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Chaos in the Fractional Order Generalized Lorenz Canonical Form *
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A fractional-order generalized Lorenz system is constructed and numerically investigated. Chaotic behavior
existing in the fractional-order generalized Lorenz system is found. The numerical simulations and interesting
figures are performed.
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The theory of derivatives of the fractional order,
i.e., non-integer order, goes back to Leibniz’s note
in his list to L’Hopital, dated 30 September 1695, in
which the meaning of derivative of the order one half
was discussed.[1] For three centuries the theory of frac-
tional derivatives has been developed mainly as a pure
theoretical field of mathematics useful only for math-
ematicians. Nearly 30 years ago, the paradigm began
to shift from pure mathematical formulations to appli-
cations in various fields. During the last decade, frac-
tional calculus has been applied to almost every field
of science, engineering, and mathematics. Some of the
areas where fractional calculus has made a profound
impact include viscoelasticity and rheology, electrical
engineering, electrochemistry, biology, biophysics and
bioengineering, signal and image processing, mechan-
ics, mechatronics, physics, and control theory.[2−5] It
is necessary to point that many physicists and math-
ematicians focus on studying the chaotic dynamics of
fractional nonlinear systems, naturally, based on im-
portant and famous chaotic fractional systems, such
as the Lorenz system, the corresponding chaotic frac-
tional systems are constructed and investigated.[6−11]

Recently, Celikovsky and Chen[12] presented a
new generalized Lorenz canonical form (GLCF), such
a canonical representation has only one parameter,
satisfying 𝜏 > −1 for the generalized Lorenz sys-
tem (GLS) while for 𝜏 ≤ −1 it is either equiva-
lent to the so-called hyperbolic-type GLS[13] or to
the Shimizu-Morioka model.[14,15] Notably, the Lorenz
system[16−18] satisfy 𝜏 > 0; the Lü system,[19,20]

𝜏 = 0; the Chen system,[21] −1 < 𝜏 < 0.
In this Letter, the fractional-order GLCF

are presented. The fractional-order GLCF in-
cludes: the fractional-order classic Lorenz system;[8]

the fractional-order Lü system;[9] the fractional-
order Chen system;[10] the fractional-order Shimizu-
Morioka system or the fractional-order Liu-Liu-Liu-
Liu system;[11] the fractional-order hyperbolic-type

GLS. The fractional-order GLCF are discredited suc-
cessfully and numerically investigated. The results
obtained show that the chaotic dynamics in the
fractional-order GLCF and the chaos corresponding
to the above- mentioned fractional-order systems[8−11]

exist by choosing parameters. It is very interesting
that chaos exists in the fractional-order GLCF with
order lower than 3. The numerical simulations and
interesting figures are performed.

There are several definitions of fractional deriva-
tives. Two commonly used definitions for the gen-
eral fractional differintegral are the Grunwald defi-
nition and the Riemann-Liouville definition, and the
best known is the Rieman-Liouville definition. How-
ever, in this letter, we would prefer Caputo deriva-
tive to the Riemann-Liouville one since the former is
more popular in real applications. In real applications,
the Caputo derivative is more popular since the un-
homogenous initial conditions are permitted if such
conditions are necessary. Furthermore, these initial
values are prone to measure since they all have idio-
graphic meanings.[3] The Caputo derivative definition
is given by

𝐶
𝑎 𝐷𝛼

𝑡 𝑓(𝑡) =
1

Γ(𝛼− 𝑛)

∫︁ 𝑡

𝑎

𝑓𝑛(𝜏)
(𝑡− 𝜏)𝛼+1−𝑛

𝑑𝜏,

(𝑚− 1 < 𝛼 ≤ 𝑚).

The Adams-Bashforth-Moulton predictor-
corrector scheme is used for numerical solutions of
the fractional derivatives. The details regarding the
algorithms of the scheme are available in Ref. [4].

The fractional order GLCF and its discrete form
are presented as follows. As is known, the GLCF is
described by

𝑋̇ =

⎛⎝ 𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞⎠ 𝑋 + 𝑐𝑋

⎛⎝ 0 0 −1
0 0 −1
1 𝜏 0

⎞⎠ 𝑋,

𝜆1 > 0, 𝜆2,3 < 0, (1)
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where 𝑋 = [𝑥, 𝑦, 𝑧]𝑇 , 𝑐 = [1,−1, 0], with parameter
𝜏 ∈ 𝑅.

That is,

𝑥̇ = 𝜆1𝑥− 𝑧(𝑥− 𝑦),
𝑦̇ = 𝜆2𝑦 − 𝑧(𝑥− 𝑦),
𝑧̇ = 𝜆3𝑧 + (𝑥 + 𝜏𝑦)(𝑥− 𝑦). (2)

Now, we construct the fractional order GLCF,
which is described by

𝑑𝛼𝑥

𝑑𝑡𝛼
= 𝜆1𝑥− 𝑧(𝑥− 𝑦),

𝑑𝛼𝑦

𝑑𝑡𝛼
= 𝜆2𝑦 − 𝑧(𝑥− 𝑦),

𝑑𝛼𝑧

𝑑𝑡𝛼
= 𝜆3𝑧 + (𝑥 + 𝜏𝑦)(𝑥− 𝑦), (3)

where 𝑎 is the fractional order, 0 < 𝛼 ≤ 1.
According to the predictor-corrector scheme pre-

sented in Ref. [4], the following differential equation

𝐶
𝑎 𝐷𝛼

𝑡 𝑓(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 0 ≤ 𝑡 ≤ 𝑇,

𝑦𝑘(0) = 𝑦𝑘
0 , 𝑘 = 1, 2, . . . ,𝑚− 1, (𝑚− 1 < 𝛼 ≤ 𝑚),

can be discretized as follows:

ℎ =
𝑇

𝑁
, 𝑡𝑘 = 𝑘ℎ, 𝑘 = 0, 1, . . . , 𝑁, 𝑚 = [𝛼],

𝑦ℎ(𝑡𝑛+1) =
𝑚−1∑︁
𝑘=0

𝑡𝑛+1
𝑘𝑦0

𝑘

𝑘!
+

ℎ𝛼𝑓(𝑡𝑛+1, 𝑝𝑛+1)
Γ(𝛼 + 2)

+
ℎ𝛼(𝑛𝛼+1 − (𝑛− 𝛼)𝑗𝛼)𝑓(0, 𝑦0)

Γ(𝛼 + 2)
,

+
ℎ𝛼

∑︀𝑛
𝑘=1 𝑎𝑛+1−𝑘𝑓(𝑡𝑘, 𝑦𝑘)

Γ(𝛼 + 2)
,

where

𝑝𝑛+1 =
𝑚−1∑︁
𝑘=0

𝑡𝑛+1
𝑘𝑦0

𝑘

𝑘!
+

ℎ𝛼
∑︀𝑛

𝑘=0 𝑏𝑛−𝑘+1𝑓(𝑡𝑘, 𝑦𝑘)
Γ(𝛼 + 1)

,

𝑎𝑘 = (𝑘+1)𝛼+1−2 𝑘𝛼+1+(𝑘−1)𝛼+1, 𝑏𝑘 = 𝑘𝛼−(𝑘−1)𝛼.

The error estimate is 𝑒 = max|𝑥(𝑡𝑗) − 𝑥ℎ(𝑡𝑗)| =
𝑂(ℎ𝜌), (𝑗 = 0, 1, . . . , 𝑁), where 𝜌 = min(2, 1 + 𝛼).

Applying the above scheme, Eq. (3) can be dis-
cretized as follows:

𝑥𝑛+1 =
𝑚−1∑︁
𝑘=0

𝑡𝑛+1
𝑘𝑥𝑘

𝑘!

+
ℎ𝛼𝑓1(𝑡𝑛+1, 𝑝1,𝑛+1, 𝑝2,𝑛+1, 𝑝3,𝑛+1)

Γ(𝛼 + 2)

+
ℎ𝛼

[︀
(𝑛𝛼+1 − (𝑛− 𝛼)𝑗𝛼)𝑓1(0, 𝑥0, 𝑦0, 𝑧0)

]︀
Γ(𝛼 + 2)

+
ℎ𝛼

[︀ ∑︀𝑗−1
𝑘=1 𝑎𝑛+1−𝑘𝑓1(𝑡𝑘, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘)

]︀
Γ(𝛼 + 2)

,

𝑦𝑛+1 =
𝑚−1∑︁
𝑘=0

𝑡𝑛+1
𝑘𝑥𝑘

𝑘!

+
ℎ𝛼𝑓2(𝑡𝑛+1, 𝑝1,𝑛+1, 𝑝2,𝑛+1, 𝑝3,𝑛+1)

Γ(𝛼 + 2)

+
ℎ𝛼

[︀
(𝑛𝛼+1 − (𝑛− 𝛼)𝑗𝛼)𝑓2(0, 𝑥0, 𝑦0, 𝑧0)

]︀
Γ(𝛼 + 2)

+
ℎ𝛼

[︀ ∑︀𝑗−1
𝑘=1 𝑎𝑛+1−𝑘𝑓2(𝑡𝑘, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘)

]︀
Γ(𝛼 + 2)

,

𝑧𝑛+1 =
𝑚−1∑︁
𝑘=0

𝑡𝑛+1
𝑘𝑥𝑘

𝑘!

+
ℎ𝛼𝑓3(𝑡𝑛+1, 𝑝1,𝑛+1, 𝑝2,𝑛+1, 𝑝3,𝑛+1)

Γ(𝛼 + 2)

+
ℎ𝛼

[︀
(𝑛𝛼+1 − (𝑛− 𝛼)𝑗𝛼)𝑓3(0, 𝑥0, 𝑦0, 𝑧0)

]︀
Γ(𝛼 + 2)

+
ℎ𝛼

[︀ ∑︀𝑗−1
𝑘=1 𝑎𝑛+1−𝑘𝑓3(𝑡𝑘, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘)

]︀
Γ(𝛼 + 2)

, (4)

where

𝑓1(𝑡, 𝑥, 𝑦, 𝑧) = 𝜆1𝑥− 𝑧(𝑥− 𝑦),
𝑓2(𝑡, 𝑥, 𝑦, 𝑧) = 𝜆2𝑦 − 𝑧(𝑥− 𝑦),
𝑓3(𝑡, 𝑥, 𝑦, 𝑧) = 𝜆3𝑧 + (𝑥 + 𝜏𝑦)(𝑥− 𝑦),

𝑝𝑖,𝑛+1 =
𝑚−1∑︁
𝑘=0

𝑡𝑛+1
𝑘𝑦0

𝑘

𝑘!
+

ℎ𝛼
∑︀𝑛

𝑘=0 𝑏𝑛−𝑘+1𝑓𝑖(𝑡𝑘, 𝑦𝑘)
Γ(𝛼 + 1)

.

Applying the derived discrete scheme and with the
help of Maple, we find that chaos does exist in the
fractional-order GLCF. For convenience, the parame-
ters are chosen to be 𝜆1 = −3, 𝜆2 = −5, 𝜆3 = −1,
with an initial state 𝑥0 = 0, 𝑦0 = 2, 𝑧0 = 2. In or-
der to obtain different fraction-order chaos systems,
we only need to choose different values of 𝜏 .
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Fig. 1. The fractional-order classic Lorenz system under
conditions 𝛼 = 1, 𝛼 = 0.95, 𝛼 = 0.92, 𝛼 = 0.91.

Case 1. The fractional-order classic Lorenz system.
When 𝜏 > 0, the equivalent systems of the GLCF is

100501-2

http://cpl.iphy.ac.cn


CHIN. PHYS. LETT. Vol. 26,No. 10 (2009) 100501

the classic Lorenz system. Set 𝜏 = 0.2 in Eq. (3), we
obtain the fractional-order classic Lorenz system. We
find that the chaos does exist when 𝛼 ∈ (0.92, 1]. For
example, when 𝛼 = 1, 0.95, 0.92 and 0.91, we find
that chaos exists in the fractional order system and
the phase portraits are shown in Fig. 1.

Case 2. The fractional-order Lü system. When
𝜏 = 0, the equivalent systems of the GLCF is the Lü
system. Set 𝜏 = 0 in Eq. (3), we obtain the fractional-
order Lü system. We find that the chaos does exist
when 𝛼 ∈ (0.90, 1]. For example, when 𝛼 = 1, 0.93,
0.90 and 0.89, we find that chaos exists in the frac-
tional order system and the phase portraits are shown
in Fig. 2.
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Fig. 2. The fractional-order Lü system with conditions:
𝛼 = 1, 𝛼 = 0.93, 𝛼 = 0.90, 𝛼 = 0.89.

Case 3. The fractional-order Chen system. When
−1 < 𝜏 < 0, the equivalent systems of the GLCF is
the Chen system. Set 𝜏 = −0.6 in Eq. (3), we ob-
tain the fractional- order Chen system. We find that
the chaos does exist when 𝛼 ∈ (0.86, 1]. For example,
when 𝛼 = 1, 0.87, 0.86 and 0.85, we find that chaos
exists in the fractional order system and the phase
portraits are shown in Fig. 3.
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Fig. 3. The fractional-order Chen system with conditions:
𝛼 = 1, 𝛼 = 0.87, 𝛼 = 0.86, 𝛼 = 0.85.

Case 4. The fractional-order Shimizu-Morioka
system or the fractional-order Liu-Liu-Liu-Liu sys-
tem. When 𝜏 = −1, the equivalent systems of the
GLCF was the Shimizu-Morioka model or the Liu-
Liu-Liu-Liu mode. Set 𝜏 = −1 in Eq. (3), we ob-
tain the fractional-order Shimizu-Morioka system or
the fractional-order Liu-Liu-Liu-Liu system. We find
that the chaos does exist when 𝛼 ∈ (0.85, 1]. For ex-
ample, when 𝛼 = 1, 0.85 and 0.84, we find that chaos
exists in the fractional order system and the phase
portraits are shown in Fig. 4.

Case 5. The fractional-order hyperbolic-type gen-
eralized Lorenz system. When 𝜏 < −1, the equivalent
systems of the GLCF is the hyperbolic-type general-
ized Lorenz systems. Set 𝜏 = −2 in Eq. (3), we ob-
tain the fractional-order hyperbolic-type generalized
Lorenz systems. We find that the chaos does exist
when 𝛼 ∈ (0.82, 1]. For example, when 𝛼 = 1, 0.82
and 0.81, we find that chaos exists in the fractional
order system and the phase portraits are shown in
Fig. 5.
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Fig. 4. The fractional-order Shimizu-Morioka system or the fractional-order Liu-Liu-Liu-Liu system under condi-
tions 𝛼 = 1, 𝛼 = 0.85, 𝛼 = 0.84.
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Fig. 5. The fractional-order hyperbolic-type generalized Lorenz system under conditions 𝛼 = 1, 𝛼 = 0.82, 𝛼 = 0.81.

In summary, a fractional order GLCF has been
presented and studied. We find that chaos exists
in the fractional order unified system with an order
lower than 3. The numerical simulations and interest-
ing figures are performed. Because synchronization
of chaotic fractional differential systems has poten-
tial applications in secure communication and control
processing, this studying field starts to attract increas-
ing attention. In Ref. [22], we investigate the general-
ized Q-S synchronization[23] between the GLCF and
the Rössler system, the more general controller is ob-
tained. By choosing different parameters in the gen-
eralized controller obtained here, without much extra
effort, we can obtain the controller of synchronization
of the corresponding system respectively. Similarly,
we will study the analysis property and the synchro-
nization of the fractional order GLCF.

We would like to thank the two anonymous refer-
ees for their valuable suggestions.
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