001 1.06 (1.03–1.10) 0.007 1.05 (1.01–1.09) 0.001 1.06 (1.02–1.10)

UCSF-1 cluster 0.005 3.19 (1.43–7.13) 0.001 4.22 (1.88–9.45) 0.005 2.95 (1.39–6.27)

MDA cluster 0.013 2.29 (1.19–4.41) 0.034 1.94 (1.05–3.59) ,0.0001 3.16 (1.66–6.01)

age 0.522 1.01 (0.98–1.04) 0.905 1.00 (0.97–1.03) 0.761 1.01 (0.97–1.02)

Validation cohort

GBM CMBC cluster 0.012 3.05 (1.27–7.30) 0.03 2.73 (1.11–6.76) 0.074 2.37 (0.92,6.12)

UCSF-2 cluster 0.037 4.24 (1.09–16.52) 0.045 3.77 (1.03–13.83) 0.04 4.05 (1.21–13.49)

age 0.09 1.04 (0.99–1.09) 0.069 1.05 (1.00–1.10) 0.055 1.05 (1.00–1.11)

HGG (Grade III+GBM) UCLA cluster 0.037 1.94 (1.04–3.60) 0.417 1.30 (0.70–2.43) 0.879 1.05 (0.54–2.04)

grade 0.011 2.84 (1.27–6.35) 0.003 3.27 (1.48–7.20) 0.004 3.31 (1.46–7.05)

age 0.217 1.01 (0.99–1.04) 0.209 1.01 (0.99–1.04) 0.151 1.02 (0.99–1.04)

MDA cluster 0.005 2.09 (1.25–3.49) 0.014 1.96 (1.15–3.34) 0.268 1.49 (0.74–3.00)

grade 0.015 2.54 (1.20–5.38) 0.01 2.63 (1.26–5.06) 0.077 2.14 (0.92–4.95)

age 0.142 1.02 (0.99–1.04) 0.184 1.02 (0.99–1.04) 0.248 1.01 (0.99–1.04)

CMBC cluster 0.055 2.11 (1.03–4.35) 0.001 2.84 (1.34–5.98) 0.028 2.71 (1.11–6.57)

grade 0.01 2.66 (1.26–5.63) 0.045 2.20 (1.02–4.74) 0.36 1.54 (0.61–3.91)

*The direction of the hazard ratio is as follows: cluster, the short-term versus long-term survival group; grade, GBM versus grade III; age, older versus younger.
aMethod A.
bMethod B.
cMethod C.
doi:10.1371/journal.pone.0006274.t003
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[30]. The power of the 23 genes lies in the prediction for other

solid tumors and its potential generality shared among the solid

tumors. Moreover, we did not find any new prognostic genes using

Method B. Compared with those two gene classifiers, the 11-gene

classifier found by Method C (the SAM-based analysis) was

obviously incapable of predicting survival in advanced glioma and

other tumor types tested, suggesting that the systematic approach

with the gene set scale is powerful over gene expression clustering

for prognostic gene identification.

When searching for a consensus prognostic gene classifier, some

studies have applied a combined (meta-) analysis of several

microarray expression data sets and used certain mathematical

methods such as Singular value decompositions (SVDs) [31,32],

distance-weighted discrimination (DWD) [33,34] or analysis of

variance (ANOVA) [35] to ‘‘correct’’ systematic biases existed

among those data sets to train classifiers [34,36]. While these

methods are certainly a step forward in the right direction, they

may bring in some problems as well. Experimental biases present

in similar data sets generated in different laboratories using

different microarray platforms can be possibly lessened or

removed by those methods. However, if data sets contain diverse

patient populations, technical and biological effects embedded in

the microarray data can not be differentiated. Thus, when

applying those methods to ‘correct’ such microarray data,

informative biological variability will be removed as well.

In our study, the three training cohorts had very diverse patient

populations from the median OS of 14 months (ranged 2–44.54

months) (UCLA), 17 months (0.65–114.85 months) with 17.6% of

patients having OS .45 months (UCSF-1) to 17.5 months (0.75–

78.25 months) with 18.4% of patients having OS .45 months

(MDA). Therefore, we think that it is more reasonable to apply the

method (A, B, and C) to each cohort and then reconcile the candidate

Figure 3. Kaplan-Meier plots of overall survival for advanced gliomas generated by the 23-gene classifier. (A) Two GBM cohorts UCSF-2
and CMBC. (B) Three HGG cohorts MDA, UCLA, and CMBC. (C) Three GBM training cohorts MDA, UCLA, and UCSF-1. STS, short-term survival group;
LTS, long-term survival group. N, the number of patients within STS or LTS group. P values are indicated within plots. P, = 0.05 is defined as
significance.
doi:10.1371/journal.pone.0006274.g003
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genes from the three cohorts to reach a final list of prognostic genes

based on their overlaps among any two cohorts and concordant

expression across the three cohorts. We notice that UCLA has a more

biased population with a shorter survival. It may explain why it is

difficult to classify the UCLA patients into survival-associated clusters

independent of tumor grade and patient age.

Validation of the 23 genes in 20 independent and heteroge-

neous sample cohorts presented here illustrates the predictive

power of the 23-gene classifier independent of tumor grade and

patient age across several tumor types. It performs well in either

uniform or combined low- or high-grade tumors, indicating that

the 23 gene-associated functions (cellular proliferation and

immune response) are fundamental and essential for prognosis

with both low- and high-grade solid tumors, in other words,

cellular proliferation and immune response may be two key

prognostic components shared by solid tumors, which is supported

by recent findings in breast cancer and lung cancer [26–28]. This

may explain why the 23-gene classifier performs well in those

tumor cohorts tested in this study.

The power of this approach is presently limited by the number

of genes in gene pathways and the protein interaction network;

however, the prediction performance of the 23-gene signature is

impressive, given that only ,35% of genes are matched in the

annotation between our gene sets and the Affymetrix platforms.

Future studies will be required to validate the prognostic power of

the 23-gene classifier across additional, different tumor types.

We conclude that the systematic approach enables us to identify

23-prognsotic gene classifier that is the first to be valid in 17/20

independent tumor cohorts across several tumor types, suggesting

their commonality for solid tumors, especially, for highly

proliferating tumors. This approach may also prove useful for

other purposes such as for therapeutic response and metastasis.

Materials and Methods

Data Collection
We collected microarray gene expression data and clinicopath-

ological information for patients with advanced glioma from three

Table 4. Multivariate Cox regression analysis in validation cohorts of other tumor types.

Tumor type Cohort Covariate 23 genesa 6 genesb 11 genesc

P value HR (CI 95%) P value HR (CI 95%) P value HR (CI 95%)

Breast GIS cluster 0.003 2.37 (1.34–4.18) 0.267 1.41 (0.77–2.58) 0.42 1.27 (0.71–2.28)

grade 0.015 1.69 (1.11–2.57) 0.003 1.89 (1.24–2.88) 0.002 1.93 (1.27–2.95)

age 0.758 1.00 (0.98–1.02) 0.887 1.00 (0.98–1.02) 0.808 1.00 (0.98–1.02)

CRCM cluster ,0.0001 5.51 (2.66–11.41) 0.079 1.82 (0.93–3.54) ,0.0001 5.10 (2.46–10.57)

grade ,0.0001 4.41 (2.37–8.22) ,0.0001 3.27 (1.85–5.81) ,0.0001 4.18 (2.27–7.71)

age 0.688 0.99 (0.96–1.03) 0.757 1.00 (0.96–1.03) 0.751 0.99 (0.96–1.03)

SUSM cluster 0.08 1.60 (0.95–2.69) 0.396 1.26 (0.76–2.07) 0.955 1.01 (0.65–1.58)

grade 0.001 2.35 (1.63–3.40) ,0.0001 2.56 (1.80–3.65) ,0.0001 2.59 (1.82–3.68)

age 0.03 0.96 (0.92–1.00) 0.034 0.96 (0.92–1.00) 0.024 0.96 (0.92–0.99)

NCI cluster 0.014 4.40 (1.34–14.41) 0.324 1.41 (0.71–2.77) 0.336 1.42 (0.69–2.92)

EMC cluster 0.006 1.71 (1.17–2.51) 0.022 1.59 (1.07–2.37) 0.004 1.74 (1.19–2.56)

Lung DFCI cluster 0.012 2.53 (1.23–5.24) 0.299 1.48 (0.71–3.07) 0.162 1.71 (0.81–3.62)

stage 0.167 1.76 (0.79–3.91) 0.129 1.86 (0.84–4.14) 0.211 1.69 (0.74–3.84)

age 0.091 1.03 (1.00–1.07) 0.125 1.03 (0.99–1.08) 0.154 1.03 (0.99–1.07)

PCH cluster 0.039 2.44 (1.04–5.68) 0.15 1.85 (0.80–4.27) 0.145 1.89 (0.80–4.45)

age 0.216 1.03 (1.00–1.07) 0.288 1.02 (0.98–1.07) 0.202 1.03 (0.99–1.07)

CAN/DF cluster 0.044 2.08 (1.02–4.25) 0.208 1.63 (0.76–3.48) 0.775 1.11 (0.55–2.24)

stage 0.007 2.54 (1.29–4.99) 0.016 2.42 (1.18–4.96) 0.003 2.79 (1.41–5.52)

age 0.001 1.08 (1.04–1.14) 0.001 1.08 (1.03–1.14) 0.002 1.07 (1.03–1.12)

MSK cluster 0.056 2.29 (0.98–5.33) 0.278 1.64 (0.67–3.99) 0.072 2.19 (0.93–5.13)

stage 0.219 1.77 (0.71–4.40) 0.105 2.19 (0.85–5.65) 0.189 1.84 (0.74–4.55)

age 0.44 1.02 (0.97–1.07) 0.346 1.02 (0.98–1.07) 0.534 1.02 (0.97–1.06)

UM-HLM cluster 0.461 1.15 (0.80–1.66) 0.519 1.13 (0.78–1.65) 0.759 1.06 (0.72–1.59)

stage ,0.0001 2.28 (1.54–3.37) ,0.0001 2.32 (1.57–3.44) ,0.0001 2.31 (1.56–3.41)

age 1 1.03 (1.01–1.05) 0.002 1.03 (1.01–1.05) 0.002 1.03 (1.01–1.05)

Bladder AUH cluster 0.035 2.31 (1.06–5.02) 0.284 1.53 (0.70–3.31) 0.026 2.44 (1.11–5.35)

Ovarium MNI cluster 0.016 4.02 (1.30–12.40) 0.002 8.01 (2.12–30.27) 0.219 2.02 (0.66–6.17)

age 0.094 1.06 (0.99–1.13) 0.035 1.08 (1.01–1.16) 0.069 1.06 (1.00–1.12)

*The direction of the hazard ratio is as follows: cluster, the short-term versus long-term survival group; grade, lower versus higher; age, older versus younger.
aMethod A.
bMethod B.
cMethod C.
doi:10.1371/journal.pone.0006274.t004
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Figure 4. Kaplan-Meier plots of overall survival for other solid tumor types generated by the 23-gene classifier. (A) Five lung cancer
cohorts DFCI, PCH, CAN/DF, MSK, and UM-HLM. (B) Five breast cancer cohorts GIS, CRCM, SUSM, NCI and EMC. For NCI and EMC, the overall survival
times were unavailable and thus time to distant metastasis for prediction was used instead. (C) One bladder cancer cohort AUH. (D) One ovarian
cancer cohort MNI. STS, short-term survival group; LTS, long-term survival group. N, the number of patients within STS or LTS group. P values are
indicated within plots. P, = 0.05 is defined as significance.
doi:10.1371/journal.pone.0006274.g004
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high-grade (HGG) gliomas (grade III and GBM combined) and

two GBM data sets publicly available: 74 samples of HGG from

UCLA [3], 76 samples of HGG from MDA [4], 50 samples of

HGG from CMBC [2], 34 samples of primary GBM from UCSF-

1 [14] and 20 samples of GBMs (primary and secondary GBMs

combined) from UCSF-2 [15]. We used 118 samples of primary

GBM (34 from UCSF-1, 35 from UCLA, and 49 from MDA) as a

training set for prognostic gene identification and two independent

GBM sample sets from CMBC and UCSF-2 and the three HGG

sets from UCLA, MDA, and CMBC for validation. To test the

robustness of identified prognostic gene classifiers in different

tumor types, we collected 12 completely independent data sets

from four different tumor types: five lung cancer sets including 62

stages I-II lung adenocarcinomas from DFCI [21], 48 stage I lung

tumors from PCH [22], 82 stages I–II lung adenocarcinomas from

CAN/DF [23], 83 stages I–II lung adenocarcinomas from MSK

[23], and 208 stages I–II lung adenocarcinomas from UM-HLM

[23]; five breast cancer sets including 236 grades I–III breast

cancers from GIS [16], 155 grades I–III breast cancers from

CRCM [17], 295 grades I–III breast cancers from SUSM [18], 78

stage I breast cancers from NCI [19], and 286 lymph-node-

negative breast cancers (mainly stage I) from EMC [20]; one

bladder cancer set of 30 advanced bladder cancers from AUH

[24]; one ovarian tumor set of 68 stage I ovarian carcinomas from

MNI (GEO GSE8842). For the two breast cancer cohorts NCI

and EMC, where the overall survival times were unavailable, time

to distant metastasis was used instead. For all the cohorts, we used

normalized microarray data which are available in public domain

(see references). Because several different microarray platforms

were used in those cohorts, we ensured that the probes were

matched to identical genes. Microarray expression data of

prognostic genes identified in this study were further normalized

into Z scores prior to clustering. Summary statistics of cohort data

sets were presented in Table 1.

Method A
To integrate gene sets, canonical biological pathways (439

pathways total) were first extracted from the public pathway

database MsigDB (http://www.broad.mit.edu/gsea/msigdb/)

[37,38] and then combined with ten human-focused cancer-

associated pathways from the Cancer Cell Map (http://cancer.

cellmap.org) to form the biggest gene pathways of a total of 449

canonical pathways up to the current date. Further, 2,128 cancer-

associated genes [39] were extracted and classified into 403

functional categories using Gene Ontology Consortium analysis

(http://www.geneontology.org). After removing overlapped genes

between the two gene sources, our 852 gene sets contained 449

gene pathways and 403 functional categories with a total of 5,049

Figure 5. The protein interaction sub-network based on 23 prognostic gene-encoded proteins and their interacting partners. Nodes
represent gene-encoded proteins; links represent physical interactions. Nodes in color indicate enriched biological functions of the proteins. Red
nodes represent cell proliferation, green nodes represent immune response, and half red and half green nodes represent both cell proliferation and
immune response. Proteins in a bigger circle represent the 23 gene-encoded proteins; their interactions with partners with enriched biological
functions are highlighted in blue links, whereas grey links represent interactions of the 23 gene-encoded proteins with other partners (white circle).
doi:10.1371/journal.pone.0006274.g005
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genes. We defined the ‘‘significantly enriched gene set’’ as the gene

set that shows statistically significant differences between short-

term and long-term survival groups identified by gene set

enrichment analysis. Significantly enriched gene sets were then

identified by performing gene set enrichment analysis (measuring

the degree of differential gene expression in a gene set) between

two distinctive survival groups based on microarray expression

data using SAM-GS software [8].

Significantly enriched gene sets were next mapped to the

human protein-protein interaction network that has 9,213 genes

and 37,107 interactions [40] to obtain an enriched gene sub-

network. Survival-associated genes were identified by sequentially

scoring the genes in the enriched sub-network. Specifically, given a

gene G, let E represent its vector of expression scores over tumor

samples, and let T represent the corresponding vector of survival

phenotype. To derive E, the expression values of gene G and its

nearest neighbor genes in the enriched sub-network were

normalized over all samples (mean = 0; s.d. = 1). The normalized

expression values of gene G and its neighbor genes were averaged

into a combined score, designated as E. The correlation between E

and T, denoted as S, was calculated by Pearson correlation

analysis. The null distribution of S was estimated by permuting the

survival phenotype 100,000 times. The final score of gene G was

indexed on this null distribution. Because the Bonferroni

correction used to adjust for multiple comparisons is often too

concervative when applied to microarray data [41], the less

stringent Benjamini and Hochberg false discovery rate [42] was

performed for multiple comparison correction. A significant

survival-associated gene was identified when the corrected P value

of the correlation was less than 0.05.

Method B
Method B was divided into two steps. The first was to identify

significantly enriched sub-networks using microarray gene expres-

sion data and the protein interaction network as described by

Chuang et al [10]. Briefly, expression values of genes from

microarray expression analysis were directly overlaid on their

corresponding proteins in the protein interaction network (7,683

genes from the training sets UCLA and MDA and 6046 genes

from the training set UCSF-1) to search for enriched sub-networks

by calculating the discriminative score (student’s t test) of the

relationship between expression activity of each sub-network and

survival phenotype. Sub-network started from a seed protein and

iteratively expanded by adding a protein from the neighbors of the

seed protein until no addition increased the discriminative score.

The significance of the discriminative score was estimated by

permuting survival phenotype 100,000 times. The final score of

sub-network was indexed on this null distribution. A significantly

enriched (differentially expressed) sub-network was identified when

the P value of relationship was less than 0.05.

Secondly, to identify survival-associated genes from significantly

enriched sub-networks, an expression value of each gene in the

enriched sub-networks was z-transformed over all samples and the

association between its z-transformed value and survival was then

assessed by univariate Cox regression analysis. The less stringent

Benjamini and Hochberg false discovery rate [42] was performed

for multiple comparison correction. A prognostic gene was

identified when the corrected P value of the association was less

than 0.05.

Method C
Differentially expressed genes between two distinctive survival

groups were directly identified by two-class analysis (students’ t

test) of microarray gene expression data using the SAM software.

SAM output data were presented along with the false discovery

rate. The same number of top discriminative genes was selected as

the number of genes identified by method A while, where possible,

the lowest false discovery rate was adopted.

Survival Prediction
Multivariate Cox proportional-hazards regression analysis with

stepwise selection was used to evaluate independent prognostic

factors associated with survival, and gene expression cluster

defined by gene classifier (or subsets of gene classifier), tumor

grade or stage, and age were used as covariates. For each

covariate, a hazard ratio and an associated P value were

examined. The Kaplan-Meier method was used to estimate

overall survival distribution and metastasis-free survival distribu-

tion (for two breast cancer cohorts). Differences in survival

between distinctive survival groups were analyzed with the log-

rank test. A P value of less than 0.05 was considered to indicate

statistical significance, and all tests were two-tailed. Statistical

analyses were carried out using SPSS software version 13.

As for testing three glioma prognostic gene classifiers reported

previously [3,4,14], the 35-gene, 44-gene and 47-gene classifiers

divided patients into three, four and two prognostic groups,

respectively, in our cohorts to be consistent with their original

studies.

Gene Ontology Analysis
Gene functions and their biological significance (EASE score)

were assessed by using the EASE annotation tool (EASE software

version 2.0) [25]. Fisher’s exact test combined with Bonferroni

correction was used to calculate the significance.
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