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1 Introduction

Holographic duality (gauge/gravity correspondece) [1–3] is a particular kind of strong/weak

duality, which gives us a powerful method to study strongly correlated systems in condensed

matter physics via the study of the black hole physics with one extra dimension. Especially,

it provides a novel way to explore the strongly correlated fermionic system.

The early works [4–8] on this subject have made efforts on understanding the mysteri-

ous behaviors of the existing non-Fermi liquid which is named as “holographic non-Fermi

liquid”. In detail, by studying the evolution of the bulk Dirac equation in the RN-AdS

black hole with the ingoing boundary condition at the horizon, the fermionic correlator can

be extracted at the AdS boundary holographically. This proposal attracts many interests

in the related topics. Some endeavors have been made to generalize the investigations

of the probe fermion to the general charged Gauss-Bonnet black hole, charged dilatonic

black hole, charged Lifshitz black hole and so on [9–15]. One also implemented the holo-

graphic non-relativistic fermionic fixed points by imposing the Lorentz violating boundary

condition, which results in an infinite flat band in the dual boundary field theory [16–18].

By introducing the interaction between Dirac field and gauge field, it was disclosed that

the dual liquid can transform from the Fermi liquid to non-Fermi liquid and also to the

Mott insulating phase [19–24]. The properties of the fermionic spectral function includ-

ing lattice effects, which is introduced in [25–27], has been explored in [28, 29]. It shows

some crucial characteristics, including periodic structure and Brillouin zones, which can
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be compared with the results of Angle-resolved photoemission spectroscopy (ARPES) or

Scanning tunneling microscopy (STM), in real condense physical system.

In real condensed matter system, another crucial role is impurity. The physical prop-

erties of materials will drastically change when impurity is added. A famous example is the

cuprates, which exhibits Mott insulating phase, non-Fermi liquid phase and Fermi liquid

phase as the doping levels change. Another well-known example is the Kondo effect that

when the magnetic impurity is introduced, the resistance increases logarithmically with

the decrease of the temperature. In holography, impurity can be introduced in Einstein-

Maxwell-massless scalar gravity [30, 31], in which it is implemented by spatially dependent

sources for scalar field operators with being linear in coordinates.1 By introducing an extra

charged complex scalar field, the authors of [34, 35] built a holographic superconductor with

momentum relaxation. They found a new type of superconductor induced by the effective

impurity α even at vanishing chemical potential µ = 0. More interestingly, the effective

impurity α in holography can induce a coherent/incoherent metal transition [31, 36]. The

coherent metal has a standard Drude peak, which is usually described by Fermi liquid

theory, while the incoherent metal follows non-Drude behavior, which complies with non-

Fermi liquid theory. This motivates us to investigate the fermionic response with impurity

in holography.

Subsequently, we will shortly review the simple holographic model of momentum relax-

ation [30, 31] and discuss its near horizon geometry at any temperature in section 2. Then

the equation of motion and Green function on this background are derived. Afterwards,

we exhibit our numerical results and discuss Fermi surface structure and phase diagram

induced by the effective impurity parameter α. Finally, our results are summarized in

section 5.

2 Einstein-Maxwell gravity with massless scalar field sources

We start with a brief review of the bulk Einstein-Maxwell gravity accompanied with mass-

less scalar field sources and analyze its near horizon geometry.

2.1 Background geometry with scalar field sources

We combine the action of free massless scalars together with the Einstein-Maxwell action

in d+ 1 dimension [31],

S =
1

2κ2

∫
M
dd+1x

√
−g

[
R− 2Λ− 1

4
FµνF

µν − 1

2

d−1∑
I

(∂ΨI)
2

]
− 1

2κ2

∫
∂M

ddx
√
−γ2K,

(2.1)

where Λ = −d(d − 1)/(2L2) and the field strength Fµν = ∂µAν − ∂νAµ for a U(1) gauge

field. The second term is the Gibbons-Hawking term where γ is the induced metric on the

boundary and K is the trace of the extrinsic curvature.

1Impurity is also implemented by disorder in holography. For instance, one can refer to [32, 33].
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For simplicity, we choose the gravitational coupling 2κ2 = 16πGd+1 and the AdS radius

L as unity. The equations of motion can be easily obtained as

Rµν −
1

2
gµν

(
R− 2Λ− 1

4
FµνF

µν − 1

2

d−1∑
I=1

(∂ΨI)
2

)

−1

2

d−1∑
I=1

∂µΨI∂νΨI −
1

2
Fµ

ρFνρ = 0, (2.2)

∇µFµν = 0, ∇2ΨI = 0. (2.3)

The equations of motions admit the following isotropic solution of various fields2

ds2 = − f(r)dt2 +
dr2

f(r)
+ r2

d−1∑
i=1

dxidxi,

f = r2 − α2

2(d− 2)
− m0

rd−2
+

Q2

r2(d−2)
,

A = µ

(
1− rd−20

rd−2

)
dt, ΨI = αIix

i = αδIix
i, (2.4)

where

m0 = rd0

(
1 +

d− 2

2(d− 1)

µ2

r20
− 1

2(d− 2)

α2

r20

)
, (2.5)

Q2 =
(d− 2)µ2r

2(d−2)
0

2(d− 1)
, (2.6)

and α2 ≡ 1
d−1

∑d−1
i=1 ~αi · ~αi with the vector notation (~αi)I = αIi and ~αi · ~αj =

∑
I αIiαIj .

3

We can see that due to the presence of the spatial dependence in the massless scalar

field, the full solution is not isotropic and homogeneous, though the metric is isotropic.

Note that the anisotropic solutions with only one scalar field has been studied in [40, 41].

The parameter α mimics the strength of the translational symmetry, which means the

momentum relaxation in the dual theory. Note that when α = 0, the solution goes back to

the RN-AdS black hole dual to the field theory with translational invariance.

The temperature and entropy density of the black hole are given by

T =
f ′(r0)

4π
=
dr0
4π

(
1− α2

2dr20
− (d− 2)2Q2

dr2d−20

)
, (2.7)

s = 4πrd−10 . (2.8)

2Note that it was addressed in [31] that this solution is highly similar to the solution proposed in massive

gravity [37–39].
3It is worthy pointing out that in order to consider the CFT dual to the anisotropic system, we have to

focus on the dimension d > 3. Specially, in the background with dimension d = 1, a logarithmic divergence

will appear and α cannot be introduced into the action.
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The solution is fully characterized by T , µ and α. For a given chemical potential and

temperature, we can determine the value of α. This model can be seen as the case of the

long wavelength limit of Q-lattice model [26]. But an periodic lattice structure is absent

because the scalar source is linearly dependent on the spatial coordinates. Therefore, it is

more reasonable to treat α as impurity, as illustrated in [31, 36].

2.2 Near horizon geometry

In order to study the near horizon geometry at any temperature, we will introduce a length

scale r∗ by parameterizing Q with dimension d− 1 as

Q =

√
1− α2

2dr20

√
d

d− 2
rd−1∗ . (2.9)

Then the temperature can be written as

T =
dr0
4π

(
1− α2

2dr20

)(
1−

(
r∗
r0

)2d−2)
. (2.10)

We can see that r∗ is equal to the horizon radius r0 at zero temperature and smaller than

the radius r0 at finite temperature. To work out the near horizon geometry, we consider

the scaling limits [4]

r − r∗ = ω
L2
2

ζ
, , r0 − r∗ = ω

L2
2

ζ0
, t = ω−1τ (2.11)

with ω → 0, ζ and τ finite. L2 is the curvature radius of AdS2 geometry whose expression

will be shown later.

Under the above transformation, the leading term of the redshift factor f in (2.4) is

f = ω2L2
2

(
1

ζ20
− 1

ζ2

)
(2.12)

with the curvature radius L2
2 = 1

d(d−1)
(d−1)α2+(d−2)2µ2
α2+(d−2)2µ2 . Thus, metric near horizon becomes

ds2 =
L2
2

ζ2

−(1− ζ2

ζ20

)
dτ2 +

1(
1− ζ2

ζ20

)dζ2
+ r2∗

d−1∑
i=1

dxidxi. (2.13)

and the temperature is T = 1
2πζ0

. The zero temperature limit will be reached as ζ0 → ∞
so that the formulation of metric can be deduced from eq. (2.13) as

ds2 =
L2
2

ζ2
(
−dτ2 + dζ2

)
+ r2∗

d−1∑
i=1

dxidxi. (2.14)

which is the well known AdS2 × Rd−1 metric at zero temperature.
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3 Holographic Fermionic implementation

3.1 The flow equation

In order to study the Fermionic theory dual to this bulk theory, we consider a probe spinor

field with the charge q and mass m, which is dual to fermionic operator O in boundary

CFTd with conformal dimension ∆ = m+ d
2 . The action of spinor field is given by

SF =

∫
dd+1x

√
−giψ̄

(
ΓaDa −m

)
ψ, (3.1)

where Γa = (eµ)aΓµ and the covariant derivative Da = ∂a + 1
4(ωµν)aΓ

µν − iqiAa with

Γµν = 1
2 [Γµ,Γν ], the spin connection (ωµν)a = (eµ)b∇a(eν)b, where (eµ)a forms a set of

orthogonal normal vector bases. From the above eq. (3.1), the equation of motion of Dirac

field can be written as

ΓaDaψ −mψ = 0. (3.2)

In order to investigate the Dirac equation in the Fourier space, we use the translational in-

variance ψ =
∫
dωdke−iωt+ikix

i
ψ. Then, we can rescale the Dirac field by ψ = (−ggrr)−

1
4φ,

and remove the spin connection completely in the Dirac equation. Considering the rotation

symmetry in the spatial directions, we can simply set ki = kx. Then, it is convenient to

consider the following basis

Γr =

(
−σ31 0

0 −σ31

)
, Γt =

(
iσ11 0

0 iσ11

)
, Γx =

(
−σ21 0

0 σ21

)
, φ =

(
φ1
φ2

)
, (3.3)

where φI are two-component spinors, 1 is an identity matrix of size 2
d−3
2 for odd d (or 2

d−4
2

for even d). By taking the above operations, the Dirac equation (3.2) can be written as

√
gxx√
grr

∂r

(
φ1
φ2

)
+
√
gxxmσ

3⊗

(
φ1
φ2

)
=

√
gxx√
gtt

(ω+ qAt)iσ
2⊗

(
φ1
φ2

)
∓ kσ1⊗

(
φ1
φ2

)
(3.4)

Furthermore, by setting φI = ( yIzI ) and introducing the ratios ξI = yI
zI

, the equation of

motion can be decoupled and reduced to(√
gxx√
grr

∂r+2
√
gxxm

)
ξI =

[√
gxx√
gtt

(ω+qAt)+(−1)Ik

]
+

[√
gxx√
gtt

(ω+qAt)−(−1)Ik

]
ξ2I , (3.5)

The in-falling boundary condition at the horizon for ω 6= 0 is

ξI
r→r0= i. (3.6)

3.2 Near boundary and boundary conditions

Near boundary r →∞, the metric has the behavior as

gtt → r2, grr →
1

r2
, gii → r2. (3.7)
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Substituting the near boundary metric into eq. (3.4), we have[
r2∂r + rmσ3 − (ω + qµ)iσ2 − (−1)Ikσ1

]
φI = 0. (3.8)

Therefore, the Dirac equation becomes(
r2∂r + rmσ3

)
φI = 0. (3.9)

The solution of the Dirac equation near the AdS boundary is

φI
r→∞−−−→ aIr

−m

(
1

0

)
+ bIr

m

(
0

1

)
, (3.10)

where aI and bI can be regarded as the response and the source, respectively. Then, we

suppose the source and the response in eq. (3.10) are related by

aI

(
1

0

)
= SbI

(
0

1

)
, (3.11)

the boundary Green’s functions G(ω, k) is given by [8]

G = −iSγ0. (3.12)

Recalling the definition of ξI = yI
zI

, we can write the Green function as

G(ω, k) = lim
r→∞

r2m

(
ξ1 0

0 ξ2

)
, (3.13)

and the behavior of ξI near the boundary is

ξI
r→∞

= r−2mGII . (3.14)

3.3 Spinor field at the near-horizon geometry and the dispersion relation

Near the horizon region, the geometry approaches AdS2 × Rd−1 which is controlled by

eq. (2.13). Substituting eq. (2.13) into eq. (3.4), the Dirac equation eq. (3.4) can be

expressed as

∂ζφI(ζ) =
L2

ζ

(
ζ0

ζ0 − ζ

)
mσ3φI(ζ)− i

[(
ζ0

ζ0 − ζ

)2

+
µq(d− 2)L2

2

r∗ζ

(
ζ0

ζ0 − ζ

)]
σ2φI(ζ)

−(−1)I
k

r∗

L2

ζ

(
ζ0

ζ0 − ζ

)
σ1φI(ζ). (3.15)

Near the AdS2 boundary ζ → 0, the above equation can be simplified into

ζ∂ζφI(ζ) = −UφI(ζ), U =

(
mL2 m̃IL2 −

µq(d−2)L2
2

r∗

m̃IL2 +
µq(d−2)L2

2
r∗

−mL2

)
, (3.16)

with m̃I = −(−1)I kr∗ . Following the discussion in [4], equation (3.16) is nothing but the

equation of motion for spinor fields in the AdS2 background with masses [m, m̃I ] with

– 6 –
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m̃I(I = 1, 2) the time-reversal violating mass terms. In this case, the spinor field is dual

to a spinor operators in the IR CFT1 whose conformal dimensions of the operator are

δ = νk + 1
2 with

νk =

√
m2L2

2 + m̃2
IL

2
2 −

(µq(d− 2)L2
2

r∗

)2
. (3.17)

For the real νk, the scaling exponent z of dispersion relation of our UV Green function

ImG22 can be determined by [6]

z =


1 with νkF >

1

2
1

2νkF
with νkF <

1

2

(3.18)

where νkF can be obtained from eq. (3.17) at k = kF . The scaling exponent z contains

important property of the Green function near the Fermi momentum k⊥ = k − kF and it

describes the excitation of dispersion relation

ω∗(k⊥) ∼ kz⊥, (3.19)

where ω∗(k⊥) is the real part of the complex frequency at which the Green function has

a pole [5]. After determining the Fermi momentum from numerical calculation, we can

analytically compute the scaling exponent z of the dispersion relation through eq. (3.17)

and eq. (3.18). Note that z = 1 is an necessary character for the Fermi liquid. So in the

following discussion, z moves from 1 to other values should be the distinguishing feature

for the phase transition from Fermi liquid to non-Fermi liquid.

4 Fermi surface and phase diagram

In this section, we shall study the Fermi surface structure and the phase diagram (α,T). We

will demonstrate that the transition from the Fermi liquid to the non-Fermi liquid happens

when the impurity parameter α becomes larger. In numerical calculation, we only focus on

the Green’s function G22(ω, k) due to the symmetry G22(ω, k) = G11(ω,−k), which can be

easily analyzed from eq. (3.5) and the boundary condition eq. (3.6). We set m = 0, q = 1

in most of our study unless we emphasize different setting. In addition, in the following

discussion, we can set r0 = 1 by rescaling.

4.1 Results at zero temperature

In this subsection, we will study the Fermi surface structure at zero temperature. We

discuss the case with d = 3 as the first step. From figure 1, we can see that a sharp quasi

particle like peak emerges near ω = 0 for different α, which denotes the Fermi surface.

By definition, we can determine the Fermi momentum kF by locating the position of the

maximal value of ImG22 near ω = 0 as shown in figure 2. We list some Fermi momentum

kF with different α in table 1. We can see that with the increase of α, the Fermi momentum

kF becomes smaller. After determining numerically the Fermi momentum kF , the scaling

– 7 –
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Figure 1. The 3D plot of Green function with α = 0 (left), α = 1 (middle) and α = 2 (right),

respectively.

Α=0

Α=1

Α=2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

k

ImG22

Figure 2. Green function at tiny frequency with different α.

d+ 1 4 5 6

α 0 1 2 0 1 2 0 1 2

kF 2.27694628 2.06223335 1.2532708 1.8880638 1.7800883 1.3981258 1.7228794 1.6551679 1.4260239

νk 0.728524 0.665326 0.377719 0.361108 0.338395 0.238421 0.220036 0.207121 0.151011

z 1 1 1.32373 1.38463 1.47756 2.09713 2.27236 2.41405 3.31103

Table 1. kF , νk and z with different dimension and α (T = 0).

exponent z of the dispersion relation can be calculated by eq. (3.18) analytically. The

results have also been summarized in table 1.

The effect of the dimension d is explicitly reflected in the flow equation (3.17). With

careful numerical calculation, we list the results with different dimensions in table 1. For the

same α, Fermi momentum is suppressed in higher dimensional dual theory. In addition, the

scaling exponent z of the dispersion relation decreases with the decrease of the spacetime

dimension, which agrees well with the observation in Charged Gauss-Bonnet gravity in [10].

From table 1, an interesting result is that the transition from Fermi liquid phase to the

non-Fermi liquid phase happens when the impurity α is beyond some critical value. This

motivates us to turn on the temperature and draw the phase transition diagram of α− T .

4.2 Results at finite temperature

Now, we turn to explore the Fermi surface structure at the finite temperature and plot the

phase diagram (α, T). Due to the thermal fluctuations at finite temperature, the height

of the quasi-particle peak becomes much lower and the width much broader (figure 3).

Using the same numerical method as the case at zero temperature, we present the Fermi

momentum kF as the function of T with different α in figure 4. We can see that with the

increase of the temperature, the Fermi momentum kF decreases for all α.

– 8 –
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T=0

T=0.0001

T=0.0005

1.10 1.15 1.20 1.25 1.30

0

200

400

600

800

1000

k

ImG22

Figure 3. Green function at different temperatures with α = 2.

Α=0

Α=1

Α=2

0.000 0.002 0.004 0.006 0.008 0.010

1.2

1.4

1.6

1.8

2.0

2.2

T

kF

Figure 4. Fermi momentum versus temperature for α = 0(Blue), α = 1(Red) and α = 2(Green),

respectively.

Furthermore, we show the phase diagram (α, T ) for d = 3 in figure 5. In figure 5,

the line denotes the marginal Fermi liquid phase and the left region is the Fermi liquid

while the right region corresponds to the non-Fermi liquid. It exhibits a phase transition

from Fermi liquid to non-Fermi liquid induced by the effective impurity α, which is quali-

tatively consistent with the picture that a coherent/incoherent metal transition induced by

α in [31]. We would like to point out that the phase diagram (α, T ) exhibiting in figure 5

seems to be opposite to the one relating to the doping drawn in the high-Tc cuprate su-

perconductors [42]. This phenomenon somehow supports that the impurity α introduced

here may not be considered as doping which is claimed in [43].4 At least, α provides a new

mechanism introducing impurity from holography. It would certainly be interesting if such

a phase diagram can be observed in some real materials in the future.

As is known that the model parameters m and q have effects on the types of dual liq-

uids and the phase transition from Fermi to non-Fermi liquids in the holographic fermionic

systems [6–8, 18]. It was addressed that with fermion charge q increasing, the Fermi mo-

mentum increases approximately linearly and the scaling exponent z of dispersion relation

decreases rapidly. Thus, the dual liquid changes from the Landau Fermi liquid type to the

non-Fermi liquid is more difficult for larger charge. Here, we find the similar tendency in

4The authors of [43] treated α in a more general model [44] as disorder-strength but the existence of

Anderson localization needs to be further carefully confirmed.
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d=3

FL NFL

1.2 1.4 1.6 1.8 2.0

0.000

0.002

0.004

0.006

0.008

0.010

Α

T

Figure 5. Phase diagram with d = 3.

q=0.9

q=1

q=1.1

FL NFL

FL NFL
FL NFL

1.2 1.4 1.6 1.8 2.0
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Α

T

m=0

m=0.1

m=0.2

FL NFL

1.55 1.60 1.65 1.70

0.000

0.002

0.004

0.006

0.008

0.010

Α

T

Figure 6. Left: phase diagram for d = 3 and m = 0 with different fermion charge. The line

denotes Marginal Fermi Liquid(MFL) where νk = 1
2 for q = 0.9(Blue), q = 1(Red), q = 1.1(Green).

Right: phase diagram for d = 3 and q = 1 with different fermion mass . The line denotes MFL for

m = 0(Blue), m = 0.01(Red), m = 0.02(Green). In each case, the left region of each line denotes

Fermi liquid while the right side means non-Fermi liquid.

our model. In the left plot of figure 6, we see that in the case with larger charge, the phase

transition happens with stronger impurity parameter α. The reason is why larger charge is

harder to make the phase transition happen so that q suppresses the effect of impurity. We

move on to discuss the effect of the mass of fermions. For a given α, the Fermi momentum

kF decreases and the scaling exponent increase with the increase of m which agrees well

with the results in [18]. At certain α, we always find a phase transition from the Fermi

liquid to the non-Fermi liquid with fixed mass. From the right plot of figure 6, we see that

at a fixed temperature, the critical α is smaller for larger mass, namely that larger mass

promotes the phase transition. We also study the phase transition in higher dimension

which may affect the type of the dual liquid. An interesting result is that the Fermi liquid

phase is forbidden for α2 > 0 in the d = 4 and d = 5 geometry. And it can be realized

when we choose a negative enough α2, which enhances the chemical potential of the system

with a fixed temperature. However, this means that α should be imaginary, which should

be further understood from holography.

– 10 –
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5 Discussion and conclusions

In this paper, we have explored the Fermi surface and the phase diagram (α, T ) in the

holographic framework based on the free probe fermions in Einstein-Maxwell gravity with

spacial dependent massless scalar field, which introduces a new impurity effects from holog-

raphy in the dual field theory. The Fermi momentum was suppressed by the larger impurity

parameter α while the conformal dimension of the Dirac field decreases as the impurity α

increases at any temperature. Furthermore, we have demonstrated that the effective impu-

rity parameter α can induce the phase transition from the Fermi liquid to the Non-Fermi

liquid. This phenomenon results from that large positive α corresponds to lower chemical

potential in the dual system with fixed temperature.

Our work is a first step in studying the impurity effects on the fermionic spectral

function in holography, in which the influence of the effective impurity or the spatial broken

translation symmetry only reflects on the Dirac equation through the metric correction. To

gain more insights into the impurity effects of the fermionic spectral function in holography,

we can further introduce an interaction between the massless scalar field and the Dirac field.

This can produce rich Fermi surface structure, which can be compared with the results of

Angle-resolved photoemission spectroscopy (ARPES) or Scanning tunneling microscopy

(STM) in some real impurity materials, and more complete phase diagram including Mott

insulating phase. The related work is under progress. It is also interesting to consider the

non-relativistic Fermionic fixed point to see the effect of the impurity α on the flat band.

We will present our results on this topic elsewhere in the future.
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