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a b s t r a c t

In this paper,we introduce aweak version of the strong solution (the adapted solutionused in Pardoux and
Peng (1990) [2]), i.e., the transposition solution, to the backward stochastic differential equation (BSDE)
with general filtration and random jumps, and study the corresponding well-posedness. The main tools
that we employ are the Riesz representation theorem and the Banach fixed point theorem, without using
the martingale representation theorem. As an application, we give a definition of controllability to the
stochastic linear control system in the sense of the transposition solution and provide a Kalman-type
rank condition to guarantee this property.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Given T > 0, let (Ω, F , Ft , P; t ≥ 0) be a complete filtration
space and F = {Ft; t ≥ 0} be a filtration satisfying the usual
conditions. On the above filtration space there exist two mutually
independent stochastic processes:
(i) a d-dimensional Brownian motion {W (t); t ≥ 0};
(ii) a Poisson random measure N on R+

× E, where E = Rl
− {0}

with the Borel σ -field B(E). λ is the intensity (Lévy measure) of N
with the property that
E
(1 ∧ |z|2)λ(dz) < ∞

and µ is the compensator of N , µ(dt, dz) = dtλ(dz). Then {N
((0, t] × A) = (N − µ)((0, t] × A), Ft; t ≥ 0} is a compensated
Poisson process which is a càdlàg martingale for all A ∈ B(E)
satisfying λ(A) < ∞.

Throughout this paper, the filtration F is not necessarily the
natural filtration generated by the Brownian motion and the
Poisson randommeasure.

For simplicity, we consider only the case d = l = 1 in this pa-
per; the general cases can be treated by a similar method. For any
n ≥ 1, denote by |x| and ⟨x, y⟩ the Euclidean norm and the inner
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product of x, y ∈ Rn respectively. For any square integrablemartin-
gale {M(t), Ft; t ≥ 0}, write [M]t and ⟨M ⟩t for its quadratic vari-
ation and predictable quadratic variation at time t , respectively.
Also, we introduce the following classes of processes which will be
used in the sequel.

• L2Ft
(Ω;Rn) is the space of all Ft-measurable and Rn-valued

random variables ξ satisfying |ξ |
2
L2Ft

(Ω;Rn)
= E|ξ |

2 < ∞.

• L2P,F(Ω; L2(0, T ;Rn)) is the space of all F-predictable stochastic
processes K satisfying |K |

2
L2P,F(Ω;L2(0,T ;Rn))

= E
 T

0


E |K(t, z)|2

λ(dz)dt


< ∞.
• L2F(Ω;D([0, T ];Rn)) is the space of all F-adapted càdlàg sto-

chastic processes X satisfying |X |
2
L2F(Ω;D([0,T ];Rn))

= E(supt∈[0,T ]

|X(t)|2) < ∞.
• For any p, q ≥ 1, LpF(Ω; Lq(0, T ;Rn)) denotes the space

of all F-adapted processes Y satisfying |Y |LpF(Ω;Lq(0,T ;Rn)) =
E
 T

0 |Y (t)|qdt
p/q1/p

< ∞.

We consider the following BSDE in [0, T ]
dy(t) = f (t, y(t), Y (t), K(t, ·))dt + Y (t)dW (t)

+


E
K(t, z)N(dt, dz)

y(T ) = yT ,

(1.1)

where f satisfies f (·, 0, 0, 0) ∈ L2F(Ω; L1(0, T ;Rn)), and there exist
g ∈ L1(0, T ), h ∈ L2(0, T ), such that

http://dx.doi.org/10.1016/j.sysconle.2012.11.021
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:yqwang@amss.ac.cn
http://dx.doi.org/10.1016/j.sysconle.2012.11.021


Y. Wang / Systems & Control Letters 62 (2013) 242–247 243
|f (t, y, Y , K) − f (t,y,Y ,K)|

≤ g(t)|y −y| + h(t)(|Y −Y | + |K −K |L2(E,B(E),λ;Rn))

a.e. t ∈ [0, T ], a.s. , (1.2)

for any y,y, Y ,Y ∈ Rn, K ,K ∈ L2(E, B(E), λ;Rn).

Linear BSDEs were first introduced by Bismut in [1] as the
equations for the conjugate variable in the stochastic version of
the Pontryagin maximum principle. Non-linear BSDEs were first
studied by Pardoux and Peng in [2]. General BSDEs with jumps
were met in [3,4]. The main theorems in [2–4] for the existence
and uniqueness of the strong solutions depend on the martingale
representation theorems for the natural filtration spaces, i.e.,
{Ft; t ≥ 0} = {FW

t ; t ≥ 0} (generated by {W (t); t ≥ 0} and
augmented by all the P-null sets) in [2] while {Ft; t ≥ 0} =

{F
W ,N
t ; t ≥ 0} in [3,4].
BSDEs with enlarged filtration in financial market were consid-

ered in [5] and the references therein: the ordinary agent has the
natural information flow {Ft; t ≥ 0}, while an insider possesses
from the beginning additional information (some random variable
G) and therefore has the enlarged filtration {Ft ∨σ(G); t ≥ 0}. Un-
der some hypothesis on G, the martingale representation theorem
on {Ft ∨ σ(G); t ≥ 0} still holds.

BSDEs driven by general martingales M = {M(t), Ft; t ≥

0} were considered in [6–8]. The authors in [6,7] considered
the general filtrations but they decomposed the processes space
into two orthogonal subspaces, one of which has the martingale
representation property. The author in [8] assumed that M
enjoys the predictable representation property, i.e., for any square
integrable martingale L = {L(t), Ft; t ≥ 0} with zero initial value,
there exists a predictable processH such that L(t) =

 t
0 H(s)dM(s).

Hence their method still depends on the representation property
of the martingale.

In [9], the authors discussed BSDEs driven by Brownianmotions
with general filtration using a new approach. They defined the
transposition solution of Eq. (1.1), and obtained the corresponding
well-posedness and the comparison theorem. The main novelty of
their method is that they did not need the martingale representa-
tion theorem.

Before 1990, there are a few works about the controllability of
stochastic linear control systems (SLCSs), say [10,11] and so on. As
an application of BSDEs, Peng in [12] defined the controllability of
SLCSs driven by Brownian motions and obtained the Kalman rank
condition to guarantee this property. His result was based on the
following fact: the role of control in the SLCSs is similar to the
second component of the solution for BSDEs, hence he studied the
controllability of SLCSs by means of BSDEs.

In this paper, we study the BSDE (1.1) with jumps and obtain
its well-posedness in the sense of the transposition solution. As
an application, we consider the controllability, in the transposition
sense, for SLCSs with jumps and establish the Kalman-type rank
condition in this situation.

2. Preliminaries

For any t ∈ [0, T ] we introduce some processes spaces

KD
[t, T ] = L2F(Ω;D([t, T ];Rn)) × L2F(Ω; L2(t, T ;Rn))

× L2P,F(Ω; L2(t, T ;Rn)),

K∞
[t, T ] = L2F(Ω; L∞(t, T ;Rn)) × L2F(Ω; L2(t, T ;Rn))

× L2P,F(Ω; L2(t, T ;Rn)),

K1
[t, T ] = L2F(Ω; L1(t, T ;Rn)) × L2F(Ω; L2(t, T ;Rn))

× L2P,F(Ω; L2(t, T ;Rn)) × L2Ft
(Ω;Rn),

with the canonical norms.
Let us consider the following auxiliary forward stochastic
differential equation (FSDE) in [t, T ]dx(τ ) = u(τ )dτ + v(τ)dW (τ ) +


E
w(τ, z)N(dτ , dz)

x(t) = η,
(2.1)

where (u, v, w, η) ∈ K1
[t, T ].

It is clear that Eq. (2.1) admits a unique strong solution x ∈

L2F(Ω;D([t, T ];Rn)). If Eq. (1.1) admits a strong solution (y, Y , K),
then by applying Itô’s formula to ⟨x(t), y(t)⟩, we obtain that

E⟨x(T ), y(T )⟩ − E⟨η, y(t)⟩

= E
 T

t
⟨x(τ ), f (τ , y(τ ), Y (τ ), K(τ ))⟩dτ

+ E
 T

t
⟨u(τ ), y(τ )⟩dτ + E

 T

t
⟨v(τ), Y (τ )⟩dτ

+ E
 T

t


E
⟨w(τ, z), K(τ , z)⟩λ(dz)dτ . (2.2)

This reminds us to introduce a weak version of the strong solution
to Eq. (1.1) as follows.

Definition 2.1. We call (y, Y , K) ∈ KD
[0, T ] to be a transposition

solution of Eq. (1.1) if for any t ∈ [0, T ] and (u, v, w, η) ∈ K1
[t, T ],

(2.2) holds, where x is the strong solution of Eq. (2.1).

Next, we list three lemmas which will be used in proving the
well-posedness of linear non-homonomous BSDEs. The first one is
obtained by virtue of a similar approach in [13] and the second one
is from [9], hence we omit the proofs.

Lemma 2.1. For any r ∈ [1, ∞), it holds that

L2F(Ω; Lr(0, T ;Rn))∗ = L2F(Ω; Lr
′

(0, T ;Rn)),

L2P,F(Ω; Lr(0, T ;Rn))∗ = L2P,F(Ω; Lr
′

(0, T ;Rn)),

where r ′
= r/(r − 1) if r > 1; r ′

= ∞ if r = 1.

Lemma 2.2. For any T > 0, assume that p ∈ (1, ∞],

q =

 p
p − 1

, p ∈ (1, ∞)

1, p = ∞,

f1 ∈ LpF(0, T ; L2(Ω;Rn)) and f2 ∈ LqF(0, T ; L2(Ω;Rn)). Then

lim
h→0

1
h

 t+h

t
E⟨f1(t), f2(τ )⟩dτ = E⟨f1(t), f2(t)⟩,

a.e. t ∈ [0, T ).

Lemma 2.3. For any t ∈ [0, T ], (u, v, w, η) ∈ K1
[t, T ], the solution

x ∈ L2F(Ω;D([t, T ];Rn)) of Eq. (2.1) satisfies

|x|L2F(Ω;D([t,T ];Rn)) ≤ C |(u, v, w, η)|K1[t,T ],

where C is a constant depending only on T .

Proof. It is clear that for any t ∈ [0, T ], (u, v, w, η) ∈ K1
[t, T ],

the FSDE (2.1) admits a strong solution

x(s) = η +

 s

t
u(τ )dτ +

 s

t
v(τ)dW (τ )

+

 s

t


E
w(τ, z)N(dτ , dz),
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and x ∈ L2F(Ω;D([t, T ];Rn)). By the definition of L2F(Ω;D([t, T ];

Rn)), the Hölder inequality and the Burkholder–Davis–Gundy
inequality,

|x|2
L2F(Ω;D([t,T ];Rn))

= E sup
t≤s≤T

|x(s)|2

≤ 4E sup
t≤s≤T


|η|

2
+

 s

t
u(τ )dτ

2 +

 s

t
v(τ)dW (τ )

2
+

 s

t


E
w(τ, z)N(dτ , dz)

2


≤ 4


E|η|

2
+ E

 T

t
|u(τ )|dτ

2


+ 4C1E
 ·

t
v(τ)dW (τ )


T

+ 4C2E
 ·

t


E
w(τ, z)N(dτ , dz)


T

= 4


E|η|

2
+ E

 T

t
|u(τ )|dτ

2


+ 4C1E


·

t
v(τ)dW (τ )


T

+ 4C2E


·

t


E
w(τ, z)N(dτ , dz)


T

≤ (4 + 4C1 + 4C2)|(u, v, w, η)|2
K1[t,T ]

,

where C1, C2 are constants. �

3. Well-posedness of BSDEs with jumps

In this section, we establish the well-posedness of linear non-
homonomous BSDEs first, then by the Banach fixed point theorem
we obtain the well-posedness result for Eq. (1.1).

Theorem 3.1. For any f (·) ∈ L2F(Ω; L1(0, T ;Rn)) and any yT ∈ L2FT
(Ω;Rn), the following BSDE in [0, T ]dy(t) = f (t)dt + Y (t)dW (t) +


E
K(t, z)N(dt, dz)

y(T ) = yT ,

admits a unique transposition solution (y, Y , K) ∈ KD
[0, T ]. Fur-

thermore, for any t ∈ [0, T ],

|(y, Y , K)|KD[0,T ] ≤ C(|f |L2F(Ω;L1(t,T ;Rn)) + |yT |L2FT
(Ω;Rn)),

where C is a constant depending only on T .

Since the proof of this theorem is similar to that of Theorem 3.1
in [9], we give below only a sketch.

Sketch Proof of Theorem 3.1. Step 1. For any t ∈ [0, T ], we define
a linear functional S on K1

[t, T ] as follows

S(u, v, w, η) = E⟨x(T ), yT ⟩ − E
 T

t
⟨x(τ ), f (τ )⟩dτ ,

for any (u, v, w, η) ∈ K1
[t, T ], where x ∈ L2F(Ω;D([t, T ];Rn))

solves Eq. (2.1). By Lemma 2.3, S is bounded. Thus, by Lemma 2.1
and the Riesz representation theorem, there exist (yt , Y t , K t) ∈

K∞
[t, T ] and ς t

∈ L2Ft
(Ω,Rn) such that

E⟨x(T ), yT ⟩ − E
 T

t
⟨x(τ ), f (τ )⟩dτ

= E
 T

t
⟨u(τ ), yt(τ )⟩dτ + E

 T

t
⟨v(τ), Y t(τ )⟩dτ

+E
 T

t


E
⟨w(τ, z), K t(τ , z)⟩λ(dz)dτ + E⟨η, ς t

⟩.
Step 2. Choosing appropriate (u, v, w, η) ∈ K1
[·, T ], we conclude

that for any t1 and t2 satisfying 0 ≤ t2 ≤ t1 ≤ T , it holds that

(yt2(τ , ω), Y t2(τ , ω), K t2(τ , ·, ω))
= (yt1(τ , ω), Y t1(τ , ω), K t1(τ , ·, ω)),
a.e. (τ , ω) ∈ [t1, T ] × Ω.

Put y(t, ω) = y0(t, ω), Y (t, ω) = Y 0(t, ω), K(t, ·, ω) = K 0

(t, ·, ω).
Step 3. One can show that

X(t) := ς t
−

 t

0
f (s)ds, t ∈ [0, T ]

is a F-martingale, thus {ς t
; 0 ≤ t ≤ T } has a càdlàg modification,

i.e. ς ∈ L2F(Ω;D([0, T ];Rn)).
Step 4. Using Lemma 2.2, for a.e. t ∈ [0, T ], we can show that

ς t
= y(t) a.s.

This completes the proof. �

Now by virtue of Theorem 3.1 and the Banach fixed point the-
orem, we get the well-posedness result for the general semilinear
BSDE (1.1).

Theorem 3.2. Under the assumption (1.2), for any yT ∈ L2FT
(Ω;Rn),

Eq. (1.1) admits a unique transposition solution (y, Y , K) ∈ KD

[0, T ]. Furthermore, there is a constant C, depending only on g, h and
T , such that

|(y, Y , K)|KD[0,T ]

≤ C

|f (·, 0, 0, 0)|L2F(Ω;L1(0,T ;Rn)) + |yT |L2FT

(Ω;Rn)


. (3.1)

Proof. It is easy to show the uniqueness of the transposition
solution from (3.1). Hence we prove only the existence and the
estimate (3.1).

Given a triplet (ȳ, Ȳ , K̄) ∈ KD
[T1, T ], T1 ∈ [0, T ], by The-

orem 3.1, we obtain a unique transposition solution (y, Y , K) ∈

KD
[T1, T ] of the following equation in [T1, T ]

dy(t) = f (t, ȳ(t), Ȳ (t), K̄(t))dt + Y (t)dW (t)

+


E
K(t, z)N(dt, dz)

y(T ) = yT .

This defines a map F from KD
[T1, T ] into itself by F(ȳ, Ȳ , K̄) =

(y, Y , K). To complete the proof, it suffices to show that F is
contractive. For this purpose, let (ȳi, Ȳi, K̄i) ∈ KD

[T1, T ] and
(yi, Yi, Ki) = F(ȳi, Ȳi, K̄i) for i = 1, 2. Hence ∆y = y1 − y2, ∆Y =

Y1 − Y2, ∆K = K1 − K2 satisfies the following BSDE in [T1, T ]d∆y(t) = ∆f (t)dt + ∆Y (t)dW (t) +


E
∆K(t, z)N(dt, dz)

∆y(T ) = 0,

where ∆f (t) = f (t, ȳ1, Ȳ1, K̄1) − f (t, ȳ2, Ȳ2, K̄2).
Set ∆ȳ = ȳ1 − ȳ2, ∆Ȳ = Ȳ1 − Ȳ2, ∆K̄ = K̄1 − K̄2. Since

|∆f |2
L2F(Ω;L1(T1,T ;Rn))

= E
 T

T1
|∆f |dt

2
≤ 3


E
 T

T1
g(t)|∆ȳ(t)|dt

2
+ E

 T

T1
h(t)|∆Ȳ (t)|dt

2
+ E

 T

T1
h(t)


E
|∆K̄(t, z)|2λ(dz)dt

2
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≤ 3
 T

T1
g(t)dt

2
+

 T

T1
h2(t)dt


E sup

t∈[T1,T ]

|∆ȳ(t)|2

+ E
 T

T1
|∆Ȳ (t)|2dt + E

 T

T1


E
|∆K̄(t, z)|2λ(dz)dt


= 3

 T

T1
g(t)dt

2
+

 T

T1
h2(t)dt


|(∆ȳ, ∆Ȳ , ∆K̄)|2

KD[T1,T ]

< ∞,

it follows that∆f ∈ L2F(Ω; L1(T1, T ;Rn)). Bymeans of Theorem3.1,
we have the following estimate

|F(∆ȳ, ∆Ȳ , ∆K̄)|2
KD[T1,T ]

= |(∆y, ∆Y , ∆K)|2
KD[T1,T ]

≤ C2
|∆f |2

L2F(Ω;L1(T1,T ;Rn))

≤ 3C2
 T

T1
g(t)dt

2
+

 T

T1
h2(t)dt


|(∆ȳ, ∆Ȳ , ∆K̄)|2

KD[T1,T ]
.

Choose T1 such that 3C2
 T

T1
g(t)dt

2
+
 T
T1

h2(t)dt


< 1, hence
F is contractive. By the Banach fixed point theorem, F has a fixed
point (y, Y , K) ∈ KD

[T1, T ]which is a transposition solution of the
following equation in [T1, T ]
dy(t) = f (t, y(t), Y (t), K(t, ·))dt + Y (t)dW (t)

+


E
K(t, z)N(dt, dz)

y(T ) = yT .

Applying Theorem 3.1, we find that

|(y, Y , K)|KD[T1,T ]

≤ C

|f (·, y(·), Y (·), K(·))|L2F(Ω;L1(T1,T ;Rn)) + |yT |L2FT

(Ω;Rn)


≤ C


3
 T

T1
g(t)dt

2
+

 T

T1
h2(t)dt


|(y, Y , K)|KD[T1,T ]

+ |f (·, 0, 0, 0)|L2F(Ω;L1(T1,T ;Rn)) + |yT |L2FT
(Ω;Rn)


. (3.2)

Noting that C

3
 T

T1
g(t)dt

2
+
 T
T1

h2(t)dt


< 1, by (3.2), we

have

|(y, Y , K)|KD[T1,T ]

≤ C

|f (·, 0, 0, 0)|L2F(Ω;L1(T1,T ;Rn)) + |yT |L2FT

(Ω;Rn)


. (3.3)

Repeating the above argument by finite steps,weobtain a trans-
position solution of (1.1) in [0, T ]. The desired estimate (3.1) fol-
lows from (3.3). �

Remark 3.1. If the filtration {Ft; t ≥ 0} = {F
W ,N
t ; t ≥ 0},

from [3], the BSDE (1.1) admits a unique strong solution (in
the classical sense) which is also a transposition solution. From
the uniqueness of the transposition solution, we see that the
transposition solution coincides with the strong solutionwhen the
filtration is natural.

Remark 3.2. If ξ ∈ L2
F

W ,N
T

(Ω;Rn) and f is a deterministic function,

similar to the method in [6], the transposition solution (y, Y , K) ∈

KD
[0, T ] is the strong solution of the BSDE (1.1).

We give an example indicating that the transposition solution
is a weak version of the strong solution of BSDEs.
Example 3.1. Suppose that W1 = {W1(t), Ft; t ≥ 0} and W2 =

{W2(t), Ft; t ≥ 0} are two 1-dimensional mutually independent
Brownian motions on (Ω, F , P) and the filtration {Ft; t ≥

0} = {F
W1,W2
t ; t ≥ 0}. Consider the following BSDE on (Ω, F ,

Ft , P; t ≥ 0) in [0, T ]
dy(t) = Y1(t)dW1(t)
y(T ) = W2(T ).

(3.4)

Also, we introduce a BSDE on (Ω, F , Ft , P; t ≥ 0) in [0, T ] as
follows
dy(t) = Y1(t)dW1(t) + Y2(t)dW2(t)
y(T ) = W2(T ).

(3.5)

It is easy to see that (W2, (0, 1)) is the unique strong solution of
(3.5), and therefore (W2, 0) is the transposition solution of (3.4),
but (3.4) admits no strong solution.

4. Application: controllability in the transposition sense

In this section, we choose the intensity λ satisfying λ(dz) =

γ δ1(dz), whereγ is a positive constant and δ1(·) is aDiracmeasure.
Then N(t) =

 t
0


E N(dt, dz) is a Poisson process with intensity

γ . In this case, the Itô integral
 T
0


E K(t)dN(dt, dz) degenerates to T

0 K(t)dN(t), for any K(·) ∈ L2P,F(Ω; L2(0, T ;Rn)). We consider
the following stochastic linear control systems with jumps on the
filtration {Ft; t ≥ 0} in [0, T ]:

dy(t) = (Fy(t) + G1u(t) + G2v(t))dt

+H1u(t)dW (t) + H2v(t)dN(t), (4.1)

where y ∈ Rn, F ∈ Rn×n, G1, H1 ∈ Rn×m, G2, H2 ∈ Rn×k;
u ∈ U0, v ∈ V0 and for any t ∈ [0, T ], Ut , Vt is defined by
Ut = L2F


Ω; L2(t, T ;Rm)


, Vt = L2P,F


Ω; L2(t, T ;Rk)


.

In this part, first, we give a definition of the controllability for
SLCSs with jumps on general filtrations and by the result in the last
section, we establish the corresponding Kalman rank condition.
Also, we compare our controllability to that in the classical sense.

Definition 4.1. System (4.1) is said to be terminal-controllable
(in the sense of transposition), if for any ξ ∈ L2FT

(Ω,Rn), (4.1)
with terminal condition y(T ) = ξ admits a transposition solution
(y, u, v).

Definition 4.2. System (4.1) is said to be controllable (in the sense
of transposition), if for any y0 ∈ Rn, ξ ∈ L2FT

(Ω,Rn), (4.1)with ter-
minal condition y(T ) = ξ admits a transposition solution (y, u, v)
satisfying y(0) = y0.

Now we list the corresponding definition of controllability in
the classical sense, sowe can compare the differences of them later.

Definition 4.3. System (4.1) is said to be terminal-controllable in
the classical sense, if for any ξ ∈ L2FT

(Ω,Rn), (4.1) with terminal
condition y(T ) = ξ admits a strong solution (y, u, v).

Definition 4.4. System (4.1) is called controllable in the classical
sense, if for any y0 ∈ Rn and ξ ∈ L2FT

(Ω,Rn), (4.1) with terminal
condition y(T ) = ξ admits a strong solution (y, u, v) satisfying
y(0) = y0.

Definition 4.5. We say that STc is the controllable subspace in the
classical sense if for any y0 ∈ Rn and ξ ∈ STc , the system (4.1) is
controllable in the classical sense.
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Theorem 4.1. System (4.1) is terminal-controllable in the transposi-
tion sense if and only if Rank(H1) = Rank(H2) = n.

Proof. We borrow some idea from [12]. First, we use the contra-
diction argument to prove the ‘‘only if’’ part. If Rank(H1) < n, then
there exists b ∈ Rn, |b| = 1, such that for any z ∈ Rm, b∗H1z = 0.
Consider the following FSDE in [t, T ],
dx(τ ) = bdW (τ )
x(t) = 0.

Obviously, x(τ ) = b(W (τ ) − W (t)) is the strong solution of
this equation. Set ξ = bW (T ). Since the SLCS (4.1) is terminal-
controllable in the transposition sense, by the definition we obtain
that

T − t ≤ E
 T

t
|W (τ ) − W (t)||Fy(τ ) + G1u(τ ) + G2v(τ)|dτ

≤ (T − t)/
√
2


E
 T

t
|Fy(τ ) + G1u(τ ) + G2v(τ)|2dτ

1/2
.

This contradicts the fact (y, u, v) ∈ L2F(Ω;D([t, T ];Rn))×Ut ×Vt .
Hence Rank(H1) = n. Similarly, Rank(H2) = n.

Next, we prove the ‘‘if’’ part. If Rank(H1) = n, Rank(H2) = n,
then there exist twomatricesM1 ∈ Rm×m andM2 ∈ Rk×k, such that

H1M1 = (In, 0), H2M2 = (In, 0).

Set

M−1
1 u =


u1

u2


, M−1

2 v =


v1

v2


,

G1M1 = (B1,B1), G2M2 = (B2,B2),

then the SLCS (4.1) is equivalent to

dy(t) = (Fy(t) + B1u1(t) + B2v
1(t) +B1u2(t)

+B2v
2(t))dt + u1(t)dW (t) + v1(t)dN(t). (4.2)

By Theorem 3.2, for any t ∈ [0, T ], u2
∈ L2F(Ω; L2(t, T ;Rm−n)),

v2
∈ L2P,F(Ω; L2(t, T ;Rk−n)), ξ ∈ L2Ft

(Ω;Rn), (g, h, l, η) ∈ K1

[t, T ], there exists a (y, u1, v1) ∈ KD
[t, T ] satisfying

E⟨x(T ), ξ⟩ − E⟨η, y(t)⟩

= E
 T

t
⟨x(τ ), Fy(τ ) + B1u1(τ ) +B1u2(τ )

+ B2v
1(τ ) +B2v

2(τ )⟩dτ + E
 T

t
⟨g(τ ), y(τ )⟩dτ

+ E
 T

t
⟨h(τ ), u1(τ )⟩dτ + γ E

 T

t
⟨l(τ ), v1(τ )⟩dτ .

Thus the SLCS (4.2) is terminal-controllable in the transposition
sense. By the equivalence of (4.1) and (4.2), we get the terminal
controllability (in the transposition sense) of (4.1). This completes
the proof. �

Remark 4.1. By this theorem, if an SLCS is terminal-controllable
in the transposition sense, then the dimension of the control is not
less than that of the state, i.e. k ≥ n and m ≥ n. This is different
from the deterministic linear control system.

Noting the equivalence of (4.1) and (4.2), from now on, we
consider only the SLCS (4.2).

Consider the following BSDE in [0, T ]dy(t) = (Fy(t) + B1u1(t) + B2v
1(t) +B1u2(t)

+B2v
2(t))dt + u1(t)dW (t) + v1(t)dN(t)

y(T ) = 0.
(4.3)
By Theorem3.2, for any

u2, v2


∈ H := L2F(Ω, L2([0, T ];Rm−n))×

L2P,F(Ω, L2([0, T ];Rk−n)), the BSDE (4.3) admits a unique transpo-

sition solution

y(u2,v2), u1(u2,v2), v1(u2,v2)


∈ KD

[0, T ].

Theorem 4.2.

Span{y(u2,v2)(0) : (u2, v2) ∈ H} = Span{F , B1, B2;B1,B2},

where {F , B1, B2;B1,B2} is a matrix with infinite columns:

{F , B1, B2;B1,B2}

=

B1,B2, FB1, B1B1, B2B1, FB2, B1B2, B2B2,

F 2B1, FB1B1, FB2B1, B2
1
B1, B1B2B1, B2

2
B1,

F 2B2, FB1B2, FB2B2, B2
1
B2, B1B2B2, B2

2
B2, . . .


.

Proof. We divide the proof into two steps.
Step 1. If there exists a β ∈ Rn such that

βy(u2,v2)(0) = 0, ∀(u2, v2) ∈ H,

consider the following FSDE in [0, T ],dx(t) = −F T x(t)dt − BT
1x(t)dW (t)

−1/γ BT
2x(t)dN(t)

x(0) = β.

(4.4)

By the definition of the transposition solution, it follows that, for
any


u2, v2


∈ H,

E
 T

0
⟨BT

1x(t), u
2(t)⟩ + ⟨BT

2x(t), v
2(t)⟩dt = 0.

Since x(·) is càdlàg, we deduce thatBT
1x(t) =BT

2x(t) = 0, ∀t ∈ [0, T ].

Using (4.4) again, we deduce that

0 =BT
1β −BT

1x(t)

=

 t

0

BT
1F

T x(s)ds +

 t

0

BT
1B

T
1x(s)dW (s)

+1/γ
 t

0

BT
1B

T
2x(s)dN(s), ∀t ∈ [0, T ].

Hence,BT
1F

T x(t) = 0, BT
1B

T
1x(t) = 0,BT

1B
T
2x(t) = 0, ∀t ∈ [0, T ].

Similarly,BT
2F

T x(t) = 0, BT
2B

T
1x(t) = 0,BT

2B
T
2x(t) = 0, ∀t ∈ [0, T ].

Repeating the above process, we conclude that

β ⊥ Span{F , B1, B2;B1,B2}.

Step 2. Conversely, ifβ ⊥ Span{F , B1, B2;B1,B2}, for any t ∈ [0, T ],
set

x0(t) = β,

xk+1(t) = −

 t

0
F T xk(t)dt −

 t

0
BT
1x

k(t)dW (t)

−1/γ
 t

0
BT
2x

k(t)dN(t), k ≥ 0.

By the proof of existence of the strong solution for a FSDE as in [14],
we know that

lim
k→∞

xk = x in L2F(Ω; L2(0, T ;Rn))
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and x satisfies (4.4). Besides this, byBT
1x

k(t) =BT
2x

k(t) = 0, ∀k ≥ 0, ∀t ∈ [0, T ],

we obtain thatBT
1x(t) =BT

2x(t) = 0, ∀t ∈ [0, T ]. (4.5)

Choosing the FSDE (4.4), by the definition of the transposition
solution, we get

⟨x(0), yu
2,v2(0)⟩

= −E
 T

0
⟨x(t),B1u2(t) +B2v

2(t)⟩dt. (4.6)

By (4.5) and (4.6), we can get

β ⊥ {y(u2,v2)(0) : (u2, v2) ∈ H}.

This completes the proof. �

The following theorem provides an algebra criterion for the
controllability of (4.2) in the transposition sense.

Theorem 4.3. The SLCS (4.2) is controllable in the transposition sense
if and only if

Rank{F , B1, B2;B1,B2} = n. (4.7)

Proof. The controllability of the SLCS (4.2) in the transposition
sense is equivalent to that for any ξ ∈ L2FT

(Ω,Rn) and x ∈ Rn,
there exists


u2, v2


∈ H , such that the following BSDE in [0, T ]dy(t) = (Fy(t) + B1u1(t) + B2v

1(t) +B1u2(t)
+B2v

2(t))dt + u1(t)dW (t) + v1(t)dN(t)
y(T ) = ξ,

(4.8)

is solvable in the transposition sense and yu
2,v2(0) = x.

By Theorem 3.2, the following BSDE is uniquely solvable in the
transposition sense in [0, T ]dy1(t) = (Fy1(t) + B1u1(t) + B2v

1(t))dt
+u1(t)dW (t) + v1(t)dN(t)

y1(T ) = ξ .

From this, the solvability of (4.8) is equivalent to the following
BSDEdy2(t) = (Fy2(t) + B1u1(t) + B2v

1(t) +B1u2(t)
+B2v

2(t))dt + u1(t)dW (t) + v1(t)dN(t)
y2(T ) = 0

(4.9)

which is solvable in the transposition sense and y(u2,v2)
2 (0) = x −

y(u2,v2)
1 (0).
From the arbitrariness of ξ and x, by Theorem 4.2, the

solvability of (4.9) in the transposition sense is equivalent to
{y(u2,v2)(0) : (u2, v2) ∈ H} = Rn, which is equivalent to Rank
{F , B1, B2;B1,B2} = n. �

Remark 4.2. If the SLCS (4.2) is controllable in the transposition
sense, then by Remark 3.2,

STc = L2
F

W ,N
T

.

Remark 4.3. When the filtration {Ft; t ≥ 0} is the natural
filtration {F

W ,N
t ; t ≥ 0}, by Remark 3.1, the controllability of

(4.2) in the transposition sense is equivalent to its controllability
in the classical sense. Hence (4.7) is also a sufficient and necessary
condition for the controllability of (4.2) in the classical sense.

Remark 4.4. For the following special case of (4.1)

dy(t) = (Fy(t) + G1u(t))dt + H1u(t)dW (t) (4.10)

driven only by Brownianmotion, by a similarmethod, the terminal
controllability of (4.10) in the transposition case is equivalent to
Rank(H1) = n. In this case (4.10) can be reduced to

dy(t) = (Fy(t) + B1u1(t) +B1u2(t))dt + u1(t)dW (t) (4.11)

and on the filtration {Ft; t ≥ 0}, (4.11) is controllable in the
transposition sense if and only if

Rank{F , B1;B1} = n. (4.12)

If the filtration {Ft; t ≥ 0} is the natural filtration {FW
t ; t ≥

0}, by Remark 4.3, the sufficient and necessary condition for the
controllability of (4.11) in the classical sense is (4.12), which
coincides with Theorem 3.2 in [12].
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