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Field Study Evaluation of Cepstrum Coefficient Speech Analysis  
for Fatigue in Aviation Cabin Crew

INTRODUCTION

Numerous factors can affect safety, performance, and 
quality of life in individuals working in 24-hr operational en-
vironments such as industrial shift-work, military, health care, 
law enforcement, space exploration, and transportation. One 
issue receiving increasing attention in commercial aviation is 
fatigue (Mallis, Banks, & Dinges, 2010). Fatigue is generally 
defined as a state of tiredness due to prolonged wakefulness, 
extended work periods, and/or circadian misalignment, and is 
characterized by decreased alertness, diminished neurobehavioral 
performance, and impaired decision-making (Åkerstedt, 1995; 
Dinges, 1995). The very nature of 24-hr operational environ-
ments superimposed against human circadian physiology all 
but guarantees the systematic production of fatigue. As such, 
non-invasive, reliable, and valid methods of objectively detecting 
compromised performance capacity in applied settings could be 
valuable as a means of identifying, preventing, and mitigating 
fatigue-induced safety risks. 

One approach to assessing fatigue that has attracted interest 
in recent years is quantitative speech analysis. To clarify, the terms 
“voice,” “language,” and “speech” are often used interchangeably 
in everyday conversation, but they are not synonymous and must 
be differentiated when considered in a scientific context. As sum-
marized by the U.S. National Institute on Deafness and Other 
Communication Disorders (NIDCD; http://www.nidcd.nih.
gov/health/voice/whatis_vsl.html), voice is the sound produced 
by simultaneous use of the lungs and vocal folds in the larynx (i.e., 
“voice box”), whereas language is the use of spoken or written 
symbols (i.e., words) to express, experience, describe, and share 
knowledge, beliefs, and behaviors. Speech per se is the oral pro-
duction of language through precisely coordinated muscle actions 
in the head, neck, chest, and abdomen to shape the resulting 
tones created by the voice into any number of specific decodable 
sounds. Simply put, speech is how voice becomes language. For 
those interested in fatigue assessment, speech production is an 
appealing candidate variable for analysis in operational settings 
because it is a naturally occurring and virtually universal behavior 
in adults, it requires no workplace-specific training, and data 
collection is inherently non-invasive. Moreover, because speech 
is the principal mode of communication in aviation and other 
operations leads to the exciting prospect of developing broadly 
applicable tools not only for pre-work “fitness for duty” tests, 
but also completely unobtrusive, real-time on-duty assessments 
for centrally monitored or autonomous use.

With these long-range goals in mind, several innovative 
speech analysis methods are in the early stages of development. 
The leading methods as summarized by Polejaeva (2009) include 
acoustic analysis (e.g., Krajewski, Batline, & Golz, 2009), the 
Brown Lab Interactive Speech System (BLISS; e.g., Lieberman, 

Morey, Hochstad, Larson, & Mather, 2005), Cepstrum Coef-
ficient analysis (Greeley, Berg, Friets, Wilson, Greenough, 
Picone, Whitmore, & Nesthus, 2007), chaotic analysis (e.g., 
Shiomi, 2008), and landmark analysis (e.g., Boyce, S, MacAu-
slan, Bradlow, & Smiljanic, 2008). Although a comprehensive 
technical review is beyond the scope of this report, we note that 
these methods all use the same input (recorded speech) but dif-
fer from each other in required content and how the speech is 
mathematically analyzed, thus yielding method-specific quan-
titative definitions of fatigue. Importantly, each method has its 
own constellation of features, advantages, and limitations, but 
all approaches have empirically demonstrated orderly variations 
as a function of fatigue, mostly in controlled laboratory studies 
of sleep deprivation and/or extended workload. 

As with any science-based technology, developing fatigue-
sensitive speech analysis methods and advancing them from 
the laboratory to dynamic operational settings are separate but 
equally challenging tasks. While the approaches outlined above 
have shown promise in laboratory and limited field applications, 
some critically important but unresolved issues include the extent 
of long-term operational feasibility, the validity of the metrics, 
and the sensitivity of those metrics to operationally-relevant 
factors. These issues apply as much to commercial aviation as to 
any operational context; hence, the purpose of the present report 
is to systematically address these issues in aviation context. Our 
technical focus for this initial effort is the Cepstrum Coefficient 
analysis approach, selected because of (1) its inherent ability to 
accommodate individual differences in speech production and 
(2) successful early development efforts demonstrated in FAA- 
and Air Force-sponsored sleep deprivation and restriction studies 
(Greeley et al., 2007). The source material for the study includes 
objective neurobehavioral performance data and >13,000 voice 
recordings from a broad and representative sample of 195 cabin 
crew personnel collected during the 2009-2010 Civil Aerospace 
Medical Institute-sponsored Flight Attendant Field Study 
(Roma, Mallis, Hursh, Mead & Nesthus, 2010). To the best of 
our knowledge, this is the first systematic large-scale field study 
evaluation of any fatigue-specific speech analysis method applied 
to 24-hr commercial aviation operations, and thus represents a 
seminal step in the development of this technology.

METHOD

All procedures described in this report were independently 
reviewed and approved by the Institutional Review Boards of 
both the FAA and the Institutes for Behavior Resources. The 
formal letters of approval from each institution are available 
upon request from the corresponding author. All data have 
been de-identified to protect the privacy of those involved in 
the project.
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Participants, Materials, and Data Collection
We refer the reader to Roma et al. (2010) for extensive 

details on participants, materials, and data collection protocol 
for the CAMI Flight Attendant Field Study. Briefly, all eligible 
applicants were active U.S.-based flight attendants categorized 
according to three broad factors serving as the organizing frame-
work for the study’s design and some of the results presented 
herein. These factors are Carrier Type (Network, Low-Cost, or 
Regional), Seniority (self-identified Senior 1/3, Mid 1/3, or 
Junior 1/3), and majority of Flight Operations (Domestic or 
International). The study was designed for a total of 210 flight 
attendants according to the schematic presented below in Figure 
1, and a total of 195 flight attendants contributed analyzable 
speech and performance data for the present report.

Each participant was issued a custom-programmed 
touchscreen-based personal digital assistant device (PDA) for 
daily data collection (AT&T Tilt™, HTC Corporation, Taiwan). 
Participants were required to complete up to four test sessions 
per day throughout their individual 3-4- week study periods: 
Pre-Sleep, Post-Sleep, Pre-Work, and Post-Work. Participants 
were instructed to complete the Pre- and Post-Sleep sessions 
within ~15 min of going to bed and waking up, respectively. In 
addition, on work days, participants were instructed to complete 
the Pre- and Post-Work sessions within ~1 hr of “check-in” and 
“check-out” (the beginning and end of the entire duty day, 
respectively). 

Each test session consisted of several core components, 
including a 5-min touchscreen-based Psychomotor Vigilance Test 
(PVT) programmed under the same parameters as the Palm-based 
PVT previously developed at the Walter Reed Army Institute 
for Research (Thorne, Hampton, Morgan, Skene, Arendt, 2005; 
Lamond, Dawson, & Roach, 2005) and effectively utilized for 
various field studies in 24-hr operational environments (Lamond, 
Petrilli, Dawson, & Roach, 2006; Ferguso, Lamond, Kandelaars, 
Jay, & Dawson, 2008). Each session also included standardized 
speech recordings, which were stored in uncompressed WAV 

format on the PDA’s internal SD memory card. The speech 
sessions required recitation of five randomly ordered phrases 
designed for the study by H. P. Greeley (Response Applications, 
LLC; Hanover, NH, USA). These phrases were designed to limit 
“sing song” articulation often observed with phrases that are 
repeated over time. In alphabetical order, they are:
•	 Go up the street to the shop and buy a pen and a map.
•	 Mike drives the truck for a hundred miles without stopping. 

But he radios two times a day to papa.
•	 Patty has a multitude of sheep and a flock of geese so Mike 

always has meat pie for supper.
•	 The bed is new and will provide you with some good sleep. 

The mattress and pillow are better than mine.
•	 The child broke the toy with a pipe and put it in her mouth.

To maintain consistency across days, locations, and condi-
tions, all participants were instructed to take their test sessions 
in a comfortable, normally lit environment with as few sensory 
distractions as possible. All participants were informed that safety 
and fulfilling their professional duties supersede all research 
requirements, and were explicitly instructed to never engage in 
study-related activities while actively engaged in or responsible 
for any work-related activities.

Data Selection
PVT. Each 5-min PVT session yields a number of output 

variables, including mean reaction time per trial (RT, msec) 
and total lapses (RTs > 500 msec), which we used as objective 
neurobehavioral performance metrics against which to validate 
the speech analysis data. 

Audio files. Throughout the course of the project, the 
study participants contributed approximately 10,000 complete 
test sessions yielding approximately 50,000 audio files. For each 
individual, we identified the top 10% mean RTs of all PVT ses-
sions, and those sessions were used to define that individual’s 
optimum baseline neurobehavioral performance capacity. We 
then processed the audio files from those optimum baseline 

Figure 1.  Stratified field study design and target sample sizes.

[NSD] [NSI] [NMD] [NMI] [NJD] [NJI]

[LS] [LM] [LS] [RS] [RM] [RJ]
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PVT sessions using Cepstrum Coefficient analysis methods 
(described below) to construct individualized speech models 
whose parameters served as the reference models against which 
all other selected speech was compared. For comparisons, we 
returned to the master session pool, selected those sessions mark-
ing the beginning and end of each period of consecutive days 
in the field, and designated them as “Pre-Trip” and “Post-Trip,” 
respectively. Most Pre-Trip files were originally Post-Sleep or 
Pre-Work sessions (i.e., early in the day), and most Post-Trip 
files were originally Post-Work or Pre-Sleep sessions (i.e., late 
in the day). Most participants completed at least 3 trips during 
their respective study period. 

Given the current lack of automated high-throughput 
analysis tools and the enormous number of audio files and po-
tential comparisons, we focused on Pre-Trip vs. Post-Trip for this 
proof-of-concept study on the premise that Pre-Trip generally 
represents the work-related sessions of least fatigue whereas Post-
Trip generally represents the work-related sessions of most fatigue, 
and thus comparisons between the two were the most likely of 
all comparisons directly influenced by field operations to yield 
effects. Ultimately, and in light of our previously reported field 
study data (Roma et al., 2010), we reasoned that if Cepstrum 
Coefficient analysis cannot detect at least a main effect of several 
consecutive duty days, then it would not warrant an investment 
in more detailed analyses.

Cepstrum Coefficient Speech Analysis
Using the selected audio files described above, we ap-

plied voice comparison software to quantify changes in speech 
production as a possible result of work-related fatigue. Our ap-
proach was based on the more broadly used Speaker Validation 
software algorithms used to verify the identity of the speaker. 
Conceptually, evaluating Pre-Trip and Post-Trip sessions relative 
to individualized baseline models in this way creates a process 
for quantifying the degree to which the affected individual is 
“not him/herself.”

Types of sounds versus individual phonemes. While 
there are 44 speech sounds (phonemes) that comprise Ameri-
can English, we note that the speaker models do not identify 
specific sounds, only clusters of multi-dimensional data point 
pairings (described below). Speech sounds originate from a 
number of different physiological conditions and, as such, 
present as families of frequency range combinations or clusters. 
As reviewed in Lagefoged (2001), the two major divisions of 
speech sounds are (1) vowels, which are produced primarily by 
the vibration of the vocal cords, and (2) consonants, which are 
produced by the turbulent flow of air through constricted parts 
of the vocal tract (articulators such as the lips or tongue). These 

can be further divided into pure vowels (such as /e/ in bed), 
diphthong vowels (such as /ai/ in time), which are chains of two 
vowels strung together, fricative consonants (such as /f/ in fish), 
produced by steady turbulent flow of air, and stop consonants 
or plosives (such as /p/ in push), produced by the buildup and 
sudden release of air. Consonants may also be voiced where the 
vocal cord is involved (such as /z/ in zip) or unvoiced where the 
vocal chord is not involved (such as /s/ in sip). Even these sound 
groups can be further divided. For example, fricative consonants 
may be categorized according to how an articulator is used to 
make the sound: A voiced dental fricative (such as /th/ in then) 
is created by putting the tongue between the upper and lower 
teeth, whereas a voiced postalveolar fricative (such as /ε/ in vision) 
requires a high-frequency component produced by placing the 
tongue directly over the sharp edge of the teeth. The model we 
ultimately developed was set to identify 16 “sound type” clusters, 
although this number is arbitrary and may be adjusted in future 
analyses to identify finer or coarser groupings, as suggested by 
the myriad speech sounds described above.

Speaker modeling. The speaker modeling algorithm is 
a variation of the classical Gaussian mixture model (GMM) 
structure originally described by Dempster and colleagues 
(Dempster, Laird, & Rubin,1977). GMMs are among the 
most statistically mature methods for clustering and have been 
widely implemented in applications ranging from financial 
modeling to medical image analysis. Access to the voice files 
from the top 10% PVT performance sessions allowed us to 
individually model each participant’s voice in a state of maxi-
mum performance capacity and to use those models to quantify 
changes in speech production before and after work trips. This 
approach is a more integrated extension of the sound-by-sound 
(phoneme) approach used in our previous work (Greeley et al., 
2007), although both processes begin with a quantification of 
voice by way of Mel-frequency Cepstral Coefficients (MFCC; 
Bridle & Brown, 1974; Mermelstein, 1976). For our purposes, 
clusters of MFCC components in multidimensional space are 
identified as unique speech sound types (see above). For our 
analysis configuration, the relative amplitude distributions of 
each of 20 MFCC coefficients were determined and grouped 
into one of 16 clusters for each sound uttered by the speaker’s 
voice, thereby generating an individualized model of sound 
versus distribution for each speaker. Individual sound types are 
recognized as unique clusters of MFCC combinations, and the 
MFCC bounds of these clusters (centroids and variances) define 
the model for each individual. Comparison of one model to an-
other is accomplished by calculating least mean square distances 
between the two models.
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Although we used 20 MFCC coefficients to dictate a model 
in 20-dimensional space, illustrative 2-dimensional examples 
(2nd and 3rd MFCC components) are shown in Figure 2. As 
seen in the upper left panel, three very different instruments 
playing the same note still yield different clusters of MFCC 
2 versus MFCC 3 amplitudes. These translate to probability 
distributions (lower-left panel) based on MFCC readings that 
functionally define each instrument. In the right panel, we 
see a 2-dimensional distribution of MFCC coefficients for six 

different speakers uttering the same phoneme (adapted from 
Chen, Huang, Chang, & Wang, 2002). As with the instrument 
example, we see that a different model would be generated for 
each speaker, and the least mean square distances between two 
model clusters would determine the degree to which the two 
models were different or the same, or in our case, the degree 
to which speech production during the Pre-Trip or Post-Trip 
sessions differed from baseline.

Figure 2. A simplified 2-D example of speaker modeling. The upper left scatter plot shows the 
combinations of MFCC2 and MFCC3 component amplitudes for each sound recorded. Because 
these sounds are generated by three different instruments, these combinations cluster in distinct 
regions of the 2-D space. From this a distribution model (lower left illustration) is generated and 
can be used to estimate which instrument was played for any MFCC 2 vs MFCC 3 pair. The same 
process is employed for human voice to identify unique sounds (phonemes) from MFCC 
combinations. As shown in the right panel, showing MFCC pairs for 6 different speakers uttering 
the same sound, different people will have unique models that define their speech production.  
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Voice File Processing. Figure 3 illustrates the three major 
components of the software that we configured to implement 
subject-by-subject voice change quantification: (1) Cepstral Co-
efficient quantification of the voice signal, (2) speaker modeler, 
and (3) speaker comparator. Each component was developed 
using MATLAB modeling language and publicly available speech 
processing function libraries. 

The Cepstral Coefficient Quantification component uses 
a series of discrete Fourier transforms to continuously extract 
the MFCC coefficients from speech segment windows of 256 
points each (with a 128-point overlap). For our 11 kHz input 
signals, this is a 23-msec window with 11.5-msec overlap. The 
Speaker Model Generation component generates GMMs from 
input training data (the speaker’s voice recordings taken dur-
ing the top 10% PVT sessions), in this case grouping multi-
dimensional MFCC coefficients into clusters associated with 
the different sound types. The training method is based on 
the classic Expectation-Maximization algorithm (Dempster et 
al., 1977). The Speaker Model Comparator component is an 
implementation of a sequential forward search and sequential 
backward searching scheme introduced by Baum, Petrie, Soules, 
& Weiss, (1970). Forward search starts with the empty set of 
cluster points, then cluster points are added to the selected subset 
one by one. At each step, the added cluster point is selected from 
the remaining subset such that the already selected subset, plus 
the added one, gives the best combination performance (such as 
least mean square distance from the cluster center errors). By this 
procedure, a series of subsets and criterion measures are given, 
and we can eventually choose the subset (total cluster) of highest 
criterion. Backward searching starts from the set of all possible 

points, and the constituent data points are iteratively deleted. 
At each step, a cluster point is deleted such that the remaining 
subset gives the best combination performance.

Statistical Analysis
As described above, our use of Cepstrum Coefficient analy-

sis involves constructing individualized 20-dimensional speech 
models based on voice recordings from sessions coinciding with 
optimal baseline PVT performance, then comparing the Pre-
Trip and Post-Trip sessions to the respective individual baseline 
model, yielding what we call the “speech deviation score” for 
that session relative to baseline. Because model construction is 
so agile, the units of the speech deviation scores are essentially 
arbitrary; however, for any given Pre- or Post-Trip session, a value 
of zero indicates identical speech production to that individual’s 
baseline model, whereas a larger score indicates more deviation 
and thus less similarity to baseline, thereby quantifying the extent 
to which that individual is “not him/herself ” in terms of speech 
production at that time. 

Descriptive statistics were used to evaluate operational 
feasibility. Validity of the speech deviation score metric was as-
sessed through separate linear regression analyses with speech as 
the predictor variable and PVT RT and Lapses as the outcome 
variables. For sensitivity analyses, we used descriptive statistics 
to characterize the distributions of Pre- and Post-Trip speech 
deviation scores, and main effects of trip on speech and PVT 
performance were evaluated via independent samples t tests. 
Finally, the sensitivity of Cepstrum Coefficient analysis to the 
operationally-relevant factors of Carrier Type, Seniority, and 
Flight Operations was evaluated by assessing Pre vs. Post speech 

Figure 3. The Components of the voice change quantifier. The software consists of a speech 
quantification section, a model generator, and a speaker model comparator. As speech is 
input into the system, a continuous stream of speaker match scores are output, indicating how 
the speech production has changed relative to his or her baseline state.

Voice Change Analyzer

Score Vs. Normal
State Model

Voice Input Cepstral Coefficient
Quantification

Speaker Model
Generator

Speaker Model
Comparator

Mode Select
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scores within each sub-group via independent samples t tests. 
Additional details and other analyses are described in-text. Rather 
than using summary statistics such as individual means across 
the entire study, we chose to maximize the statistical power af-
forded by our large sample size and multiple trips worth of data 
by using all applicable sessions for all analyses. Unless otherwise 
noted, all data are presented as mean + SEM per session, with 
speech deviation scores expressed in their native units, PVT 
RTs expressed in msec, and PVT Lapses expressed as frequency 
counts. All analyses were two-tailed as applicable, and statistical 
significance was set at α = .05.

RESULTS

Operational Feasibility
No matter how well-conceived or well-intended, speech 

analysis in operational settings can neither be credibly evaluated 
nor subsequently implemented if the subjects of the analysis 
cannot or will not provide adequate data. This is particularly 
true for assessments requiring active participation such as the 
explicit recitation of five phrases for this study, and all the more 
challenging in demanding and highly variable operational envi-
ronments such as aviation. Fortunately, the high compliance rate 

and successful collection of ~10,000 test sessions suggest that brief 
but standardized speech sampling is operationally acceptable in 
commercial aviation. Our subject pool was broadly representa-
tive of the flight attendant profession, so it is encouraging that 
participants successfully completed up to four sessions per day for 
21-30 consecutive days in a wide variety of settings, across dozens 
of time zones, and in all phases of their endogenous circadian 
rhythms, regardless of gender, age, employer, or schedule. At the 
technical level, the uncompressed WAV files (PCM, signed 16 
bit mono at 11,025 Hz) were of adequate quality for analysis.

Relationship With Neurobehavioral Performance Measures
Even when acquiring data is operationally feasible, assess-

ment approaches such as speech analysis are of little value unless 
they predict safety-relevant performance outcomes. To this end, 
linear regression analyses of all baseline, Pre-Trip, and Post-Trip 
test sessions (n = 2,795) revealed modest but significant positive 
correlations between speech deviation scores and PVT RTs and 
Lapses (R2s > .013, ps < .001). As seen in Figure 4, poor PVT 
performance was more consistently associated with higher speech 
scores, but there was tremendous variability in speech scores at 
the low end of both PVT variables.

 

Figure 4. Relationship between Speech Deviation Score (x-axis) and PVT outcomes (y-axes).
Total N = 2,795 sessions.
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Organizing the PVT data into bins and re-analyzing the rela-
tionships with the apparent functional range of speech scores 
yielded much more favorable statistical outcomes (Spearman’s 
rho R2s > .881, ps < .01), which are illustrated in Figure 5. Here 
we see that speech deviation scores more reliably predict Lapses 
than RTs, although we still see non-linear clustering and less 
reliable predictive power at the low end of the speech score and 
PVT ranges. 

Sensitivity to Operationally-Relevant Factors
If conducting voice recordings in the field is acceptable 

and quantitative speech analysis of those recordings correlates 
with objective performance metrics, then a final issue worth 
considering is the sensitivity of speech analysis to variations in 
operationally-relevant factors. Indeed, if flight operations reli-

ably produce changes in speech scores, and those speech scores 
predict performance, then the practical value of Cepstrum Coef-
ficient analysis for commercial aviation rests largely on its ability 
to detect work-induced fatigue and to discriminate between 
groups who may be differentially exposed to fatigue-inducing 
operational variations. 

Effects of work trips. We first compared all Pre-Trip (n = 
800) to Post-Trip (n = 765) sessions to determine if our measures 
were generally sensitive to the fatiguing effects of consecutive 
work days. Independent samples t tests with equal variances 
not assumed, revealed significant Pre-Post increases in PVT RTs 
(299 + 3.2 vs. 321 + 4.9, t(1320) = 3.78, p < .001) and Lapses 
(3.3 + 0.20 vs. 4.2 + 0.24, t(1502) = 2.97, p < .01; see Figure 
6), thereby confirming the appropriateness of the sessions used 
for subsequent speech analyses.

Figure 5.  Relationship between Speech Deviation Score (x-axis) and mean binned PVT outcomes 
(y-axes).

Figure 6. Mean PVT Reaction Times (left panel) and Lapses (right 
panel) per session before and after work trips.



8

Examination of the speech deviation scores revealed normal 
Pre-Trip and Post-Trip distributions of equal variance, but con-
siderable overlap, as seen in Figure 7. Despite this overlap, mean 
speech scores still differed significantly; however, we observed an 
unexpected decrease from Pre to Post (14.27 + 0.03 vs. 14.16 + 
0.03, t(1563) = 2.97, p < .01; see Discussion).

Group effects. The analyses above confirmed that Cepstrum 
Coefficient modeling was capable of detecting gross changes in 
speech production induced by real-world aviation operations, 
so we further investigated sensitivity of the method by assessing 
effects of Carrier Type, Seniority, and Flight Operations. Within 
the Carrier Type factor, neither Network nor Low-Cost crew 

were affected from Pre-Trip to Post-Trip (ts < 1.8, ps > .07), but 
speech deviation scores decreased significantly in samples from 
Regional crew (14.30 + 0.05 vs. 14.13 + 0.05, t(419) = 2.33, p 
< .05). Within the Seniority factor, neither the Senior nor Mid-
level crew were affected (ts < 1.4, ps > .16), but speech deviation 
scores decreased significantly in samples from Junior-level crew 
(14.41 + 0.06 vs. 14.20 + 0.06, t(457) = 2.60, p < .01). Finally, 
within the Flight Operations factor, International crew were not 
affected (t(230) = 0.48, p > .60), but speech deviation scores 
decreased significantly in samples from crew flying domestic 
operations (14.30 + 0.03 vs. 14.18 + 0.03, t(1331) = 2.81, p < 
.01; see Figure 8).

Figure 7. Distribution of Pre-Trip and Post-Trip Speech Deviation Scores (left panels) and mean 
Pre-Trip and Post-Trip Speech Deviation Scores (right panel, *p < .05).

Figure 8. Effects of Carrier Type (left panel), Seniority (middle panel), and Flight Operations (right 
panel) on Speech Deviation Scores (y-axes). Pre-Post difference in a group indicated by *p < .05, 
**p < .01.
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DISCUSSION

The present study examined operational feasibility, predic-
tive validity with neurobehavioral performance, and sensitivity 
to operational factors of Cepstrum Coefficient speech analysis 
for work-induced fatigue in a large sample of commercial avia-
tion cabin crew that collected data throughout 3-4 continuous 
weeks of work. Although clear limitations and opportunities for 
improvement emerged from this initial proof-of-concept study, the 
results were quite promising and nonetheless represent a critical 
step in the development of speech analysis methods for fatigue 
detection in operational environments.

Regarding feasibility, the high compliance rate and suc-
cessful completion of ~10,000 test sessions suggest that brief but 
standardized speech sampling is operationally acceptable in the 
complex and stressful world of commercial aviation. One potential 
limitation, as indicated through our informal communications 
with study participants, is the occasional embarrassment caused 
by reading the peculiarly worded phrases out loud in the presence 
of others (e.g., shuttle bus, crew lounge); however, we received no 
communications of any kind that data collection compromised 
safety or affected operations. Although these feasibility results 
provide no technical insight on how speech analysis methods 
would be integrated into company infrastructure or formal fatigue 
risk management systems at the corporate or federal levels, they 
do indicate that (1) at least a subset of end-users in commercial 
aviation is willing to regularly provide standardized speech data 
before, during, and after work days, (2) they can do so without 
compromising passenger safety or any other aspect of job per-
formance, and (3) readily available audio recording technology 
is suitable for informative speech analysis in operational settings.

The validity data, while not comprehensive, are nonetheless 
encouraging. Specifically, speech deviation scores generally pre-
dicted neurobehavioral performance deficits as one would expect, 
i.e., higher speech scores significantly correlating with higher PVT 
RTs and Lapses. But even with this orderly statistical relationship, 
examination of the data still revealed tremendous variability in 
the low range of the speech-PVT continuum. Practically speak-
ing, this pattern suggests some kind of detection threshold, i.e., 
the high range of speech scores has more predictive value than 
the low range. In our dataset, a speech deviation score of 14.5 
appears to be a functional cutoff (see Fig. 5). At worst, this ap-
proach suggests the possible safety risk of “false negatives” since 
some relatively low speech scores (< 14.5) were still associated 
with impaired performance capacity. It is uncertain whether these 
caveats are an inherent feature of speech analysis or simply the 
result of the methods and parameters we employed, which were 
only a subset from a virtually infinite variety of options worthy of 
future investigation. Speech model parameters notwithstanding, 
other considerations for future work include newly published 
innovations from leading fatigue scientists on methods for maxi-
mizing the sensitivity of PVT data (Basner & Dinges, 2011), and 
indeed subsequent analyses with the massive Flight Attendant 
Field Study dataset may yield even more promising results with 
novel PVT-derived metrics beyond mean RTs and total Lapses, 

perhaps normalized relative to individual baselines as was done 
with the speech data. 

The sensitivity analyses confirmed that despite considerable 
overlap in response distributions, Cepstrum Coefficient analysis is 
indeed capable of distinguishing the Pre-Trip from the Post-Trip 
speech sessions. In addition, and similar to the objective sleep and 
performance data from our original report (Roma et al., 2010), all 
groups differed from baseline at both time points, and the most 
affected sub-groups of flight attendants were from Regional carriers 
(vs. Network or Low-Cost), of Junior-level seniority (vs. Senior or 
Mid), and worked Domestic flight operations (vs. International). 
In principle, these data support the sensitivity of Cepstrum Coef-
ficient speech analysis and reveal operationally relevant effects, 
but as with our previously reported data, still beg the question of 
exactly what renders these particular sub-groups more vulnerable 
to fatigue than their counterparts. To this end, ongoing follow-
up analyses of the field study database are examining the effects 
of commute time on work readiness, while analysis of other key 
operational variables such as total length of duty day, number of 
flight legs/segments per day, recovery time in the hotel during a 
trip, consecutive duty days (trip length), and number of days off 
in between trips may inform the original dataset, as well as any 
future speech analyses.

Perhaps our most interesting finding, and certainly the most 
unexpected, was that speech deviation scores decreased from Pre-
Trip to Post-Trip in all groups. Comparison of average Pre-Trip 
and Post-Trip PVT variables confirmed the expected decline in 
neurobehavioral performance capacity (higher RTs and Lapses; 
see Figure 6), and the validity analyses revealed significant posi-
tive correlations between speech scores and PVT variables, so how 
could several days of work render someone more similar to their 
baseline state? Although speculative, we believe this outcome to 
be an artifact of the composition of the session pool used to define 
baseline performance, coupled with the presumption of a direct 
correlation between neurobehavioral function and speech produc-
tion. Specifically, there was a disproportionate number of Post-Sleep 
PVT sessions in the Top 10% optimal baseline session pool. A Chi-
squared analysis confirmed unequal distribution of session types 
(Χ2(3) = 107.89, p < .001), and at 35%, there were significantly 
more Post-Sleep sessions than the three other types (Χ2(1)s > 6.88, 
ps < .01). By its very nature, sleep restores cognitive performance 
capacity upon wakening, so it is not surprising that many of the 
best PVT performances were from Post-Sleep sessions; however, 
several continuous hours of inactivity does not necessarily facilitate 
optimal speech production. Considerable clinical research exists on 
the relationship between speech and various components of the vocal 
apparatus in sleep-disordered patients (e.g., Davidson, 2003), and 
virtually all experimental investigations of fatigue-induced speech 
deficits rely on sleep deprivation, heavy workload, or time-on-task 
manipulations, but the exact nature of speech production upon 
awakening in healthy individuals is unclear. Given the involvement 
of so many muscle groups in vocal communication, it is reasonable 
to see how sessions recorded upon wakening, when the brain was 
well-rested but before the vocal apparatus was “warmed up,” could 
simultaneously yield maximized neurobehavioral performance 
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capacity but compromised speech production. Consequently, it 
appears that despite optimal PVT performances, the speech models 
we treated as baseline did not reflect optimal speech production, so 
the effects of workload-induced fatigue during a trip were manifest 
in compromised speech similar to that produced upon wakening.  

Although unexpected, we welcome this complication, 
particularly at this early stage of development in speech-based 
operational fatigue analysis, because it underscores the impor-
tance of clearly understanding the precise nature of the relation-
ship between the predictor and outcome variables. In this case, 
while speech production and vigilant attention share overlapping 
neurobiological mechanisms, they are not one in the same pro-
cess, and ironically, it seems the two ends of the sleep-mediated 
fatigue spectrum apparently produce similar patterns of speech 
production. Indeed, this interaction may account for some of the 
variability observed in the speech-PVT relationship in our dataset. 
Ultimately, speech analysis for fatigue may be best utilized as but 
one component of a more multi-dimensional assessment battery, 
thus providing quantitative convergent evidence to support but 
not dictate safety-based operational decisions. In addition to 
the issues described above, our results also highlight the broader 
issue of how to appropriately define an individual’s “baseline” 
in complex real-world settings, which would most certainly be 
required for any regulated implementation of fitness-for-duty tests 
or other prospective speech-based fatigue measures. We note that 
in Cepstrum Coefficient analysis, we operationally defined fatigue 
as deviation from baseline, but we emphasize that “different” in 
this context is purely quantitative with no inherent indication of 
quality (i.e., “better” or “worse”). As such, the sensitivity of the 
method is still apparent regardless of the direction, and thus our 
goals for a proof-of-concept assessment have been successfully 
realized. Of course, future work with this dataset and any system-
atic applications would benefit from testing several approaches 
to baseline model construction, such as with speech produced 
during Post-Sleep sessions only (when the subjects should be 
most rested), Pre-Sleep sessions only (when they should be most 
fatigued), a fixed time of day (e.g., at circadian peak), or during 
multiple consecutive rest days.

In conclusion, these initial results reveal promising valid-
ity and sensitivity of Cepstrum Coefficient modeling for speech 
signal analysis of fatigue in commercial aviation. Remaining 
questions underscore the need to further explore the dataset to 
determine the precise relationship between speech production 
and neurobehavioral performance capacity, the parameters for 
constructing individualized models, and standardized quantita-
tive speech-based definitions of fatigue. We view this field work 
as a critically important first step toward the long-term goal of 
implementing sensitive and non-invasive measures of fatigue 
in dynamic operational environments. We encourage further 
investigation of the Flight Attendant Field Study dataset and 
the development of Cepstrum Coefficient analysis for fatigue 
in the spirit of science-based technologies for improving safety, 
performance, health, and quality of life for those who work in 
and rely on 24-hr operations. 
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