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otein–ligand binding affinities
based on a fragment quantummechanical method†

Jinfeng Liu,a Xianwei Wang,b John Z. H. Zhangacd and Xiao He*ac

An electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC)

method (J. Phys. Chem. A, 2013, 117, 7149) has been successfully used for efficient linear-scaling

quantum mechanical (QM) calculations of protein energies. Furthermore, an efficient approach that

combined the EE-GMFCC method with a conductor-like polarizable continuum model (CPCM), termed

as EE-GMFCC-CPCM (J. Chem. Phys., 2013, 139, 214104), was developed for ab initio calculations of the

electrostatic solvation energy of proteins. In this study, we applied the EE-GMFCC-CPCM method for

the calculation of binding affinities of 14 avidin–biotin analogues. The calculation delineated the

contributions of interaction energy and electrostatic solvation energy to the binding affinity. The binding

affinity of each ligand bound to avidin was calculated at the HF/6-31G* and B3LYP/6-31G* levels with

empirical dispersion corrections, respectively. The correlation coefficient (R) between the calculated

binding energies and experimental values is 0.75 at the HF/6-31G*-D level based on single complex

structure calculations, as compared to 0.73 of the force field result. On the other hand, the correlation

coefficient between the calculated binding energies and the experimental values is 0.85 at the B3LYP/6-

31G*-D level based on single complex structure calculations, and this correlation can be further

improved to 0.88 when multiple snapshots are considered. Our study demonstrates that the EE-

GMFCC-CPCM method is capable of providing reliable predictions of binding affinities for various ligands

bound to the same target.
1. Introduction

Accurate prediction of the binding affinity for a ligand bound to
amacromolecule is of great interest in computational chemistry
and biology, which also has broad applications in drug
discovery and molecular design.1 Many efforts have been made
in developing theoretical methods to estimate accurate binding
affinity. Currently, most theoretical methods employed molec-
ular mechanical (MM) force elds which are built on pairwise
atomic interaction potentials.2–4 Despite the success of classical
force eld methods for calculation of interaction energies in
biomolecules, they still have signicant limitations. The stan-
dard nonpolarizable force elds lack of electronic polarization
effect and thus do not include themany-body interaction, which
plays a critical role in determining molecular interactions.5,6
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Explicit inclusion of polarization effect has been shown to
improve the accuracy of the force elds in estimating the
binding affinities of protein–ligand complexes.7–9 However, the
deviations from experimental results in well-converged free
energy calculations have still been attributed to the imperfect
force elds.10,11 Some semiempirical approaches, which exploit
PM6 Hamiltonian, or density functional tight-binding method
have also been developed and performed successfully in
calculation of protein–ligand binding affinities.12–16

In recent years, quantum mechanical (QM) methods
emerged as accurate and powerful approaches for prediction of
protein–ligand binding affinities.11 Such methods determine
the potential energy of the system at the ab initio level, which are
intrinsically transferable and also systematically improvable.6

However, biological systems are in general too large for a full
QM treatment. One popular approach of applying QM calcula-
tion on biological molecules is the hybrid QM/MMmethod,17 in
which only a small subsystem is treated by QM and the rest
atoms are described using MM. At present, the QM/MM calcu-
lations could provide a powerful means for theoretical study of
biological systems. Another approach is applying full QM
calculations based on the fragmentation method, in which the
whole system is decomposed into small subsystems and the
calculation of the large system is performed on each subsystem
individually.18 Several fragmentation methods have been
This journal is © The Royal Society of Chemistry 2015
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applied to protein–ligand interaction calculations, including
the divide-and-conquer method,19–21 the fragment molecular
orbital (FMO) method,22–24 the molecular fractionation
with conjugate caps (MFCC) method,25–29 and related
approaches.6,30–32

The MFCC method is a fragment-based approach developed
in our group, and initially it was employed to calculate the
protein–ligand interaction. Then the MFCC approach was
extended to compute the total energy of proteins at diverse ab
initio levels.33–37 In the following development, we proposed an
efficient generalized molecular fractionation with conjugate
caps/molecular mechanics (GMFCC/MM) scheme.38 Subse-
quently, in order to further improve the accuracy of the GMFCC/
MM method, recently we developed the electrostatically
embedded generalized molecular fractionation with conjugate
caps (EE-GMFCC) method for accurate calculation of the
protein energy.39 Numerical tests have shown that the EE-
GMFCC method is computationally efficient and the protein
energies calculated by EE-GMFCC are in excellent agreement
with the full system QM calculations. The overall mean
unsigned error (MUE) for 18 real three-dimensional proteins of
up to 1142 atoms is only 2.39 kcal mol�1 with respect to the full
system HF/6-31G* calculations.39

Rigorous representation of solvation is important for theo-
retical study of molecular properties in solution. Incorporating
the fragmentation methods with solvation models made an
important pace toward rigorous study of protein in realistic
environment.40,41 The density-based polarized continuum
model (PCM)42–45 is one of the most widely used solvation
methods in QM calculation. In 2006, Mei et al. proposed
a practical MFCC-CPCM method which combined the MFCC
approach with the conductor-like PCM model46 to calculate the
electrostatics solvation energy of proteins.40 More recently,
a more accurate approach that combines the EE-GMFCC
method with CPCM, termed EE-GMFCC-CPCM, is developed
for ab initio calculation of the electrostatic solvation energy of
proteins.47 As compared to standard full system CPCM calcu-
lations, EE-GMFCC-CPCM shows clear improvement over the
MFCC-CPCM method for both the total electrostatic solvation
energy and its components (the polarized solute–solvent reac-
tion eld energy and wavefunction distortion energy of the
solute).

In this study, we calculated the binding affinities of protein–
ligand complexes at two QM levels by using EE-GMFCC and EE-
GMFCC-CPCMmethods based on the thermodynamic cycle.48,49

To test the performance of our approach, we studied the affin-
ities of the biotin, as well as 13 biotin analogues, bound to the
avidin protein, whose experimental binding affinities are
available.50–53 The binding affinities based on single snapshot
approximation were obtained rst. For better inclusion of the
conformational sampling on the protein–ligand binding struc-
tures, the ensemble-averaged binding affinities over multiple
snapshots obtained from molecular dynamics (MD) simula-
tions were also calculated for comparison. We also compared
the results calculated from different QM levels. Finally, the role
of different free energy components in determining the
protein–ligand binding affinity is discussed.
This journal is © The Royal Society of Chemistry 2015
2. Theory and methodology
2.1. The EE-GMFCC method

Detailed description of the EE-GMFCC method can be found in
ref. 39. Here, we just give a brief review. In the framework of the
EE-GMFCC method, the protein with N residues is divided into
N� 2 individual fragments by cutting through the peptide bond
(excluding the rst and the last peptide bonds) and a pair of
conjugate caps is used to saturate each fragment. Hydrogen
atoms are added to terminate the molecular caps to avoid
dangling bonds (see Fig. 1a). Considering the importance of
two-body interaction,54,55 rigorous treatment of the short-range
non-neighboring interaction is necessary. In our EE-GMFCC
scheme, two non-neighboring residues, whose minimal
distance falls within a dened distance threshold l (4.0 Å was
used in this work based on our previous study39), are considered
to be in close contact (dened as Gconcap) and their interaction
is calculated at the QM level (see Fig. 1b). All of the fragment
calculations are embedded in the electrostatic eld of the point
charges representing the remaining fragments of the protein.
The total energy of protein can then be expressed by the
following formulation

EEE-GMFCC ¼
XN�1

i¼2

eE�
Cap*

i�1AiCapiþ1

��XN�2

i¼2

eE�
Cap*

iCapiþ1

�
þ

X
i; j. iþ2;

jRi�Rjj# l

� eEij � eEi � eEj

�
QM

� EDC
(1)

where ~E(Cap*
i�1AiCapi+1) represents the summation of the self-

energy of fragment (the ith residue Ai capped with a le cap
Cap*

i�1 and a right cap Capi+1) and the interaction energy between
fragment and background charges. The self-energy of concap
along with the interaction energy between concap and back-
ground charges ~E(Cap*

iCapi+1) need to be deducted. The third
term is the two-body interaction between two nonneighboring
residues (i and j) in close contact (within the distance threshold
l). The doubly counted interaction between distant non-
neighboring residues is deducted by charge–charge interactions
approximately in the last term EDC. In our study, Amber94 (ref.
56) charge model is adopted for describing the embedding eld.
For the protein–ligand binding system, the total energy of the
complex can be derived using the following formula,

EEE-GMFCC ¼
XN�1

i¼2

eE�
Cap*

i�1AiCapiþ1

��XN�2

i¼2

eE�
Cap*

iCapiþ1

�
þ

X
i; j. iþ2;

jRi�Rjj# l

� eEij � eEi � eEj

�
QM

þ eEðligÞ

þ
X

jRlig�Rij# l

� eE lig;i � eE lig � eEi

�
� EDC (2)

Eqn (2) is similar to eqn (1), while two additional terms were
added to include the contribution from the ligand. ~E(lig)
represents the self-energy of ligand and the interaction energy
between the ligand and its environment represented by the
RSC Adv., 2015, 5, 107020–107030 | 107021
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Fig. 1 (a) EE-GMFCC scheme in which the peptide bond is cut and the fragments are capped with Capi+1 and its conjugate Cap*
i , where subscript

i denotes the ith amino acid in the given protein. The concap is defined as the fused molecular species of Cap*
i � Capi+1. (b) The generalized

concap (Gconcap) scheme and the atomic structure of the Gconcap.
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View Article Online
background charges. The two-body contribution, ~Elig,i � ~Elig �
~Ei, is also included to cover the quantum effect between the
ligand and its nearby residues.
2.2. The EE-GMFCC-CPCM method

Ref. 47 provides detailed information of the EE-GMFCC-CPCM
method. Here, a brief summary is given for clarication. Nor-
mally, the electrostatic solvation energy (G(ele)) is obtained by,
107022 | RSC Adv., 2015, 5, 107020–107030
G(ele) ¼ E(wfd) + G(es) (3)

where E(wfd) and G(es) represent the wave function distortion
energy and the electrostatic solute–solvent interaction energy,
respectively.

Based on the EE-GMFCC approach, the wave function
distortion energy E(wfd) can be approximately obtained
through
This journal is © The Royal Society of Chemistry 2015
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EðwfdÞ¼
XNF

k¼1

D eEk�
XNC

k¼1

D eE
k
C þ

XNGC

k¼1

D
� eEk

ij � eEk

i � eEk

j
�

(4)

where D~E represents the difference of the fragment energy in
gas phase and solution phase, which consists of the self-energy
of each fragment and the interaction energy between the frag-
ment and its corresponding background charges. Owing to the
xed charge model used in this study, the doubly counted
charge–charge interaction energy (the last term in eqn (1) and
(2)) is exactly cancelled out between the gas phase and solution
phase in the current EE-GMFCC-CPCM calculations. In addi-
tion, NF, NC and NGC denote the number of capped fragments
(including the single ligand), concaps and Gconcaps, respec-
tively. On the other hand, the electrostatic solute–solvent
interaction energy G(es) is given by

GðesÞ ¼ 1

2

X
m

qm

"X
a

Za��rm � Ra

���
ð

rðrÞ��rm � r
�� dr

#
¼ 1

2

X
m

qmfðrmÞ

(5)

where qm and rm represent the induced surface charges and their
positions, respectively, which are determined through the
CPCM method.46,57 Za and Ra are the nuclear charges and their
corresponding coordinates, r(r) is the electron density at posi-
tion r, and f(rm) is the electrostatic potential on cavity surface
site m generated by both the nuclei and the electrons of the
solute, which can be derived from the EE-GMFCC approach,

fðrmÞ ¼
XNF

k¼1

fkðrmÞ �
XNC

k¼1

fC
k ðrmÞ þ

XNGC

k¼1

�
fk

ijðrmÞ � fk
iðrmÞ

� fk
jðrmÞ

�
(6)

In the EE-GMFCC-CPCM approach, the QM calculation of
each fragment is conducted in the presence of the surface
charges. The newly obtained wavefunction is then employed to
determine the surface charges of the CPCM equation.57,58 The
procedure is repeated in a self-consistent fashion until the nal
Fig. 2 Thermodynamic cycle for binding free energy calculation of a rece
systems in the gas phase are in white boxes.

This journal is © The Royal Society of Chemistry 2015
electrostatic solute–solvent interaction energy and the surface
charges reach convergence, as in the standard self-consistent
reaction eld (SCRF) calculation.46,57
2.3. Binding affinity calculation

In this study, the binding affinity (DGbind) between a receptor (P)
and a ligand (L) in a complex form (PL) is formulated based on
the thermodynamic cycle48 as shown in Fig. 2,

DGbind ¼ G(PL) � G(P) � G(L) (7)

The free energy of each component is estimated as

DG ¼ D(Egas + Gsolv + Gnp) � TDS (8)

where Egas ¼ EEE-GMFCC + Edispersion is the energy of the molecule
in gas phase, which includes the molecular electronic energy
calculated by the EE-GMFCC method and the dispersion
correction energy obtained from the density functional disper-
sion correction (DFT-D3) method,59 which can also be used to
calculate the dispersion correction for HF; Gsolv is the electro-
static solvation energy, computed by the EE-GMFCC-CPCM
method; Gnp is the non-electrostatic solvation energy contri-
bution, which is calculated by the non-electrostatic term in the
CPCM model, and S is the conformational entropy. For the
atomic radii, both Gsolv and Gnp calculations use united-atom
topological model (UATM).60 All QM calculations were carried
out at the HF/6-31G* and B3LYP/6-31G* levels using the
Gaussian 09 program.61
2.4. System preparation

The avidin–biotin complex (Fig. 3) is one of the most remark-
able protein–ligand binding systems in nature, with a strong
binding affinity of around 20 kcal mol�1.62 Elucidating the
binding mechanism of this classical system has motivated
a variety of experimental and theoretical investigations.51,52 In
ptor–ligand complex. Solvated systems are shown in blue boxes, while

RSC Adv., 2015, 5, 107020–107030 | 107023
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Fig. 3 The X-ray crystal structure of avidin–biotin binding complex.
The biotin is shown in sticks.
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this work, we computed the binding affinities of biotin and 13
biotin analogues (Fig. 4) bound to avidin. The initial coordi-
nates of 14 ligand–avidin structures were obtained from Jia
et al.'s study,53 which assessed the applicability of polarized
protein-specic charges in linear interaction analysis by per-
forming molecular dynamics (MD) simulations for these
complexes. All complexes with biotin analogues were generated
Fig. 4 The structures of biotin and 13 biotin analogues used in this stud

107024 | RSC Adv., 2015, 5, 107020–107030
based on the avidin–biotin crystal structure (PDB ID: 1AVD).
Hydrogen atoms were added to the protein using the Leap
module in AMBER11 program.63 H++ soware64 was utilized to
determine the protonation states of titratable residues. The
geometry of each ligand was optimized at the B3LYP/6-31G*
level. Ligands were initially assigned RESP charge.65,66 Other
force eld parameters were taken from the general AMBER force
eld (GAFF).67 Partial charges of the protein were assigned with
the AMBER03 force eld.68
2.5. MD simulation and MM/PBSA calculation

In MD simulations, each complex was soaked in a periodic
truncated octahedral box of TIP3P water with 13 Å buffer.
Counterions were added to neutralize the whole system. Two
steps of minimizations were carried out to optimize the initial
structure. In the rst step, the protein was restrained and all
other molecules were relaxed using steep descent method fol-
lowed by conjugate gradient minimization. In the second step,
the whole system was optimized. Then the system was gradually
heated to 300 K in 1.2 ns, and the time step was 1 fs during
heating. A 2 ns simulation in canonical ensemble was carried
out to equilibrate the whole system at the target temperature,
which was followed by an 8 ns production simulation in NPT
ensemble with a 2 fs time step. Temperature was regulated by
Langevin dynamics69 with a collision frequency of 1.0 ps�1. The
pressure was regulated using Berendsen's barostat.70 SHAKE
algorithmwas applied to constrain the covalent bonds involving
hydrogen atoms.71 Particle mesh Ewald72 with a cutoff of 9.0 Å in
real space was utilized to calculate long range Coulomb inter-
action. van der Waals (VDW) interaction was truncated at 9.0 Å.
Snapshots from the last 6 ns trajectory were evenly extracted for
y.

This journal is © The Royal Society of Chemistry 2015
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further analysis. All the MD simulations were carried out by
AMBER11 program.63

Owing to the high computational cost for QM calculation on
such large systems, the single-snapshot approach was rstly
chosen for calculation of the binding affinity using the EE-
GMFCC-CPCM method. The single-snapshot approximation
has been proved to be useful in a previous work by Sandberg
et al.73 In this study, the time-averaged binding affinities were
rst calculated through the MM/PBSA approach.48 Subse-
quently, the snapshot, whose binding affinity was closest to the
time-averaged binding affinity, was selected in each complex. In
MM/PBSA calculation, the conformational entropy was not
included, because of the expensive computation and large
uctuation of this term. The value of the exterior dielectric
constant was set to 80, and the solute dielectric constant was set
to 1. The nonpolar solvation term in MM/PBSA is calculated
from the solvent-accessible surface area (SASA):74 DGnp ¼ g �
DSASA, where g ¼ 0.0072 kcal mol�1 Å�2. 300 snapshots evenly
extracted from the last 6 ns trajectories were used for calcula-
tion. Finally, for each complex, the snapshot which gave the
closest binding affinity to its corresponding time-averaged value
from MM/PBSA was extracted for subsequent QM calculation.
This protocol implicitly includes conformational sampling by
matching the computed average value. To include the confor-
mational sampling effect, two additional snapshots, whose
calculated binding affinities in MM/PBSA are next closest to
their corresponding time-averaged value, were extracted from
MD trajectory in each binding complex. Therefore, the average
binding affinity over three representative snapshots in each
complex was obtained through the EE-GMFCC-CPCM approach.
3. Results and discussion

We computed the binding affinities of biotin and 13 biotin
analogues bound to avidin using the EE-GMFCC-CPCMmethod
at the HF/6-31G*-D and B3LYP/6-31G*-D levels, and compared
Table 1 The calculated binding free energy decomposition (in
kcal mol�1) using the MM/PBSA approach

Biotin &
analogues

DEgas

DGsolv DGnp

DEele +
DGsolv DGcalc DGexpDEele DEvdw

Biotin �153.78 �27.89 154.67 �4.24 0.89 �31.24 �20.40
a1 �159.35 �32.35 163.06 �4.37 3.71 �33.01 �16.90
a2 �177.00 �31.48 176.13 �4.32 �0.87 �36.68 �14.30
a3 �35.42 �40.58 47.65 �5.26 12.23 �33.61 �8.80
a4 �33.73 �38.45 49.16 �5.26 15.43 �28.28 �12.20
a5 �148.83 �29.02 140.76 �4.33 �8.06 �41.41 �16.50
a6 �156.18 �28.26 148.32 �4.26 �7.86 �40.38 �14.00
a7 �31.25 �27.00 36.64 �4.13 5.39 �25.74 �11.10
a8 �33.06 �28.60 42.20 �4.18 9.14 �23.64 �7.40
a9 �23.59 �11.38 21.64 �2.03 �1.95 �15.35 �4.50
a10 �26.77 �16.95 27.66 �2.82 0.89 �18.87 �6.40
a11 �18.88 �25.33 22.10 �4.16 3.23 �26.27 �5.00
a12 �28.58 �25.36 39.57 �4.05 11.00 �18.41 �7.40
a13 �30.81 �23.55 30.26 �4.04 �0.55 �28.13 �9.10

This journal is © The Royal Society of Chemistry 2015
to the experimental results. In 2010, Soderhjelm et al. reported
the quantum chemical estimates of protein–ligand binding
affinities,11 in which they calculated the binding of seven biotin
analogues bound to avidin using the PMISP/MM (polarizable
multiple interactions with supermolecular pairs) approach30 at
the MP2/cc-pVTZ level, however they found that their method
gave poor absolute affinities, which can be seen from the
correlation coefficient between the experimental and calculated
values (R2 ¼ 0.27). In this study, we do not include the entropy
because of the inaccuracy and expensive calculation. The
absolute binding affinities calculated in this study are also away
from the experimental values (see Tables 1–4). One reason
causing the large deviation is that the entropic change upon
ligand binding is not included in this study. Furthermore, the
binding mechanism of biotin involves a mobile loop that is
expected to be in an open conformation in the unbound avidin,
and changed to a closed conformation upon ligand binding.75

The contribution of the loop's conformational change to the
binding free energy, which is around 27.0 kcal mol�1 based on
a previous study,76 is also not considered. Therefore, the devi-
ations of absolute binding affinities from experiment are
reasonable. The calculated binding affinities obtained from
MM/PBSA approach are shown in Table 1, and the correlation
coefficient R between the experimental and calculated values is
0.73, as shown in Fig. 5. Table 2 shows the results obtained at
the HF/6-31G*-D level based on the single-snapshot approach
(see Section 2.5). The correlation coefficient R between the
experimental and calculated affinities is 0.75 (see Fig. 6). From
Soderhjelm et al.'s calculation, the correlation R is also 0.75 for
seven analogues, when the entropy is excluded. The results
obtained at the B3LYP/6-31G*-D level based on the single
protein–ligand structure are shown in Table 3 and Fig. 7, and
the correlation coefficient R is 0.85. When three snapshots are
considered, the correlation is further improved to 0.88 as shown
in Table 4 and Fig. 7. Hence, we conclude that the QM method
outperforms empirical approaches in predicting the protein–
ligand binding affinity for these binding complexes.
Fig. 5 The correlation between the experimental and calculated
binding affinities using the MM/PBSA approach.

RSC Adv., 2015, 5, 107020–107030 | 107025
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Table 2 The calculated binding free energy decomposition (in kcal mol�1) based on the single protein–ligand structure at the HF/6-31G*-D level

Biotin &
analogues

DEgas

DGsolv DGnp DEEE-GMFCC + DGsolv DGcalcDEEE-GMFCC DEdispersion

Biotin �137.64 �74.80 150.76 26.13 13.12 �35.55
a1 �133.49 �80.05 160.99 24.56 27.50 �27.98
a2 �167.70 �77.57 174.83 25.84 7.13 �44.61
a3 �22.84 �79.76 75.36 29.38 52.52 2.14
a4 �14.81 �77.57 42.66 29.02 27.85 �20.69
a5 �143.14 �69.49 154.21 25.91 11.07 �32.51
a6 �149.47 �58.96 148.07 24.21 �1.40 �36.16
a7 �26.94 �52.79 35.70 21.75 8.76 �22.28
a8 �24.22 �56.26 45.39 26.75 21.17 �8.34
a9 �20.81 �24.76 22.74 11.47 1.93 �11.36
a10 �24.68 �36.64 25.08 15.23 0.40 �21.02
a11 �8.53 �45.97 21.74 23.89 13.21 �8.87
a12 �29.68 �43.19 42.04 23.51 12.36 �7.32
a13 �31.82 �45.13 26.17 23.04 �5.65 �27.74
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3.1. Energy decomposition

Our present calculation provides decomposition of the
binding affinity into contributions from the solute interaction
energy DEgas, the polar and nonpolar solvation energy DGsolv

and DGnp. In all cases, we observe favorable changes in the
interaction energy, along with unfavorable changes in the
polar and nonpolar solvation energy. For the interaction
energy DEEE-GMFCC, which is calculated through our EE-
GMFCC approach, it contributes a maximum of �167.70 kcal
mol�1 for analogue a2 and a minimum of �8.53 kcal mol�1 for
analogue a11 at the HF/6-31G*-D level (Table 2). It is worth
noting that, this energy term differs signicantly between the
neutral and charged ligands. It is more negative for the
charged ligands (biotin, a1, a2, a5, a6), which ranges from
�133.49 to �167.70 kcal mol�1. However, it signicantly
decreases to �8.53 to �31.82 kcal mol�1 for the neutral
ligands (a3, a4, a7–a13). The electrostatic solvation energy
(DGsolv) is calculated using the EE-GMFCC-CPCM approach. As
Fig. 6 The correlation between the experimental and calculated
binding affinities based on the single protein–ligand structure at the
HF/6-31G*-D level.

107026 | RSC Adv., 2015, 5, 107020–107030
can be seen from the Tables 1–3, these positive polar solvation
energies are closely correlated with the gas phase interaction
energies, which cancel out the contribution of the gas phase
interaction energy changes to some extent. For HF results in
Table 2, the polar solvation energies are 148.07–174.83 kcal
mol�1 for the charged ligands, which are more positive than
those (21.74–75.36 kcal mol�1) for the neutral ligands. This
shows a similar feature as PMISP/MM does. In Soderhjelm
et al.'s study, he also pointed that the polar solvation energy
obtained from PMISP/MM/PCM is always more positive for the
charged ligands than for the neutral ones.11

The gas phase interaction energy is increased for each
complex in B3LYP/6-31G*-D calculation as shown in Table 3.
For charged ligands, the interaction energies (DEEE-GMFCC) are
within �156.35 to �191.01 kcal mol�1, and the maximum
energy is increased to�191.01 kcal mol�1 for a2 as compared to
the corresponding HF calculation. DEEE-GMFCC given by B3LYP
also becomes more negative for the neutral ligand than that
from the HF calculation. The minimum DEEE-GMFCC is also
decreased to �20.46 kcal mol�1 for a11. Compared to the more
negative molecular electronic energy change, the polar solva-
tion energy for each ligand does not become more positive. It is
worth noting that, the polar solvation energy for each ligand
from B3LYP is less positive than that from HF. The most posi-
tive polar solvation energy is 161.27 kcal mol�1 for a2 using
B3LYP, whereas it is 174.83 kcal mol�1 for the same analogue
using HF. The least positive one is 18.46 kcal mol�1 for a11 in
B3LYP, whereas it is 21.74 kcal mol�1 for the same analogue in
HF. For B3LYP, it gives more negative molecular electronic
energy (DEEE-GMFCC), but with less positive polar solvation
energy (DGsolv), which can explain the more favorable binding
affinity obtained from B3LYP.

In the PCM model, the nonpolar solvation energy is calcu-
lated from three components: the energy cost of making a cavity
in the solvent, the dispersion interactions between the solute
and the solvent, and the exchange repulsion.60 We calculated
the nonpolar solvation energy using the PCM model imple-
mented in Gaussian 09 program.61 As can be seen from Tables 2
This journal is © The Royal Society of Chemistry 2015
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Table 3 The calculated binding free energy decomposition (in kcal mol�1) based on the single protein–ligand structure at the B3LYP/6-31G*-D
level

Biotin & analogues

DEgas

DGsolv DGnp DEEE-GMFCC + DGsolv DGcalcDEEE-GMFCC DEdispersion

Biotin �161.98 �57.70 139.10 26.13 �22.88 �54.45
a1 �156.35 �62.77 144.79 24.56 �11.56 �49.77
a2 �191.01 �58.51 161.27 25.84 �29.74 �62.41
a3 �42.35 �65.52 41.83 29.38 �0.52 �36.66
a4 �36.53 �63.65 36.99 29.02 0.46 �34.17
a5 �166.34 �53.91 143.29 25.91 �23.05 �51.05
a6 �170.49 �53.36 135.69 24.21 �34.80 �63.95
a7 �40.67 �43.12 31.06 21.75 �9.61 �30.98
a8 �39.50 �44.82 40.66 26.75 1.16 �16.91
a9 �29.49 �19.08 19.93 11.47 �9.56 �17.17
a10 �36.35 �29.07 21.69 15.23 �14.66 �28.5
a11 �20.46 �38.22 18.46 23.89 �2.00 �16.33
a12 �39.37 �36.29 36.28 23.51 �3.09 �15.87
a13 �43.05 �37.16 22.60 23.04 �20.45 �34.57
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and 3, the nonpolar solvation energy is 11.47–29.38 kcal mol�1;
it has positive sign and is larger in magnitude compared to the
nonpolar solvation energy calculated byMM/PBSA. InMM/PBSA
approach, the nonpolar solvation energy is estimated from
the solvent-accessible surface area (SASA) of the molecule. The
SASA energy estimate is �2.03 to �5.26 kcal mol�1, as shown in
Table 1.

The DFT-D3 method has been widely used to accurately
model the important London dispersion interactions for non-
covalent binding. As shown in Tables 2 and 3, the dispersion
interaction energy plays an important role in protein–ligand
binding complexes. The dispersion interaction added to HF/6-
31G* ranges from �24.76 to �80.05 kcal mol�1, while for
dispersion correction of B3LYP/6-31G*, the range is from
�19.08 to �65.52 kcal mol�1. Therefore, there is signicant
amount of dispersion energy in the protein–ligand binding
complex, which cannot be well captured by traditional HF and
B3LYP calculations.
Fig. 7 The correlation between the experimental and calculated
binding affinities at the B3LYP/6-31G*-D level.

This journal is © The Royal Society of Chemistry 2015
3.2. Binding affinities averaging over multiple protein–
ligand binding structures

Binding free energy predictions are usually made on large
collections of equilibrated structures from MD simulation. The
backbone root-mean-square deviations (RMSDs) during MD
simulation for 14 binding complexes are shown in Fig. S1 of
ESI.† To further validate the equilibrium, we extended MD
simulations to 20 ns. From the plot of the backbone RMSDs, we
can see that the equilibrium for each system wasmostly reached
aer the rst 3 ns simulation. Due to the expensive cost of QM
calculations, only one single snapshot which gave the closest
binding affinity to its corresponding time-averaged value in
MM/PBSA was rstly extracted for each system. This single-
snapshot approximation has implicitly included conforma-
tional sampling by matching the computed average value. For
better including the effect of conformational sampling, another
two representative snapshots were selected from the MD
simulation for each system (see Section 2.5). The average
binding affinities obtained from B3LYP/6-31G*-D level are
shown in Table 4. Importantly, with three representative
protein–ligand congurations, we achieved a better correlation
(R ¼ 0.88, see Fig. 7) between the experimental and calculated
binding affinities, as compared to the single conguration
result. Therefore, we conclude that the ensemble-averaged
binding affinity over multiple snapshots generally gives more
reliable result than that from single structure calculation.
3.3. Correlation analysis

The correlations between the experimental and calculated
binding affinities have been obtained. Nevertheless, it is worth
investigating what energy components play a more important
role in predicting the protein–ligand binding affinity. There-
fore, we tested how well a scoring function could perform if it
used only one or two of these energy components. We rst
analyzed the energy components from the single structure
results. We found that, the molecular electronic energy change
RSC Adv., 2015, 5, 107020–107030 | 107027
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Table 4 The calculated binding free energy decomposition (in kcal mol�1) averaging over three snapshots at the B3LYP/6-31G*-D level

Biotin & analogues

DEgas

DGsolv DGnp DEEE-GMFCC + DGsolv DGcalcDEEE-GMFCC DEdispersion

Biotin �182.88 �60.90 146.10 25.17 �36.78 �72.51
a1 �162.96 �60.37 148.66 25.72 �14.30 �48.95
a2 �190.24 �63.04 163.07 24.92 �27.17 �65.29
a3 �47.02 �66.33 41.38 30.76 �5.64 �41.21
a4 �47.80 �67.19 38.89 28.33 �8.91 �47.77
a5 �169.27 �51.81 140.82 27.33 �28.45 �52.93
a6 �166.48 �55.50 138.09 24.04 �28.39 �59.85
a7 �41.62 �41.48 32.08 23.55 �9.54 �27.47
a8 �39.62 �46.17 36.93 24.08 �2.69 �24.78
a9 �38.41 �20.90 22.87 11.38 �15.54 �25.06
a10 �42.77 �29.65 24.68 15.61 �18.09 �32.13
a11 �20.31 �38.63 20.11 23.90 �0.20 �14.93
a12 �36.77 �37.40 33.58 23.71 �3.19 �16.88
a13 �41.88 �45.37 29.74 23.49 �12.14 �34.02
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(DEEE-GMFCC) correlates well with the experimental binding
affinities, with the correlation coefficient of 0.84 for HF and 0.85
for B3LYP, respectively. The dispersion correction energy term
(DEdispersion) does not correlate so well with the experimental
binding affinities as the molecular electronic energy change
does. The correlation of that obtained from HF is 0.75. In
contrast, the correlation obtained from B3LYP is 0.72. However,
the total interaction energy in gas phase (DEgas ¼
DEEE-GMFCC + DEdispersion) correlates better with the experi-
mental values. The correlation coefficients (R) are 0.89 for both
HF and B3LYP results. The nonpolar solvation energy (DGnp)
correlates poorly with the experimental binding affinities, with
the correlation coefficient of �0.49. For the polar solvation
energy (DGsolv), the correlation is good, with R ¼ �0.86 for HF
and R ¼ �0.87 for B3LYP. The solvation energy (DGsolv + DGnp)
also correlates fairly well with the experimental binding values.
For both HF and B3LYP results, the correlation is around R ¼
�0.88. Because the positive polar solvation energy is closely
associated with the negative molecular electronic energy
change, and they counteract with each other to some extent. We
calculated the energy term of DEEE-GMFCC + DGsolv, and this
energy term obtained from B3LYP is more negative than that
from HF, as shown in Tables 2 and 3. Nevertheless, this energy
term does not correlate well with the experimental binding
values, with a correlation coefficient R ¼ �0.08 for HF and R ¼
0.57 for B3LYP.

For the energy components averaged over three protein–
ligand structures at the B3LYP/6-31G*-D level, they show
a similar pattern to those from the single-snapshot results. The
correlations of electronic energy change and dispersion
correction energy term with the experimental binding affinities
are 0.88 and 0.71, respectively. The interaction energy achieves
a really good correlation with the experimental values as R ¼
0.91. For the polar and nonpolar solvation terms, the correla-
tions are �0.88 and �0.50, respectively. In addition, the sum of
these two terms (DGsolv + DGnp) achieves �0.89 for the
correlation with respect to the experiment. For the energy term
DEEE-GMFCC + DGsolv, the correlation with the experiment is 0.74,
107028 | RSC Adv., 2015, 5, 107020–107030
which is better than the corresponding single structure result
(0.57). In summary, both the interaction energy and solvation
energy play important roles in predicting the protein–ligand
binding energy, and both of them are good indicators of
binding affinity for these binding complexes.
4. Conclusion

In this study, we carried out full ab initio methods for accurate
prediction of protein–ligand binding affinities. To this aim, we
utilized our recently developed EE-GMFCC and EE-GMFCC-
CPCM methods to calculate the interaction energy and elec-
trostatic solvation energy, respectively. In our previous work,
these two methods have been demonstrated to give accurate
and reliable molecular electronic energy and electrostatic
solvation energy compared to full system QM calculations.
Herein, we tested our approaches at different QM levels. We
also include the nonpolar solvation energy and empirical
dispersion correction (for HF and DFT) in calculations of
binding affinity. The nonpolar solvation energy is obtained
through the PCM model, and the dispersion correction energy
is obtained through the DFT-D3 method. These methods are
combined to evaluate binding affinities based on the snapshots
obtained from the empirical MM/PBSA approach.

Our approach has been tested for 14 avidin–biotin and biotin
analogue complexes whose experimental binding affinities are
available. The calculated binding affinities, obtained from the
single snapshot and averaging over multiple snapshots, have
been analyzed respectively. The result shows that the binding
free energy averaged over three snapshots achieved a better
correlation (R ¼ 0.88 at the B3LYP/6-31G*-D level) with the
experimental values than the result obtained from the single
snapshot. In contrast, the correlation obtained from MM/PBSA
is only 0.73, which shows the limitation of the empirical force
eld in describing the protein–ligand binding interactions. Our
approach shows the capability of ab initio methods for accurate
prediction of the protein–ligand binding affinities. QM calcu-
lations also demonstrate that both the interaction energy and
This journal is © The Royal Society of Chemistry 2015
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solvation energy play important roles in capturing the protein–
ligand binding. The accurate description of the interaction
energy and solvation terms is of great importance in developing
an effective scoring function.
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