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Abstract In this paper, an approach based on combined color
and texture features to classify raisins is presented. Least
squares support vector machine (LSSVM), linear discriminant
analysis, and soft independent modeling of class analogy were
used to construct classification models. A total of 480 images
were captured from four grades of raisin samples by a Basler
601 fc IEEE1394 digital camera, 200 images were randomly
selected to create calibration model (training set), and
remaining images were used to verify the model (prediction
set). Color features and texture features were obtained from
two color spaces: red—green—blue and hue—saturation—inten-
sity using histogram method and gray level co-occurrence
matrix method, respectively. Our results indicate that the best
performance with about 95% of average correct answer rate is
achieved by LSSVM using combined color and texture
features from HSI color space. This result is significantly
higher than the performance of solely used color or texture
features. The combined color and texture features coupled
with a LSSVM classifier are a highly accurate way for raisin
quality classification.
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Introduction

Raisins are produced in most geographic regions of the
world, and consumption occurs in all cultures. The USA is
the world’s leading raisin producer. Other important raisin-
producing countries are Turkey, China, Iran, Chile, South
Africa, Greece, Australia, and Uzbekistan (Williamson and
Carughi 2010). According to USDA’s Foreign Agricultural
Service, world raisin exports in 2009 totaled more than
695,000 metric tons (USDA 2009). Raisins are produced
with different grapes and different production techniques,
resulting in huge differences in quality and price among
different raisins. Raisin quality classification is currently
carried out sorting manually at packing houses. Manual
evaluation and classification of raisins is costly and
inherently unreliable due to its subjective nature (Huxsoll
et al. 1995; Satake et al. 2003; Tang et al. 2007). Automatic
raisin classification based on machine vision can abolish
inconsistent manual evaluation and reduce dependence on
available manpower (Omid et al. 2010).

In recent years, some machine vision techniques have
been applied to raisin industry for quality evaluation and
classification. Okamura et al. (1993) used a machine
vision technique for grading raisins. They used visual
surface features of wrinkle edge density, average gradient
magnitude, angularity, and elongation for predicting raisin
grade with comparable accuracy and precision to human
inspector. Li et al. (2009) utilized image processing
technology and neural network to identify the quality of
raisins by chroma characteristics and achieved an average
recognition rate of 92%. Abbasgolipour et al. (2010)
designed and fabricated a machine vision system to sort
desired and undesired raisins (two classes) according to
their hue, saturation, and intensity color features with a
sorting accuracy (correct classification rate) of 93%.
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However, in all these works, each color and texture
information was studied independently, and their perfor-
mance could potentially be improved by using combined
color and texture features for highly accurate industry
application. The quality of a raisin is mainly based on
visual features such as color, degree of wrinkles, and
shape (Christensen 2000). Therefore, both color informa-
tion and texture information are important in grading of
raisins. Although much research has been done on raisin
classification using separate color/texture features, less
attention has been paid to the performance of combined
color and texture features.

Support vector machine (SVM) is a powerful methodol-
ogy for solving problems in nonlinear classification,
function, and density estimation (Cristianini and Shawe
2000), with a good theoretical basis in statistical learning
theory (Vapnik 1998). It solves binary classification
problem by finding maximal margin hyperplanes in terms
of a subset of the input data (support vectors) between
different classes. If the input data are not linearly separable,
SVM firstly maps data into a high-dimensional feature
space, and then classifies data by maximal margin hyper-
planes (Chen et al. 2007). Suykens and Vandewalle (1999)
have modified Vapnik’s standard SVM classifier into least
squares support vector machine (LSSVM). LSSVM is the
improvement and amelioration of standard SVM. It not
only encompasses similar advantages as SVM, but also has
additional advantages because it solves regression problem
using a set of linear equations instead of quadratic
programming (Suykens et al. 2002). Therefore, LSSVM is
much easier to use and has a shorter computing time
compared to SVM.

It is a new idea that raisin would be classified according
to its quality level using combined color and texture
features coupled with a LSSVM classifier. The objectives
of this study were (1) to compare the discrimination
performances of combined color and texture features to
that of separate color features or separate texture features,
(2) to find optimal set of color and texture features which
gives the best result for raisin quality classification, and (3)
to develop a model for raisin quality classification by
LSSVM.

Materials and Methods
Samples and Image Acquisition

Four grades (grades 1-4) of golden seedless raisins from
various sources were investigated in this work. They are
Ha-mi-wang (grade 1, originating from Hami), Tian-shan
no. 1 (grade 2, originating from Wulumuqi), Jin-huang-hou
(grade 3, originating from Turpan), and Wang-zhong-wang

(grade 4, originating from Laiyan). All raisins were
purchased from a local raisin sales company in Zhejiang,
China and their information is summarized in Table 1. In
our experiment, grade levels were evaluated by three
trained raisin experts according to total raisin quality,
including its taste, color, degree of wrinkles, and shape.
Each expert’s score was dependent on taste (25%), color
(25%), degree of wrinkles (25%), and shape (25%). The
average of three experts’ scores was used to determine the
raisin grade level.

Glass containers (90 mm in diameter and 15 mm in
height) were filled with raisins, each container representing
a sample. Each grade had 120 samples for a total of 480
samples. Original RGB sample images, 480 pixels vertical-
ly by 640 pixels horizontally with 24-bit depth, were
captured from containers filled with raisins using a Basler
601fc IEEE1394 “FireWire” complementary metal oxide
semiconductor camera (Germany) with a computer M3514-
MP C-mount lens F/1.4 with /=35 mm (Japan). Automatic
exposure control and gamma correction were implemented
by the software BCAMViewer V1.8 (Basler vision tech-
nologies, Germany). A tungsten halogen lamp (Lowell pro-
lamp 14.5 V) was used. In order to reduce the shadow, both
camera and lamp were vertically arranged with respect to
raisin sample with a distance of 500 mm between the
camera (lamp) and the sample. Then a total of 480 images
were obtained.

Color Feature Extraction

Color analysis was based on the histogram from each
channel of color image in RGB and HSI color space (Cui
and Zeng 2009). Color features were extracted from a
normalized histogram, which was calculated using the
expression:

=
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where G being the total number of gray levels in the
image, f(x,y) represents the gray level at location of
coordinate (x,y), N and M are image width and height,
and ¢ is a Kronecker delta function defined like:
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Color features provide information on the distribution
of pixels on a digital image, but do not give any
information on their relative positions. Thus, these are
the features characterizing contrast (strength of the
patterns) and the color distributions of the image, but

@ Springer



1554

Food Bioprocess Technol (2012) 5:1552—1563

Table 1 Characteristics of the four grades of golden raisins used in this research

Grade level Origin Color Shape Production time
Grade 1 Hami, Xinjiang, China Golden Homogenous in size, fine and uniform wrinkling February 2010
Grade 2 Wulumugqi, Xinjiang, China Bright yellow Fine and uniform wrinkling October 2009
Grade 3 Turpan, Xinjiang, China Brown yellow Less homogenous in size January 2010
Grade 4 Laiyan, Shandong, China Yellowish green Misshapen and less uniform wrinkling November 2009

not its spatial structure. It is possible to define the
following characteristic coefficients:
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where p is the mean value, o? is the variance, 3 is the

skewness, 4 is the kurtosis, e is the energy, and # is the
entropy of the analyzed image histogram (Haralick et al.
1973). After calculating given color features, a color feature
vector is obtained for each color channel of R, G, B, H, S,
and I defined like:

T
2#3 ﬂ4eh] 9)

c= [ u o
Using feature vectors defined with Eq. 9, the final color
feature vector within 18 color features for RGB or HSI
color space can be defined like:

Yol —7 —T1 ——T117
Cy = [Ck.l Cr2'  Ckj3 ]

(10)
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where C; is color feature vector, & represents the RGB or
HSI color space, and subscripts 1, 2, and 3 denote R, G,
and B channels or H, S, and I channels.

Texture Feature Extraction

Texture is an important image feature and has been applied
greatly in the food industry for quality evaluation and
inspection (Du and Sun 2006; Zheng et al. 2006; Wu et al.
2009; Milde et al. 2010; Yi et al. 2010; Kumar and Mittal
2010). In this study, we used gray level co-occurrence
matrix (GLCM) as a statistical texture analysis technique.
The GLCM is a second order statistics method which
describes the spatial interrelationships of the gray tones in
an image. It contains elements that are counts of the number
of pixel pairs which are separated by certain distance and at
some angular direction. In this work, GLCM was computed
based on two parameters, which were the distance between
the pixel pair d and their angular relation 6. The distance d
is measured by number of pixels (d=1 for neighboring
pixels, etc.). The 6 can be any angle between 0° and 360°.
For image /, defined square window N x N, brightness
levels i and j, the non-normalized GLCM P;; are defined by:

Pyo =y > C{(xy) = i) A(I(x+d6y,yFd6y) =)}

x=1 y=1
(11)

where C{-}=1 if the argument is true and C{-}=0
otherwise. The + and ¥ signs in Eq. 11 mean that each
pixel pair is counted twice: once forward and once
backward in order to make the GLCM diagonal symmetric.
In this work, sample image was filled with raisin pixel
information, and orientation of raisin in the sample image
was randomly distributed. Therefore, we can use any one
direction (such as 0°, 45° 90°, and 135°) to calculate
texture features from the GLCM. The texture features were
calculated when the 6 equals to 0° (with 8,=0, and 6,=1)
and the d equals to 5.

Before texture calculation, we normalized the GLCM
and let it represent probabilities instead of counts. Normal-
ization involves dividing by the total number of counted
pixel pairs. Haralick et al. (1973) studied six texture
features based on GLCM: contrast (CO), dissimilarity
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(DI), homogeneity (HO), angular second moment (ASM),
entropy (EN), and correlation (COR). For normalized
GLCM Pj; and L gray levels, these features are defined as:

L—1
CO=> P (i)’ (12)
ij=0
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=Y Pijli—Jl (13)
ij=0
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where pi; and 1; are mean values and o? and Gf are standard
deviations of matrix rows and columns, respectively,
defined like:

(17)
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After calculating given texture features, a texture feature
vector was obtained from GLCM for every color channel of
R, G, B, H, S, and I defined like:

i=[CO COR DI ASM EN HO (20

Using texture feature vectors defined with Eq. 20, the
final texture feature vector within 18 texture features for
RGB or HSI color space can be defined like:

— _ N N T
Tk:[l‘k,lT leT lk’3T} (21)

where 7} is texture feature vector, k represents the RGB or
HSI color space, and subscripts 1, 2, and 3 denote R, G,
and B channels or H, S, and I channels.

Combined Color and Texture Feature Extraction

As shown later in this paper, using only color features or
texture features for raisin quality classification does not
give sufficient results, therefore different combinations of
color features and texture features were calculated in order
to obtain better classification results. The final combined
color and texture feature vector is obtained by combining
the vectors defined with Eqgs. 10 and 21, using the
expression:

__ T
cr =" 7] (22)
where CT} is combined feature vector, Cj is the color
feature vector, and T} is the texture feature vector.
Subscripts k represent the RGB or HSI color space.

Principal Component Analysis

Principal component analysis (PCA) is a standard decorre-
lation technique, and following its application, one derives
an orthogonal projection basis that directly leads to
dimensionality reduction and feature extraction (Rao
1964; Fukunaga 1991; Zhu 2007; Wu et al. 2008b). Let
X € R" be a random vector, where 7 is the dimensionality
of the vector and Y X € R"™" be the covariance matrix of
X. The PCA of a random vector X factorizes the covariance
matrix Y X into the form, Y. X = ® A®’, where ® is an
orthogonal eigenvector matrix and A is a diagonal
eigenvalue matrix with diagonal elements in decreasing
order.

An important property of PCA is its optimal signal
reconstruction in the sense of minimum mean square error
when only a subset of principal components is used to
represent the original signal. Following this property, an
immediate application of PCA is the dimensionality
reduction by projecting a random vector X onto the
eigenvectors, Z = PTX (X € R", and Z € R"), where P €
R™™ is a subset of eigenvector matrix ¢ and m<n. The
lower dimensional vector Z (with a dimensionality of m)
captures the most expressive features of the original data X
(Moon and Phillips 1998). The original data X can thus be
largely reduced by observing few principal components
(PCs) without significant loss of useful information, and
each variable in X has its own weighting or loading value
on each PC, which usually can be used to identify
important variables that are responsible for the specific
features appeared in corresponding PCs (Purcell et al.
2007).

@ Springer
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In this study, the obtained feature vectors are high-
dimensionality data, so that the cluster performances by
these high-dimensionality data are difficult to be described
directly. After dimensionality reduction, the cluster per-
formances can be compared in two-dimensional PCs plot
using the first two primary principal components, which
makes it easy to explain the cluster results of raisin samples
by different feature vectors. Furthermore, loadings in
principal component explain the contribution of each
variable in feature vector. They can be used to determine
the most discriminant features in the feature vector.

Linear Discriminant Analysis and Soft Independent
Modeling of Class Analogy

Among many possible techniques for data classification
linear discriminant analysis (LDA) is a commonly used
one. LDA maximizes the ratio of between class variance to
the within-class variance in any particular data set thereby
guaranteeing maximal separability (Michie et al. 1994;
Belousov et al. 2002). LDA is considered a “supervised” or
modeling method because the mean observation for each of
a number of predefined groups is calculated and new
observations are assigned to the group whose mean is
closest (Burks et al. 2000). In this study, LDA was carried
out using DISCRIM procedure in SAS (SAS Institute Inc.,
USA). The DISCRIM procedure was used to generate
discriminant functions for classifying raisins into one of the
four grades based on different features.

Soft independent modeling of class analogy (SIMCA) is
a method for supervised data classification that requires a
training data set consisting of samples (or objects) with a
set of attributes and their class membership. In order to
build classification models, the samples belonging to each
class need to be analyzed using principal components
analysis (PCA). For a given class, the resulting model then
describes a line, plane, or hyperplane. For each modeled
class, the mean orthogonal distance of training data samples
from the line, plane, or hyperplane (calculated as the
residual standard deviation) is used to determine a critical
distance for classification. New observations are projected
into each principal component model, and the residual
distances are calculated. An observation is assigned to the
model class when its residual distance from the model is
below the statistical limit for the class (Wold & Sjostrom
1977). In this study, SIMCA was carried out using
Unscrambler ver 9.8 (Camo Process AS, Oslo, Norway).

Least Squares Support Vector Machine
The standard LSSVM algorithm is showing as follows.

Assume a set of training samples defined as input data
vectors X = {xy,...,x;}, with x; € R" (i=1,..., N), and a set

@ Springer

fx) =wlox) +b

of corresponding class labels Y = {yi,...,»;}, with y; €
{1,2,...,1} (i=1,..., N), where N is the number of training
samples, n is the dimensionality of input data vector, and / is
the total number of classes. The following model is
constructed by using nonlinear mapping function ¢(-), which
maps the input data to a higher dimensional feature space:

(23)

where w € R" is the weight vector and b is the bias. When
the least squares support vector is used as a soft testing tool,
a new optimization problem is formulated in the case of
structural risk minimization (SRM):

. 1 2 s,
minJ (w, b, ¢) = > [w|* +75 ;ei (24)
subject to the constraints:
yiwlo(x)+b] =1—¢, i=1,2,.,N (25)

where e; is the classification error and +y is the relative weight
of the classification error (regularization parameter).
Lagrangian function of the convex optimization program
could be established by introducing a dual set of positivity
Lagrange multipliers @¢; € R and was expressed as:

L(w,b,e,a) =J(w,b,e)

N
— Z ai{yi [ngo(xi) + b} -1+ e,-} (26)
=1
The corresponding condition of Karush—Kuhn-Tucker
(Karush 1939; Kuhn and Tucker 1951) was given as:
oL -
Gy 0 W= Z aif(x;)

i=1

oL N
afoega,yifo

(27)

oL
8_&:()"%:7/@1'
oL T o
8a,«70_>yi[w¢(xi)+b]_1+e"70’171"“’N
Also, Eq. 27 is shown as a matrix:
I 0 0 |—-Z7|w 0
0 0 O0|=-Y"|b 0

= (28)
0 0 | -1 e 0
Z Y I] 0 |a| |1

_}where Z= [(p(xl)Tyh ) (p(xN)TyN] ’ Y = [)/1, ”wyN]’

I =[1,..,1], e=ler,...,en], @ = [ai,...,ay], and [ is the
identity matrix. The value of w and e are obtained from the
solution of Eq. 27, and then Eq. 28 is presented as:
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{O g }{b} {Q}
~=]= (29)
Y| Q+yl|a 1

where 2 = ZZ". According to the Mercer rule, the kernel
function y was introduced (Vapnik 1995; Chapelle et al.
1999). Thus, the function €2 was shown as:
-Qij = J/iyj@(xi)T@(xj) = Yiyj‘//(xia xj) (30)

Thus, the classifier was developed using the solution of
Egs. 29 and 30, instead of the solution of the relative
complex quadratic programming in the traditional SVM
(Yu and Cheng 2006). In this study, LSSVM was chosen as
classifier because of performance reasons, as it has low
complexity but still gives satisfying results on high-
dimension feature spaces.

Kernel function is an important factor in LSSVM and
influences directly the classification rate. The common
examples of kernel function contain linear, polynomial,
radial basis function (RBF) kernel, and multi-layer percep-
tron. RBF kernel is a nonlinear function and a more
compacted supported kernel that can reduce the computa-
tional complexity of the training procedure compared to
other kernels while giving good performance under general
smoothness assumptions (Lua et al. 2003). Thus, RBF
kernel was used in this study.

Because LSSVM classification model can only classify
two classes and there were four grade levels of raisins here,
the LSSVM classification model needs to encode and
decode a multi-class classification task into multiple binary
classifiers using minimum output coding (Van et al. 2002;
Wu et al. 2008a). The four grade levels with original labels
[1 2 3 4] were encoded in the following codebook (Table 2).

In LSSVM, two important parameters need to be
considered. Parameter «y is a regularization parameter for
RBF kernel. It determines the trade-off between SRM
principle and empirical risk minimization and is important
to improve the generalization performance of LSSVM.
Parameter o represents the bandwidth of the RBF kernel. It
controls the value of function regression error and influen-
ces directly the number of initial eigenvectors. In this study,
these two parameters were optimized with values of 7y in the
range of 2~'2'° and o? in the range of 2°-2° with adequate
increments by leave one out cross validation technique
(Pelckmans et al. 2003). The optimization was performed

Table 2 Multiple binary classifiers for input set of LSSVM for four
grades

Grade level 1 2 3 4

Grade classifiers -1 -1 1 1

on the LSSVM Matlab software, which is downloaded from
the website http://www.esat.kuleuven.be/sista/lssvmlaby/.

Model Efficiency Estimation

In this study, after unsupervised clustering analysis by PCA,
supervised pattern recognition methods of LDA, SIMCA, and
LSSVM were used to evaluate the classification ability of
different feature vectors. Raisin samples were divided ran-
domly into two subsets. One subset was called training set and
was used to build a calibration (discriminant) model and the
other was called prediction set and was used to test the
robustness of the model. The training set contains 200 samples,
and each grade has 50 samples. The remaining 280 samples
constitute the prediction set, and each grade has 70 samples. To
characterize prediction ability (efficiency) of created classifi-
cation models, correct answer rate (CAR) was used

NA
CAR = 18 o 100%
No

(31)

where Ngp refers to the number of rightly classified samples;
Ny is the total number of samples in prediction set.

Results and Discussion
Feature Extraction and Unsupervised Clustering Analysis

Experiments were conducted with the 480 original raisin
images. First, a feature library was created by extracting six
color features from the histogram of each channel in both
RGB and HSI color spaces and six texture features from the
gray level co-occurrence matrix of each channel in both
RGB and HSI color spaces. Then, for each color space, we
defined three feature vectors from the feature library: color
feature vector Cygp, (Or Cygi), texture feature vector 7.y, (or
Thsi), and combined color and texture vector CT., (Or
CTisi), as listed in Table 3. All these six feature vectors
were used respectively for unsupervised cluster analysis
based on PCA for the 480 raisin samples. The results of
PCA clustering are visualized by the scores of the first two
PCs in Fig.la—f. For each feature vector, the accumulative
variation of first two principal components was above 92%,
which meant that the first two PCs can explain mass
variation of the feature vector.

From clustering plots Fig.la—c, grades 1, 3, and 4
samples were scattered in a wide range and could not be
separated clearly; only grade 2 was clustered closely and
separated from the others. Therefore, it was difficult to
identify all of the samples by using only color feature
vector (Cgp), texture feature vector (7i4,) in RGB color
space, or color feature vector (Cysj) in HSI color space.

@ Springer


http://www.esat.kuleuven.be/sista/lssvmlab/

1558

Food Bioprocess Technol (2012) 5:1552—1563

Table 3 Derived feature vectors

Feature vector Property

Combination of color and texture features obtained from R, G, and B channels (Cyg, + Trgp, defined by Eq. 22)

Crgp Color features® obtained from R, G, and B channels (defined by Eq. 10)
Chsi Color features® obtained H, S, and I channels (defined by Eq. 10)

Trob Texture features” obtained from R, G, and B channels (defined by Eq. 21)
Thsi Texture features® obtained from H, S, and I channels (defined by Eq. 21)
Cligs

CThsi

Combination of color and texture features obtained from H, S, and I channels (Cyg; + Ty, defined by Eq. 22)

Six color features such as mean value, variance, skewness, kurtosis, energy, and entropy derived from histogram

®Qix texture features such as contrast, dissimilarity, homogeneity, angular second moment, entropy, and correlation derived from gray level co-occurrence

matrix
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Fig. 1 PCA clustering results using different feature vectors. a Result
using color features in RGB space(Cygp). b Result using color features
in HSI space (Cyg). ¢ Result using texture features in RGB space
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(Tigp)- d Result using texture features in HSI space (Tj,). e Result
using combined color and texture features in RGB space (CTgp). f
Result using combined color and texture features in HSI space (CTyg;)
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Figure 1d indicates that change has taken place on
clustering performance. Samples from different grades of
raisins located in concentrative area, and most of them
could be separated clearly; however, the boundaries of
different grades were not clear and several samples over-
lapped with samples of other grades. It can be concluded
that texture feature vector (7},5;) from HSI color space can
improve the clustering performance, but cannot adequately
discriminate these raisin grades.

In Fig.le, grades 1, 3, and 4 samples gathered more
together comparing with that in Fig.1a and c. However, the
boundaries of different grades were not clear. Thus,
combined color and feature vector (CTy,) in RGB color
space provided a better clustering performance than any of
the separate color feature vector (Cyg,) or texture feature
vector (7,gp), but this result was not sufficient.

In Fig.1f, each of four grades was clustered closely and
separated apparently from the others. Comparing Fig.la—e, it
can be found that samples of each grade gather more together
and the boundaries of different raisin grades are clearer in
Fig.1f. Examination of PC loadings can be used to identify
the important features underlying clustering or discrimination.
According to the loadings of first principal component (PC1)
for feature vector CTj,; (Fig.2), the most discriminant features
in CTy,; were found to be the texture features of homogeneity
(HO), angular second moment (ASM), dissimilarity (DI) in
channel I, the color feature of skewness (u3) in channel S, and
the color feature of entropy (/) in channel H.

Based on the results of unsupervised clustering analysis,
we may safely come to the conclusion that by using
combined color and texture feature vector (CTy;) in HSI
color space; significant performance increase can be
achieved compared to any of the other feature vectors.

Classification by LDA and SIMCA Using Different
Features

In this work, LDA and SIMCA were used to evaluate the
classification ability of different feature vectors. The first step

Fig. 2 Loadings of first princi- 0.5
pal component (PC1) for feature
vector CTg; channel H

0.3

04 4 Color feature entropy in

was to compare classification results by LDA based on
different feature vectors. Feature vectors Cigp, Chsis Trabs Thsis
CT g, and CTg of raisin samples in training set were set as
the input variables for LDA to build discrimination models.
Classification performance of each discrimination model was
evaluated by the other samples in prediction set. Classification
results described as correct answer rate are shown in Table 4.

In the next step, SIMCA was used to classify raisins. For
each feature vector, four SIMCA calibration models were
established based on four different grades of raisin samples
in training set. The optimal number of principal compo-
nents (PC) ranged from 1 to 12 was found for SIMCA
method. The classification performance of each calibration
model was evaluated by the other samples in prediction set.
Classification results described as correct answer rate by
SIMCA are shown in Table 4.

The LDA and SIMCA classification results (Table 4)
suggest that combined color and texture features have
obtained the best results of classification (with about
92.87% of average correct answer rate by LDA using
CTii, and about 92.50% of average correct answer rate by
SIMCA using CT,y,), which were better than that of solely
used color or texture features, but the CAR values were not
high enough for highly accurate industry application. As
further analysis, LSSVM was used to find optimal set of
color and texture features, which gave the best result for
raisin quality classification, and to evaluate if it can
improve classification accuracy.

Classification by LSSVM Using Separate Color Features

LSSVM models were constructed for raisin quality classi-
fication. In the first step, color feature vector Cryp, and Cig
were respectively set as the input variables for LSSVM
models. The optimal combination of (v, o) was achieved
with y=180.572, 02=27.833 for LSSVM model of Cigp and
v=1.005, 0%=5.840 for LSSVM model of Cyg;, respectively.
The prediction results by color features described as
correction answer rate in percents are shown in Table 5.

Texture feature angular
second moment in channel |

Texture feature homogeneity
in channel I

Loadings

SAVARY

-0.2
-0.3

-0.4 4

AV MU,

U , —e—PCl1

Texture feature dissimilarity in
channel 1

VVV\NVV

Color feature skewness in
channel S

Variables (features)
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Table 4 Prediction results of LDA and SIMCA models for raisin classification based on different features

Features Classification results (CAR, %)

LDA SIMCA

Grade 1 Grade 2 Grade 3 Grade 4 Average Grade 1 Grade 2 Grade 3 Grade 4 Average
Crop 78.57 95.71 90.00 91.43 88.93 87.14 88.57 85.71 87.14 87.14
Chsi 90.00 91.43 97.14 78.57 89.29 92.86 90.00 91.43 78.57 88.21
Trab 94.29 91.43 85.71 75.71 86.79 88.57 94.29 88.57 87.14 89.64
Thsi 94.29 94.29 90.00 88.57 91.79 92.86 94.29 87.14 90.00 91.07
CTg 85.71 92.86 90.00 88.57 89.29 91.43 94.29 92.86 91.43 92.50
CTysi 92.90 94.29 97.14 87.14 92.87 94.29 94.29 90.00 90.00 92.15

Table 5 indicates that no remarkable change has taken
place on the classification performances between color
features computed from RGB color space (Cgp) and from
HSI color space (Cysj). Their average correct answer rates
are both under 90% (86.79% of Cy, and 88.93% of Cyg),
showing that separate color feature did not give sufficient
classification result.

Classification by LSSVM Using Separate Texture Features

The second step was to compare classification results based
on different texture features in order to obtain the best
feature set. Here we set texture feature vectors 7Tryp, and T
respectively as the input data for LSSVM. The optimal
combination of (v, %) was achieved with v=37.118, o=
10.445 for LSSVM model of T,y and 4=35.061, o°=
12.461 for LSSVM model of T, respectively. The
prediction results by texture features described as correct
answer rate in percents are shown in Table 6.

From Table 6, it can be found that the best discrimina-
tion performance by texture feature was achieved with the
texture feature in HSI color space (Ti, 92.86%). The
performance increased compared to the T4, (88.57%) over

4 percentage units, the C.y, (86.79%) over 5 percentage
units, and the Cyg (88.93%) over 3 percentage units,
showing that separate texture feature in HSI color space
can give comparatively better result for raisin classification.

Classification by LSSVM Using Combined Color
and Texture Features

The separate texture feature in HSI color space (7j,;) can
give reasonable result for raisin classification. However, it
ignored the contribution of color information to the
classification. In the third step, we attempted combined
color and texture feature vectors (CTrgp, CThgi ) to find out
whether or not the performance of separate color or texture
feature could be improved by combining them. The optimal
combination of (7, 0%) was achieved with v=275.906, o=
23.488 for LSSVM model of CT. and y=18.654, P
25.063 for LSSVM model of CTig, respectively. The
prediction results by combined color and texture feature
vectors described as correct answer rate in percents are
shown in Table 7.

Table 7 indicates that the best result of classification
(with about 95% of accuracy) by LSSVM has been

Table 5 Prediction results of

LSSVM models for raisin clas- Features  Grade level =~ Sample number  Classification results by LSSVM CAR (%)
sification based on different
color features (Crgp, Chei) Grade 1  Grade2  Grade 3 ~ Grade 4
Crgp Grade 1 70 59 1 84.29
Grade 2 70 66 0 2 94.29
Grade 3 70 0 62 3 88.57
Grade 4 70 3 56 80.00
Average 86.79
Chsi Grade 1 70 58 0 7 82.86
Grade 2 70 0 68 0 97.14
Grade 3 70 0 63 3 90.00
Grade 4 70 5 4 60 85.71
Average 88.93
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Table 6 Prediction results of
LSSVM models for raisin clas- Features ~ Grade level =~ Sample number  Classification results by LSSVM CAR (%)
sification based on different
texture features (Tigy, Thsi) Grade 1 ~ Grade 2 Grade 3  Grade 4
Tiob Grade 1 70 59 1 84.29
Grade 2 70 67 0 95.71
Grade 3 70 6 2 58 4 82.86
Grade 4 70 2 3 64 91.43
Average 88.57
Thsi Grade 1 70 68 0 2 0 97.14
Grade 2 70 63 2 5 90.00
Grade 3 70 65 0 92.86
Grade 4 70 0 64 91.43
Average 92.86

obtained with the combination of color and texture features
extracted from HSI color space (CTy;). By comparing the
performance with that of color features (Table 5) or texture
features (Table 6) used alone, it could be found that
combined color and texture features increase accuracy of
classification in both RGB color space and HSI color space.
Moreover, the best classification result with average correct
answer rate of 95% was reached by LSSVM using CTig;,
better than that of LDA (with about 92.87% of average
correct answer rate using CTyg, seen in Table 4) and
SIMCA (with about 92.50% of average correct answer rate
using CT,g,, seen in Table 4), showing that LSSVM can
improve classification accuracy for raisin classification.

Conclusions

The results indicated that color or texture information alone
was not sufficient for accurate raisin quality classification.
But with the combination of color and texture information
(CTisi) we have achieved high classifying process accuracy

by LSSVM classifier. The best classification result (with
about 95% of average correct answer rate) by LSSVM was
better than that of LDA (with about 92.87% of average
correct answer rate) and SIMCA (with about 92.50% of
average correct answer rate). It can be concluded that
combined color and texture features in HSI color space
coupled with a LSSVM classifier can be an accurate and
efficient raisin quality classification tool. The result of this
study is helpful for online monitoring of the raisin quality
sorting/grading process. LSSVM supplied a highly accurate
way for raisin classification, whereas its complex calcula-
tion should be considered for further application in raisin
industry. Therefore, further investigations are required to
build LSSVM model based on effective variables (the most
discriminant features in the feature vector CTy;) instead of
full variables, which can be used to reduce the complexity
and time cost of LSSVM calculation and meet industry
requirements, as well as expand the grades number of
raisin, optimize the image process algorithm, and improve
the model’s robustness and strictness before its online
application.

Table 7 Prediction results of

LSSVM models for raisin clas- Features  Grade level =~ Sample number  Classification results by LSSVM CAR (%)
sification based on different
combined color and texture fea- Grade 1 Grade 2 Grade 3  Grade 4
tures (CTrgh, CThsi)
CTgp Grade 1 70 60 2 3 85.71
Grade 2 70 67 0 2 95.71
Grade 3 70 61 4 87.14
Grade 4 70 4 62 88.57
Average 89.29
CThsi Grade 1 70 68 0 97.14
Grade 2 70 0 68 0 97.14
Grade 3 70 0 65 3 92.86
Grade 4 70 3 65 92.86
Average 95.00
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