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Abstract. For each prime number p, the dynamical behavior of the square
mapping on the ring Zp of p-adic integers is studied. For p = 2, there are only
attracting fixed points with their attracting basins. For p ≥ 3, there are a fixed
point 0 with its attracting basin, finitely many periodic points around which
there are countably many minimal components and some balls of radius 1/p
being attracting basins. All these minimal components are precisely exhibited
for different primes p.

1. Introduction

The dynamics of the quadratic maps on finite fields or rings attracts much at-
tention in the literature ([6, 14, 18, 20, 21]). In particular, Rogers [18] studied the
square mapping f : x �→ x2 on the prime field Z/pZ = Fp, with p being a prime
number.

Notice that for the square mapping, the point 0 is fixed and one needs only to
consider the points in the multiplicative group F∗

p := Fp \ {0}. Denote by ϕ the
Euler’s phi function. For an integer d ≥ 2, the order of 2 modulo d, which will be
denoted by ordd2, is the smallest positive integer i such that 2i ≡ 1(mod d). By
convention, ord12 is set to be 1. Define a directed graph G(F∗

p) whose vertices are
the elements of F∗

p and whose edges are directed from x to f(x) for each x ∈ F∗
p.

Let σ(�, k) be the graph consisting of a cycle of length � with a copy of the binary
tree Tk of height k attached to each vertex. The dynamical structure of the square
mapping on F∗

p is described by the following theorem of Rogers [18].

Theorem 1 ([18]). Let p be an odd prime. Put p = 2km+1 where m is odd. Then

G(F∗
p) =

⋃
d|m

(σ(ordd2, k) ∪ . . . ∪ σ(ordd2, k))︸ ︷︷ ︸
ϕ(d)/ordd2

.

The graphs of G(F∗
p) for p = 11 and 17 are depicted in Figures 1 and 2.

In this paper, we will investigate the square mapping f : x �→ x2 on all finite
rings Z/pnZ and on their inverse limits Zp = lim←−Z/pnZ. The space Zp is nothing
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Figure 1. The graphs G(F∗
p) for primes p = 11 (thus k = 1,

m = 5, and d = 1 and 5). The vertices are the elements of F∗
p with

edges directed from x to x2.
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Figure 2. The graphs G(F∗
p) for primes p = 17 (k = 4,m = 1).

The vertices are the elements of F∗
p with edges directed from x to

x2.

but the ring of p-adic integers. We are thus led to the study of the p-adic dynamical
system (Zp, f).

Let (X,T ) be a dynamical system with X being a compact metric space and T
being a continuous map from X to itself. For a point x ∈ X, the orbit of x under
T is defined by

OT (x) := {Tn(x) : n ≥ 0}.
If E ⊂ X is a T -invariant (i.e., T (E) ⊂ E) compact subset, then (E, T ) is a
subsystem of (X,T ). The subsystem (E, T ) is called minimal if E is equal to the

closure OT (x) for each x ∈ E. We refer to the book of Walters [22] for dynamical
terminology.

For a prime number p, denote by Qp the field of p-adic numbers. Then the ring
Zp of p-adic integers is the local ring of Qp. The absolute value on Qp is denoted
by | · |p. With this non-Archimedean absolute value, Zp is the unit ball of Qp which
is both compact and open. For more details on p-adic numbers, one could consult
Robert’s book [17].
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Let f ∈ Zp[x] be a polynomial with coefficients in Zp. Then f defines a dynamical
system on Zp, denoted by (Zp, f). In the literature the minimality of f on the whole
space Zp is widely studied ([1–4,9,15,23]). However, if the system is not minimal on
Zp, what does the dynamical structure of f look like? To answer this question, one
is led to do a minimal decomposition of the space Zp, i.e., to find all the minimal
subsystems (minimal components) of f .

In general, it is proved by Fan and Liao [11] that a polynomial dynamical sys-
tem (Zp, f ∈ Zp[x]) admits at most countably many minimal subsystems and the
polynomial system has a minimal decomposition.

Theorem 2 ([11]). Let f ∈ Zp[x] with degree at least 2. We have the decomposition

Zp = P 
M
 B,
where P is the finite set consisting of all periodic points of f , M =

⊔
i Mi is the

union of all (at most countably many) clopen invariant sets such that each Mi is a
finite union of balls and each subsystem f : Mi → Mi is minimal, and each point
of B lies in the attracting basin of P 
M.

The minimal decomposition in Theorem 2 was first discovered by Coelho and
Parry [7] for the multiplications, and by Fan, Li, Yao, and Zhou [10] for the affine
polynomials. For the polynomials with higher order, the minimal decomposition
seems hard to obtain. In [11], Fan and Liao succeeded in making the minimal
decomposition for all quadratic polynomials but only for the prime p = 2. Recently,
Fan, Fan, Liao, and Wang [12] also studied the minimal decomposition of the
homographic maps on the projective line over the field Qp of p-adic numbers.

Furthermore, in [11], the authors also described the dynamics of each minimal
subsystem. Let (ps)s≥1 be a sequence of positive integers such that ps|ps+1 for
every s ≥ 1. We denote by Z(ps) the inverse limit of Z/psZ, which is called an
odometer. The sequence (ps)s≥1 is called the structure sequence of Z(ps). The map
x → x+ 1 defined on Z(ps) will be called the adding machine on Z(ps).

Theorem 3 ([11]). Let f ∈ Zp[x] with degree at least 2. If E is a minimal clopen
invariant set of f , then f : E → E is conjugate to the adding machine on an
odometer Z(ps), where

(ps) = (k, kd, kdp, kdp2, · · · ),
with integers k and d such that 1 ≤ k ≤ p and d|(p− 1).

In this paper, we fully study the square mapping f : x �→ x2 on Zp. For any prime
p ≥ 2, the complete minimal decomposition for the system (Zp, x

2) is obtained. The
structure sequences of the minimal subsystems are given.

By Anashin [1,2], the dynamical structure of a polynomial on Zp is derived from
the structures of the induced systems on Z/pnZ. In desJardins and Zieve [8] and
Fan and Liao [11], a method to study the structures on Z/pnZ inductively is devel-
oped. This method then allows us to do minimal decompositions for polynomials
by knowing their dynamical structures at first levels. In particular, one needs to
know, at least, the dynamical structure of the induced dynamics on Z/pZ (i.e., at
level 1).

For the case of the square mapping f : x �→ x2, however, the dynamical structure
at level 1 has already been described by Rogers [18] (Theorem 1 at the beginning
of this section). Hence, doing the minimal decomposition of the square mapping f
on Zp will be possible.
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For a ∈ Zp and r > 0, denote Dr(a) := {x ∈ Zp : |x − a|p < r}, Dr(a) := {x ∈
Zp : |x− a|p ≤ r}, and Sr(a) := {x ∈ Zp : |x− a|p = r}. Without difficulty, we can
check that by iterations of f , the points in D1(0) are attracted to the fixed point 0,
which means that D1(0) \ {0} ⊂ B. It is also easy to see that for the case p = 2, all
points in D1(1) are attracted to the fixed point 1. So we have P = {0, 1},M = ∅,
and B = Zp \ {0, 1}

For p ≥ 3, we have seen that 0 ∈ P is a fixed point with D1(0)\{0} = pZp\{0} ⊂
B as its attracting basin. By Theorem 1, at level 1, F∗

p is a union of cycles with some
binary trees of the same height attached to each vertex of the cycles. Each point in
F∗
p is a ball of radius 1/p. Let C ⊂ Zp \ pZp be the union of balls corresponding to

the points in the cycles and T = (Zp \ pZp) \ C be the union of balls corresponding
to the points in the trees. Then T is attracted to C, which means that T ⊂ B.
Hence, we will only treat the system f restricted on C.

For two integers m and n, we denote by (m,n) their greatest common divisor.
The following minimal decomposition theorem of the square mapping f on C is
our main result. It gives a whole picture of the dynamical structure of the square
mapping on Zp.

Theorem 4. Let p be an odd prime with p = 2km+ 1 where m is an odd integer.
Then C can be decomposed as the union of m periodic points and countably many
minimal components around each periodic orbit.

Let Pm be the set of periodic points, i.e.,

Pm = {x ∈ C : fn(x) = x for some integer n ≥ 1}.
Then Pm ⊂ P and we can decompose Pm in the following way:

Pm =
⊔
d|m

σ̂(ordd2) 
 · · · 
 σ̂(ordd2)︸ ︷︷ ︸
ϕ(d)/ordd2

,

where σ̂(�) is a periodic orbit of period �.
Let σ̂(�) = (x̂1, · · · , x̂�) be one of the periodic orbits of period �. Around this

periodic orbit, we have the decomposition

⊔
1≤i≤�

D1(x̂i) = {x̂1, · · · , x̂�} 


⎛
⎝⊔

n≥1

⊔
1≤i≤�

Sp−n(x̂i)

⎞
⎠ .

For each n ≥ 1, the set
⊔

1≤i≤� Sp−n(x̂i) belongs to the minimal part M and contains
(p−1)·(ordp2,�)

ordp2
· pvp(2p−1−1)−1 minimal components, and each minimal component is

a union of j :=
�·ordp2
(ordp2,�)

closed disks of radius p−n−vp(2
p−1−1).

For each minimal component Mi lying in
⊔

1≤i≤� D1(x̂i), the subsystem f :
Mi → Mi is conjugate to the adding machine on the odometer Z(ps), where

(ps) = (�, �j, �jp, �jp2, · · · ).

One of the key points in our proof of Theorem 4 is to determine the periodic
orbits. In Khrennikov and Nilsson [16], some results on the number and length of
periodic orbits of monomial dynamical systems f(x) = xn, n ≥ 3, were obtained.
It seems that applying our techniques to the results of [16] might lead to precise
minimal decompositions for other monomials. However, there is still a lot of work
to do.
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Our paper is organized as follows. In Section 2, we study the induced dynamics
on Z/pnZ. Section 3 gives some facts in number theory. The minimal decomposition
is completed in Section 4. Finally in Section 5, some examples for special primes
like Fermat primes and Wieferich primes are discussed.

2. Induced dynamics on Z/pnZ

Let p ≥ 3 be a prime and let f ∈ Zp[x] be a polynomial with coefficients in
Zp. The dynamics of f on Zp is determined by those of its induced finite dynamics
on Z/pnZ ([1, 2]). The idea to study these finite dynamics inductively comes from
desJardins and Zieve [8]. It allows Fan and Liao [11] to give the decomposition
theorem (Theorem 2) for any polynomial in Zp[x]. In this section, we will give
some basic definitions and facts which are useful in proving our main theorem. For
details, see [11] or [13].

Let n ≥ 1 be a positive integer. Denote by fn the induced mapping of f on
Z/pnZ, i.e.,

fn(x(mod pn)) = f(x) (mod pn).

The dynamical behaviors of f are linked to those of fn.

Lemma 1 ([3, 5]). Let f ∈ Zp[x] and let E ⊂ Zp be a compact f -invariant set.
Then f : E → E is minimal if and only if fn : E/pnZp → E/pnZp is minimal for
each n ≥ 1.

By Lemma 1, to study the minimality of f , we need to study the minimality of
each fn. Moreover, it is important to investigate the conditions under which the
minimality of fn implies that of fn+1.

Assume that σ = (x1, · · · , xk) ⊂ Z/pnZ is a cycle of fn of length k (also called
a k-cycle) at level n, i.e.,

fn(x1) = x2, · · · , fn(xi) = xi+1, · · · , fn(xk) = x1.

Let

Xσ :=

k⊔
i=1

Xi where Xi := {xi + pnt+ pn+1Z; t = 0, · · · , p− 1} ⊂ Z/pn+1Z.

Then

fn+1(Xi) ⊂ Xi+1 (1 ≤ i ≤ k − 1) and fn+1(Xk) ⊂ X1.

Let g := fk be the k-th iterate of f ; then we have gn+1(Xi) ⊂ Xi for all 1 ≤ i ≤ k.
In the following, we shall study the behavior of the finite dynamics fn+1 on the
fn+1-invariant set Xσ and determine all cycles of fn+1 in Xσ, which will be called
lifts of σ (from level n to level n+ 1). Remark that the length of any lift of σ is a
multiple of k.

Let

Xi := xi + pnZp = {x ∈ Zp : x ≡ xi (mod pn)}
be the closed disk of radius p−n corresponding to xi ∈ σ and let

Xσ :=

k⊔
i=1

Xi

be the clopen set corresponding to the cycle σ.
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For x ∈ Xσ, denote

an(x) := g′(x) =
k−1∏
j=0

f ′(f j(x)),(1)

bn(x) :=
g(x)− x

pn
=

fk(x)− x

pn
.(2)

The 1-order Taylor Expansion of g at x,

g(x+ pnt) ≡ g(x) + g′(x)πnt (mod p2n), for t ∈ {0, . . . , p− 1},
implies

(3) g(x+ pnt) ≡ x+ pnbn(x) + pnan(x)t (mod p2n), for t ∈ {0, . . . , p− 1}.
Define an affine map

Φ(x, t) = bn(x) + an(x)t (x ∈ Xσ, t ∈ {0, . . . , p− 1}).
We usually consider the function Φ(x, ·) as an induced function from Z/pZ to Z/pZ
by taking mod p and we keep the notation Φ(x, ·) if there is no confusion. An
important consequence of the formula (3) shows that gn+1 : Xi → Xi is conjugate
to the linear map

Φ(x, ·) : Z/pZ → Z/pZ,

for x ∈ Xi. It is called the linearization of gn+1 : Xi → Xi.
As proved in Lemma 1 of [11], the coefficient an(x) (mod p) is always constant

on Xi and the coefficient bn(x) (mod p) is also constant on Xi but under the
condition an(x) ≡ 1 (mod p). For simplicity, sometimes we write an and bn without
mentioning x.

From the values of an and bn, one can predict the behaviors of fn+1 on Xσ. The
linearity of the map Φ = Φ(x, ·) is the key to what follows:

(a) If an ≡ 1 (mod p) and bn 
≡ 0 (mod p), then Φ preserves a single cycle of
length p, so that fn+1 restricted to Xσ preserves a single cycle of length pk. In this
case we say σ grows.

(b) If an ≡ 1 (mod p) and bn ≡ 0 (mod p), then Φ is the identity, so fn+1

restricted to Xσ preserves p cycles of length k. In this case we say σ splits.
(c) If an ≡ 0 (mod p), then Φ is constant, so fn+1 restricted to Xσ preserves one

cycle of length k and the remaining points of Xσ are mapped into this cycle. In
this case we say σ grows tails.

(d) If an 
≡ 0, 1 (mod p), then Φ is a permutation and the �-th iterate of Φ reads

Φ�(t) = bn(a
�
n − 1)/(an − 1) + a�nt,

so that

Φ�(t)− t = (a�n − 1)

(
t+

bn
an − 1

)
.

Thus, Φ admits a single fixed point t = −bn/(an − 1), and the remaining points lie
on cycles of length d, where d is the order of an in (Z/pZ)∗. So, fn+1 restricted to
Xσ preserves one cycle of length k and p−1

d cycles of length kd. In this case we say
σ partially splits.

We want to see the change of nature from a cycle to its lifts, so it is important
to study the relation between (an, bn) and (an+1, bn+1). The following lemmas are
useful for our study of the dynamics of the square mapping on Zp. For details see
[8, 11].
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Lemma 2 ([8], see also [11], Proposition 2). Let p ≥ 3 be a prime and let n ≥ 2 be
an integer. If σ is a growing cycle of fn and σ̃ is the unique lift of σ, then σ̃ grows.

Lemma 3 ([11]). Let p ≥ 3 be a prime and let n ≥ 2 be an integer. If σ is a
growing cycle of fn, then σ produces a minimal component, i.e., the set Xσ is a
minimal subsystem of f .

Proof. By Lemma 2, if σ̃ is the lift of σ, then σ̃ also grows. Applying Lemma 2
again, the lift of σ̃ grows. Consecutively, we find that the descendants of σ will keep
on growing. (In this case, we usually say σ always grows or grows forever.) Hence,
fm is minimal on Xσ/p

mZp for each m ≥ n. Therefore, by Lemma 1, (Xσ, f) is
minimal. �

3. Preliminary facts in number theory

In this section we give some preliminary facts in number theory.
The field Qp of p-adic numbers always contains a cyclic subgroup of order p− 1,

defined as

μp−1 := {x ∈ Qp : xp−1 = 1} ⊂ Z×
p .

Here, Z×
p stands for the set of all invertible elements in Zp.

As a cyclic group, μp−1 is isomorphic to the multiplicative group F∗
p.

Lemma 4. When p is an odd prime, the group of roots of unity in the field Qp is
μp−1.

Proof. See Proposition 1 of Section 6.7 of [17]. �

Lemma 5. Let p be an odd prime and let μp−1 be the group of roots of unity in
the field Qp. Let

ε : μp−1 → F∗
p

be the reduction homomorphism. Then the following graph commutes:

F∗
p �

x2
F∗
p

μp−1

�

ε

�x2

μp−1

�

ε

Proof. Notice that μp−1 and F∗
p are cyclic multiplicative groups, and

ε : μp−1 → F∗
p

is a group automorphism. Furthermore, the square mapping on μp−1 and the square
mapping on F∗

p are group homomorphisms. Hence the graph commutates. �

For a periodic orbit σ̂ = (x̂1, x̂2, · · · , x̂�) ⊂ Z×
p and a cycle σn = (x1, x2, · · · , x�)

⊂ (Z/pnZ)∗ at level n, of the same length �, we write σn ≡ σ̂ (mod pn) if

xi ≡ x̂i (mod pn) ∀1 ≤ i ≤ �.

The following proposition is directly derived from Lemma 5.
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Proposition 1. Let p be an odd prime and let f : x �→ x2 be the square mapping.
If σ1 = (x1, x2, · · · , x�) ⊂ (Z/pZ)∗ is a cycle of the induced mapping f1 of length
�, then there exists a unique periodic orbit σ̂ = (x̂1, x̂2, · · · , x̂�) ⊂ Z×

p such that
σ1 ≡ σ̂ (mod p)

Conversely, for a periodic orbit of f in Zp, there exists a corresponding periodic
orbit of f1 in Z/pZ. Furthermore, for each integer n ≥ 1, there exists a corre-
sponding periodic orbit of fn in Z/pnZ. By Lemma 5, the proof of the following
proposition is evident.

Proposition 2. Let p be an odd prime and let f : x �→ x2 be the square mapping.
Let σ̂ = (x̂1, x̂2, · · · , x̂�) ⊂ Z×

p be a periodic orbit of f of length �. Then � ≤ p − 1
and for each n ≥ 1, there exists a unique cycle σn ⊂ Z/pnZ of fn of length � such
that σn ≡ σ̂ (mod pn).

The following lemma is a basic fact in number theory.

Lemma 6. Let p be an odd prime and let � ≥ 1 be an integer. Then the order of

2� in (Z/pZ)∗ is
ordp2

(�,ordp2)
. In particular, if 2� ≡ 1 (mod p), we have ordp2 | �.

Proof. Notice that

2
�· ordp2

(�,ordp2) = 2
ordp2· �

(�,ordp2) ≡ 1 (mod p).

Thus the order of 2� is no more than
ordp2

(�,ordp2)
.

Write � = k · ordp2 + s with k ≥ 0 and 0 ≤ s < ordp2.
If 2� ≡ 1 (mod p), then

1 ≡ 2� = 2k·ordp2+s ≡ 2s (mod p).

So by the definition of ordp2, we have s = 0. Hence

ordp2 | � and
ordp2

(�, ordp2)
= 1.

Since ordp(2
�) ≤ ordp2

(�,ordp2)
, we conclude that

ordp(2
�) = 1 =

ordp2

(�, ordp2)
.

If 2� 
≡ 1 (mod p), then s 
= 0 and (�, ordp2) = (s, ordp2). Hence for any positive

integer i <
ordp2

(�,ordp2)
=

ordp2
(s,ordp2)

, we have ordp2 � i · s. So we have

2i� = 2ik·ordp2+is ≡ 2is 
≡ 1 (mod p).

Thus we also have

ordp(2
�) =

ordp2

(�, ordp2)
.

�
Now we calculate the p-valuations, denoted by vp(·), of some numbers. It will

be useful for finding the minimal decomposition of the square mapping on Zp.

Lemma 7. Let p be an odd prime. Then for all 1 ≤ i < p,

vp(2
ordp2 − 1) = vp(2

i·ordp2 − 1) < p− 1.

In particular,
vp(2

ordp2 − 1) = vp(2
p−1 − 1).
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Proof. Assume that vp(2
ordp2 − 1) = s ≥ 1. Then we can write

2ordp2 = 1 + pst,

for some integer t ≥ 1 such that (t, p) = 1. For all 1 ≤ i < p, we have

(1 + pst)i ≡ 1 + ipst (mod ps+1).

So,
vp(2

i·ordp2 − 1) = s.

Since
ps < 2ordp2 ≤ 2p−1 < pp−1,

we conclude s < p− 1.
In particular, by taking i = (p− 1)/ordp2, we have

vp(2
ordp2 − 1) = vp(2

p−1 − 1).

�

Proposition 3. Let p be an odd prime, and let σ̂ = (x̂1, x̂2, · · · , x̂�) ⊂ Z×
p be a

periodic orbit of f : x �→ x2. If x1 = x̂1 + pnα for some α ∈ Zp \ pZp and n ≥ 1,
then

vp(x
2�r−1
1 − 1) = n+ vp(2

p−1 − 1),

where r =
ordp2

(�,ordp2)
.

Proof. By Theorem 1 and Proposition 1, we have � < p− 1. Then

�r =
� · ordp2
(�, ordp2)

< p · ordp2.

Observe that ordp2 | �r. By Lemma 7, we have

vp(2
�r − 1) = vp(2

p−1 − 1).

Let s = vp(2
p−1 − 1); then 2�r = 1 + psh for some h ∈ Z \ pZ. Observe that

x̂1 ∈ Z×
p is a periodic point of f of period �. Thus x̂2�

1 = x̂1 and then x̂2�r

1 = x̂1.

Multiplying x̂−1
1 , we obtain

x̂psh
1 = x̂2�r−1

1 = 1.

So,

x2�r−1
1 − 1 = (x̂1 + pnα)p

sh − 1

=

psh∑
i=1

(
psh

i

)
x̂psh−i
1 αipni.

Let

Ci =

(
psh

i

)
x̂psh−i
1 αipni, 1 ≤ i ≤ psh.

Then vp(C1) = n+ s. Moreover, if i > s+ 1, then

vp(Ci) ≥ ni > n(s+ 1) = ns+ n ≥ s+ n.

If 1 < i ≤ s + 1, then by Lemma 7, we know that i < p. Thus vp(
(
psh
i

)
) = s.

Therefore,
vp(Ci) = ni+ s > n+ s.
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10 SHILEI FAN AND LINGMIN LIAO

So,

vp(x
2�r−1
1 − 1) = vp(C1) = n+ s.

�

4. Minimal decomposition of the square mapping on Zp

In this section, we focus on the minimal decomposition of the square mapping
on Zp.

By the proof of Lemma 3, if a cycle at a certain level always grows (grows forever)
then it will produce a minimal component of f . The following proposition shows
when a cycle always grows (grows forever) for the square mapping. A cycle σ at
level n is said to split � times if σ splits, and the lifts of σ at level n+ 1 split and
inductively all lifts at level n+ j(2 ≤ j < �) split.

Proposition 4. Let p be an odd prime and let f : x �→ x2 be the square mapping.
Suppose that σ̂ = (x̂1, x̂2, · · · , x̂�) ⊂ Z×

p is an �-periodic orbit of f . For each n ≥ 1,
let σn = (x1, · · · , x�) ⊂ Z/pnZ be the �-cycle of the induced map fn such that

σn ≡ σ̂ (mod pn), i.e., for all 1 ≤ i ≤ �, xi ≡ x̂i (mod pn).

1) If 2� ≡ 1 (mod p), then σn splits. There is one lift σn+1 such that σn+1 ≡
σ̂ (mod pn+1) and all other lifts split vp(2

p−1 − 1)− 1 times and all descendants at
level n+ vp(2

p−1 − 1) grow forever.
2) If 2� 
≡ 1 (mod p), then σn partially splits. Let σn+1 be a lift of σn.

(a) If σn+1 is the lift of length �, then σn+1 ≡ σ̂ (mod pn), and σn+1 partially
splits.

(b) If σn+1 is a lift of length �r for some integer r > 1, then r =
ordp2

(ordp2,�)

and σn+1 split vp(2
p−1 − 1)− 1 times and all descendants of σn+1 at level

n+ vp(2
p−1 − 1) grow forever.

Proof. Let g = f � : x �→ x2� be the �-th iterate of f . Then,

an(x1) = g′(x1) = 2�x2�−1
1 ,

bn(x1) =
x2�

1 − x1

pn
.

Since x̂2�

1 = x̂1, then x̂2�−1
1 = 1 and hence x2�−1

1 ≡ 1 (mod pn). Thus,

an(x1) ≡ 2� (mod p).

1) Assume 2� ≡ 1 (mod p). Then an(x1) ≡ 1 (mod p). Let s = vp(2
p−1 − 1).

Observe that ordp2 ≤ � ≤ p− 1 and ordp2 | �. By Lemma 7, we have vp(2
� − 1) =

s ≥ 1. Write

2� = 1 + psh,

for some integer h with (h, p) = 1. Since x1 ≡ x̂1 (mod pn), we have x1 = x̂1 + pnt
for some t ∈ Zp. Thus by Proposition 3 and

g(x1)− x1 = x1(x
2�−1
1 − 1),

we deduce that bn(x1) ≡ 0 (mod p). Thus σn splits.
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DYNAMICS OF THE SQUARE MAPPING 11

Let σn+1 = (y1, · · · , y�) ⊂ Z/pn+1Z be a lift of σn. We distinguish the following
two cases.

i) Assume y1 ≡ x̂1 (mod pn+1). Then σn+1 ≡ σ̂ (mod pn+1) and σn+1 behaves
the same as σn.

ii) Assume y1 
≡ x̂1 (mod pn+1). Then y1 = x̂1 + pnα for some α ∈ Zp \ pZp.
Since 2� ≡ 1 (mod p), we have ordp2 | �. By Proposition 3 and

g(y1)− y1 = y1(y
2�−1
1 − 1),

we get

vp(bn+1(y1)) = s− 1.

If s = 1, then σn+1 grows. By Lemma 2, the lift of σn+1 grows forever.
If s > 1, then σn+1 splits. By induction, let σn+1+i be a lift of σn+1 at level

n+ 1 + i for 0 ≤ i < s− 1, then σn+1+i splits. Let σn+s = (z1, · · · , z�) be a lift of
σn+1 at level n+ s. By Proposition 3, vp(bn+s(z1)) = 0, so σn+s grows. By Lemma
2, the lift of σn+s grows forever.

2) Assume 2� 
≡ 1 (mod p). Then an(x1) 
≡ 0, 1 (mod p). Thus σn partially
splits. Let σn+1 = (y1, · · · , y�r) ⊂ Z/pn+1Z be a lift of σn of length �r.

If r = 1, then by Proposition 2, we get that σn+1 ≡ σ̂ (mod pn+1), and σn+1

behaves the same as σn.
If r > 1, then r is the order of an in (Z/pZ)∗. By Lemma 6, r =

ordp2
(ordp2,�)

. By

Lemma 7, we have

vp(2
�r−1) = vp(2

p−1) = s.

Notice that y1 ≡ x̂1 (mod pn) and y1 
≡ x̂1 (mod pn+1). By Proposition 3,

vp(g
r(y1)− y1) = vp(y1(y

2�r−1

1 − 1)) = vp(y
2�r−1

1 − 1) = n+ s.

The same argument as the case ii) of 1) implies that if σn+1 splits s− 1 times, then
all the descendants of σn+1 at level n+ s grow forever. �

Now we are ready to prove our main result.

Proof of Theorem 4. By Theorem 1, we know the dynamical structure of f at the
first level. Let σ = (x1, x2, · · · , x�) ⊂ (Z/pZ)∗ be a cycle of length � at the first level.
By Proposition 1, there exists a unique periodic orbit σ̂ = (x̂1, x̂2, · · · , x̂�) ⊂ Xσ of
f with the same length of σ.

By Proposition 4 and Lemmas 1 and 2, we get the minimal decomposition of
system (Xσ, f),

Xσ = {x̂1, · · · , x̂�} 


⎛
⎝⊔

n≥1

⊔
1≤i≤�

Sp−n(x̂i)

⎞
⎠ ,

where for each n ≥ 1, the set
⊔

1≤i≤� Sp−n(x̂i) consists of

(p− 1) · (ordp2, �)
ordp2

· pvp(2p−1−1)−1

minimal components and each minimal component consists of j :=
�·ordp2
(ordp2,�)

closed

disks of radius p−n−vp(2
p−1−1).
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12 SHILEI FAN AND LINGMIN LIAO

By Theorem 3 and Proposition 4, each nontrivial minimal subsystem (which is
not a periodic orbit) of (Xσ, f) is conjugate to the adding machine on the odometer
Z(ps), where

(ps) = (�, �j, �jp, �jp2, · · · ).
�

5. Examples

Recall that S1(0) is the unit sphere and f is the square mapping. For different
primes, the dynamical behaviors of (S1(0), f) are quite different.

A Fermat prime is a prime number p of the form p = 22
n

+ 1 where n is a
nonnegative integer. It is known that the iteration graph of square mapping on F∗

p

of the nonzero elements in the finite field Fp is a tree attached to the unique loop
of 1 when p is a Fermat prime, and conversely, if there is only one loop, then p
must be a Fermat prime ([18]). In this case, 0 and 1 are the only fixed points of
f , the disk D1(0) is the attracting basin of the fixed point 0. The disk D1(1) is
the unique Siegel disk. Furthermore, we have a minimal decomposition of D1(1)
by Theorem 4. The other open disks with radius 1 are attracted by the Siegel disk
D1(1). Decompose D1(1) as

D1(1) = {1} 


⎛
⎝⊔

i≥1

Sp−i(1)

⎞
⎠ .

Then each sphere Sp−i(1) consists of pvp(2
p−1−1)−1 minimal components, and each

minimal component is a union of p closed disks of radius p−i−v2(2
p−1−1).

An odd prime p is called a Wieferich prime if

2p−1 ≡ 1 (mod p2).

If an odd prime p is not a Wieferich prime, we know that vp(2
p−1 − 1) = 1. For

a cycle σ = (x1, x2, · · · , x�) ⊂ Z/pZ of length � at the first level, Proposition 1
implies that there exists a unique periodic orbit σ̂ = (x̂1, x̂2, · · · , x̂�) ⊂ Xσ of f
with the same length of σ. By Proposition 4, the lifts which do not correspond
to the periodic orbit grow forever and the lift corresponding to the periodic orbit
behaves the same as σ. Thus for each integer n ≥ 1, the union

⊔
1≤i≤� Sp−n(x̂i)

of the spheres consists of
(p−1)·(ordp2,�)

ordp2
minimal components and each minimal

component consists of
�·ordp2
(ordp2,�)

closed disks of radius p−n−1.

The only knownWieferich primes, 1093 and 3511, were found by Meissner in 1913
and Beeger in 1922, respectively. It has been conjectured that only finitely many
Wieferich primes exist. Silverman [19] showed in 1988 that if the abc conjecture
holds, then there exist infinitely many non-Wieferich primes. Numerical evidence
suggests that very few of the prime numbers in a given interval are Wieferich primes.
A proof of the abc conjecture would not automatically prove that there are only
finitely many Wieferich primes, since the set of Wieferich primes and the set of non-
Wieferich primes could possibly both be infinite and the finiteness or infiniteness
of the set of Wieferich primes would have to be proven separately.

For the known Wieferich primes p = 1093 or 3511, we have vp(2
p−1 − 1) = 2.

Fix a cycle σ = (x1, x2, · · · , x�) ⊂ Z/pZ of length � at the first level. Similar to
the general case, there exists a unique periodic orbit σ̂ = (x̂1, x̂2, · · · , x̂�) ⊂ Xσ of
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DYNAMICS OF THE SQUARE MAPPING 13

f with the same length of σ. Different from the non-Wieferich primes, the lifts
which do not correspond to the periodic orbit split one time at first and then all
the descendants grow forever. For each integer n ≥ 1, the union

⊔
1≤i≤� Sp−n(x̂i)

of the spheres consists of
p(p−1)·(ordp2,�)

ordp2
minimal components and each minimal

component consists of
�·ordp2
(ordp2,�)

closed disks of radius p−n−2.

However, the existence of prime number p such that vp(2
p−1 − 1) > 2 is still

unknown.
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