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Abstract

Twitter, as a form of social media, is fast emerging in recent yeaserdJare
usingTwitterto report real-life events. This paper focuses on detethioge events
by analyzing the text stream ifwitter. Althoughevent detectiohas long been a
research topic, the characteristicsTafitter make it a non-trivial task. Tweets re-
porting such events are usually overwhelmed by high flood edimmgless “bab-
bles”. Moreover, event detection algorithm needs to beabtalgiven the sheer
amount of tweets. This paper attempts to tackle these dgatewithEDCoW
(Event Detection with Clustering of Wavelet-based Signals)EDCoW builds
signals for individual words by applying wavelet analysistbe frequency-based
raw signals of the words. It then filters away the trivial welid/ looking at their
corresponding signal auto-correlations. The remainingd&are then clustered to
form events with a modularity-based graph partitioninghtégue. Experimental
studies show promising result of EDCoW. We also present &ségd of a proof-
of-concept system, which was used to analyze netizensh@mliscussion about
Singapore General Election 2011.

1 Introduction

Microblogging as a form of social media, is fast emerging in recent yeanse &
the most representative example3igtter, which allows users to publish shdvteets
(messages within a 140-character limit) about “what’s lesyipg”. Real-life events are
reported inTwitter. For example, the Iranian election protests in 2009 werensiely
reported byTwitter users. Reporting those events could provide differenfgeets/es
to news items than traditional media, and also valuable sesetiment about certain
companies/products.

This paper focuses on detecting those events to have a betterstanding of what
users are really discussing aboufTiwitter. Event detectiomas long been a research
topic [23]. The underlying assumption is that some relatedds would show an in-
crease in the usage when an event is happening. An eventéddheconventionally
represented by a number of keywords showingstin appearance count [23, 11]. For
example, “iran” would be used more often when users are géieg about the Iranian

*This report is an extension of a paper with the same titleftedeby ICWSM '11.



election protests. This paper also adapts such representdtevent Nevertheless,
the characteristics dfwitter pose new challenges:

e The contents iMwitter are dynamically changing and increasing. According to
http://tweespeed.cqgrthere are more than 15,000 tweets per minute by average
published inTwitter. Existing algorithms typically detect events by clustgrin
together words with similar burst patterns. Furthermdris, usually required to
pre-set the number of events that would be detected, whiiffiult to obtain in
Twitter due to its real-time nature. A more scalable approach fontedetection
is therefore desired.

e Conventionally,event detectioims conducted on formal document collections,
e.g. academic papers [11] and news articles [6]. It is asduhs all the docu-
ments in the collections are somehow related to a numberdi$covered events.
However, this is not the case ifwitter, where tweets reporting big real-life
events are usually overwhelmed by high flood of trivial on@scording to a
study by Pear Analytics [16], abod®% of all thetweetsare pointless “babbles”
like “have to get something from the minimart downstairsticBtweetsare im-
portant to build a user'social presencfl0]. Nevertheless, they are insignificant
and should not require attention from the majority of theiande. It is therefore
naive to assume that any word tiweetsshowing burst is related to certain big
event. A good example is the popular hashtag “#musicmondaghows some
bursts every Monday since it is commonly used to suggestarmrsMondays.
However, such bursts obviously do not correspond to an d@hahimajority of
the users would pay attention to. Event detectiofitter is expected to dif-
ferentiate the big events from the trivial ones, which émxgstlgorithms largely
fail.

To tackle these challenges, this paper propds@€oW (Event Detection with
Clusteringof Wavelet-based Signals), which is briefly described as faldaDCoW
builds signals for individual words which captures only bhuests in the words’ appear-
ance. The signals can be fast computedvayelet analysiand requires less space for
storage. It then filters away the trivial words by lookinglatit corresponding signal
auto-correlationsEDCoWthen measures thaoss correlatiorbetween signals. Next,
it detects the events by clustering signals togethemioglularitybased graph parti-
tioning, which can be solved with a scalable eigenvaluerélyn. To differentiate the
big events from trivial onesEDCoW also quantifies the event&gnificance which
depends on two factors, namely the number of words andrties correlatioramong
the words relating to the event.

In the rest of this paper, we first present a brief survey a@lteelvork in Section 2.
Next, we give a concise description of wavelet analysisptseEDCoW is illustrated
in detail in Section 4. Experimental studies are preseme8eiction 5 to show the
performance oEDCoW. In Section 6, we present the design of a proof-of-concept
system, which was used to analyze netizens’ online dissasdiout Singapore General
Election 2011. Finally, we conclude with directions fordfte work in Section 7.



2 Related Work

Existing event detection algorithms can be broadly classifito two categoriesiocument-
pivotmethods andeature-pivoimethods. The former detects events by clustering doc-
uments based on the semantics distance between docunm@ntshifle the latter stud-
ies the distributions of words and discovers events by grmupords together [11].
EDCoW could be viewed as feature-pivotmethod. We therefore focus on represen-
tativefeature-pivotmethods here.

In [11], Kleinberg proposes to detect events using an irfigtate automaton, in
which events are modeled as state transitions. Differ@mh fthis work, Fung et al.
model individual word’s appearance as binomial distribtiand identify burst of each
word with a threshold-based heuristic [6] .

All these algorithms essentially detect events by anatymiard-specific signals in
the time domain. There are also attempts to analyze signateifrequency domain.
[7] appliesDiscrete Fourier Transformatio(DFT), which converts the signals from the
time domain into the frequency domain. A burst in the time dontorresponds to a
spike in the frequency domain. However, DFT cannot locagdithe periods when the
bursts happen, which is important in event detection. [#adies this by estimating
such periods with the Gaussian Mixture model.

Compared with DFTwavelet transformatiohas more desirable featuré¥avelet
refers to a quickly varnishing oscillating function [5, @]nlike the sine and cosine used
in the DFT, which are localized in frequency but extend indilyiin time, wavelets are
localized in both time and frequency domain. Therefore el@ttransformation is able
to provide precise measurements about when and to what éxbests take place in the
signal. This makes wavelet transformation a better chaice¥ent detection, and is
applied in this paper to build signals for individual wordshas also been applied to
detect events from Flickr data in [4].

There is recently an emerging interest in harvesting ctleéntelligence from
social media likeTwitter. For example, [17] try to detect whether users discuss any
new event that have never appeared beforiiitter. However, it does not differentiate
whether the new event, if any, is trivial or not. In [19], thattzors exploit tweets to
detect critical events like earthquake. They formulatenedetection as a classification
problem. However, users are required to specify explithily events to be detected.
And a new classifier needs to be trained to detect new eveighwiekes it difficult to
be extended.

3 Wavelet Analysis

Wavelet analysiss applied inEDCoW to build signal for individual words. This sec-
tion gives a brief introduction of related concepts.

3.1 Wavelet Transformation

The wavelet analysis provides precise measurements iegavtien and how the fre-
quency of the signal changes over time [9]. The wavelet isekfjuvanishing oscillat-



ing function. Unlike sine and cosine function of Fourier lgses, which are precisely
localized in frequency but extend infinitely in time, wauslare relatively localized in
both time and frequency.

The core of wavelet analysis igavelet transformation Wavelet transformation
converts signal from the time domain to the time-scale danisgale can be consid-
ered as the inverse of frequency). It decomposes a sigiaa icdmbination ofvavelet
coefficientsand a set of linearly independent basis functions. The sbasis func-
tions, termedvavelet familyare generated by scaling and translating a chasather
wavelety(t). Scaling corresponds to stretching or shrinkin@), while translation
moving it to different temporal position without changirig shape. In other words, a
wavelet familyy, ,(¢) are defined as [5]:

Yas(t) = 1ol 29(20) )

wherea,b € R, a # 0 are the scale and translation parameters respectively, and
the time.

Wavelet transformatiois classified intaontinuous wavelet transformati¢@WT)
anddiscrete wavelet transformatiqibWT). Generally speaking, CWT provides a re-
dundant representation of the signal under analysis. Isstane consuming to com-
pute directly. In contrast, DWT provides a non-redundaighly efficient wavelet
representation of the signal. For (1) a special selectidgh@Mmother wavelet function
¥ (t) and (2) a discrete set of parameters= 2~/ andb; , = 277k, with j, k € Z, the
wavelet family in DWT is defined ag, ;.(t) = 27/21(27t — k), which constitutes an
orthonormal basis of.?(R). The advantage of orthonormal basis is that any arbitrary
function could be uniquely decomposed and the decompositia be inverted.

DWT provides a non-redundant representation of the si§red its values con-
stitute the coefficients in a wavelet series, ise.S, v, , >= Cj(k). C;(k) denotes
the k-th coefficient in scalg. DWT produces only as many coefficients as there are
sample points within the signal under analySiswithout loss of information. These
wavelet coefficients provide full information in a simpleyand a direct estimation of
local energies at the different scales.

Assume the signal is given by the sampled valuesS.e: {so(n)|n =1, ..., M },
where the sampling rate i and M is the total number of sample points in the sig-
nal. Suppose that the sampling ratejs= 1. If the decomposition is carried out
over all scales, i.e.N; = log,(M), the signal can be reconstructed Byt) =

N,] NJ
Y2 Ci(k)wk(t) = > ri(t), where the wavelet coefficienés; (k) can be inter-
j=1 k j

preted as the local residual errors between successival sigproximations at scalgs
andj + 1 respectively, and;(¢) is the detail signal at scale that contains information
of the signalS(t) corresponding with the frequencigs tw, < |w| < 27ws.

3.2 Wavelet Energy, Entropy, andH-Measure

Since the wavelet family in DWT is an orthonormal basis f3(R), the concept of
energy derived from Fourier theory can also be applied [1je Wavelet energy of



signal$S at each scalg (j < N;) can be computed as:
E;j =3 |Ci(k)]? (2)
k
The wavelet energy at scalé; + 1 can be derived as:

Enyt1= Y |An, (k) (3)
k

The total wavelet energy carried by sigiais subsequently computed as follows:

Nj+1

Etotal = Z -Ej (4)
j=1

A normalizedp-value measures thelative wavelet energfRWE) at each individual

scalej:

_ B
Etotal

pj (5)

Ny+1
i p; = 1. The distribution{p; }represents the signal’s wavelet energy distribution
j=1

across different scales [18].

Evaluating the Shannon Entropy [21] on distributign } leads to the measurement

of Shannon wavelet entrog8WE) of signalS [18]:

SWE(S) ==Y p;-logp; (6)
J
SWE measures the signal energy distribution at differesiesq(i.e. frequency bands).
H-Measure of signat is defined as:
H(S) = SWE(S)/SW Epas (7)

which is a normalized value W E(S). SW E,,,... is obtained with a uniform distri-
bution of signal energy across different scales, €9} =

1 1 1
{N.I+1 "N+ NS+ }-

4 EDCoW in Detall

This section detail€EDCoWs three main components: (1) signal construction, (2)
cross correlatiorcomputation, and (Inodularitybased graph partitioning.

4.1 Construction of Signals with Wavelet Analysis

The signal for each individual word (unigram) is built in twtages. Assuming. is
the current time. In the first stage, the signal for a wardt 7,. can be written as a
sequence:

Sw = [5w(1),8w(2), +, suw(Te)] 8)



sw(t) at each sample pointis given by itsDF-IDF score, which is defined as:

Nu(t) o 355 NG)

0= Ny BT ML)

(9)

The first component of the right hand side (RHS) of Eq. (95 (document fre-
quency).N,,(¢) is the number of tweets which contain wardand appear after sample
point¢ — 1 but beforet, and N (t) is the number of all the tweets in the same period
of time. DF is the counterpart of F in TF-IDF (Term Frequency-Inverse Document
Frequency), which is commonly used to measure words’ inapas in text retrieval
[20]. The difference is thaDF only counts the number of tweets containing ward
This is necessary in the contextBfitter, since multiple appearances of the same word
are usually associated with the same event in one singl¢ tsteet. The second com-
ponent of RHS of Eq. (9) is equivalent tDF. The difference is that, the collection
size is fixed for the conventiondDF, whereas new tweets are generated very fast in
Twitter. Therefore, théDF component in Eq. (9) makes it possible to accommodate
new words. s, (t) takes a high value if wora is used more often than others from
t — 1 to ¢ while it is rarely used beforg&,, and a low value otherwise.

In the second stage, the signal is built with the help of airgidvindow, which
covers a number of 1st-stage sample points. Denote the ibe gliding window
asA. Each 2nd-stage sample point captures how much the changgtnis in the
sliding window, if there is any.

In this stage, the signal for wora at current time7, is again represented as a
sequence:

S = [50(1),54,(2), -+, 5, (T2))] (10)

Sw W r w

Note thatt in the first stage and in the second stage are not necessarily in the same
unit. For example, the interval between two consecutyén the first stage could be
10 minutes, while that in the second stage could be one hotiiid caseA = 6.

To compute the value af,, (t') at each 2nd-stage sample polBDCoW first moves
the sliding window to cover 1st-stage sample points frani(t’ — 2) * A + 1) to
sw(( — 1) x A). Denote the signal fragment in this window®gs _;. EDCoW'then
derives theH-measure of the signal i,,_;. Denote it asH;_1. Next, EDCoW
shifts the sliding window to cover 1st-stage sample poirgsnfs,, ((¢' — 1) * A + 1)
to s, (t' * A). Denote the new fragment &%,. Then,EDCoW concatenates segment
Dy 1 and Dy, sequentially to form a larger segmeRt., whoseH-measure is also
obtained. Denoted it af;-. Subsequently, the value gf (¢') is calculated as:

o) :{ Ao o if (Hye > Hyoy); 1)

0 otherwise
If there is no change i, (¢) within D, there will be no significant difference between
s, (') ands., (' — 1). On the other hand, an increase/decrease in the usage of word
w would causes,,(t) in Dy to appear in more/fewer scales. This is translated into
an increase/decrease of the wavelet entrop®in from that inDy ;. And s/, (t')
encodes how much the change is.
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Figure 1: Two Stages of Signal Construction

Figure 1 illustrates the two stages of signal constructiolEDCoW. Figure 2
gives an example of the signals constructed based on twabtshped by a number
of Singapore-basetiwitter users on June 16, 2010. On that day, there was a heavy
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Figure 2: Example of Signals (2 stages)

downpour in Singapore, which caused flash flood in the prenshapping belt Or-
chard road. At each sample point in Figure 2(&),(¢) is the number of the tweets
published in the past 10 minutes which contains the speciicwwhile N (t) is the
number of all the tweets published in the same period of tirmgure 2(b) is generated
with A = 6, i.e. one 2nd-stage sample point encodes the change of ésvapukar-
ance pattern in the past 60 minutes. Figure 2 shows that tistshof the words are
more salient in the corresponding 2nd-stage signals.

By capturing the change of a word’s appearance patternméthueriod of time in
one 2nd-stage sample point, it reduces the space requistdrimthe signal. In fact,
event detection needs only the information whether a wohdbits any burst within
certain period of time (i.e.A in the case oEDCoW). As we can see in Figure 2,
1st-stage signal contains redundant information aboutdh#plete appearance history
of a specific word. Nevertheless, most existing algorithtnsesdata equivalent to the
1st-stage signal.

After the signals are built, each word is then representés asrresponding signal
in the next two componernits

1in the rest of this paper, “signal” and “word” are used intenegeably.



4.2 Computation of Cross Correlation

EDCoW detects events by grouping a set of words with similar pastef burst. To
achieve this, the similarities between words need to be coaadirst.

This component receives as input a segment of signals. @épgeon the appli-
cation scenario, the length of segment varies. For exaritgieuld be 24 hours, if a
summary of the events happened in one day is needed. It ctsalda as short as a
few minutes, if a timelier understanding of what is happgngrequired. Denote this
segment as?Z, and individual signal in this segmes&f .

In signal processingross correlatioris a common measure of similarity between
two signals [14]. Represent two signals as functigi{s) andg(t), thecross correla-
tion between the two is defined as:

(f*g)t) =D f(r)g(t+7) (12)

Here, f* denotes the complex conjugate af Computation otross correlatiorbasi-
cally shifts one signal (i.eg in Eq. (12)) and calculates the dot product between the
two signals. In other words, it measures the similarity stwthe two signals as a
function of a time-lag applied to one of them.

Cross correlatiorcould also be applied on a signal itself. In this case, itiisesl
asauto correlation which always shows a peak at a lag of zero, unless the signal i
trivial zero signal. Given this, thauto correlation(with zero time lag) could be used
to evaluate how trivial a word is. Denote sigrtdi's auto correlationas AZ.

Cross correlatiorcomputation is a pair-wise operation. Given the large nurobe
words used imwitter, it is expensive to measuogoss correlatiorbetween all pairs of
signals. Nevertheless, a large number of signals are inrfa@l. Figure 3 illustrates
the distribution ofAZ within S7 of 24-hour worth of signal. The distribution is highly
skewed, i.e. the majority of the signals are trivial (witf ~ 0). Given this, we
discard the signals WitmiI < 6;. To setf;, EDCoW first computes thenedian
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Figure 3: Skewed Distribution of Auto Correlation Values
absolute deviatiogM AD) of all AZ within S7:

MAD(S%) = mediar{| A7 — mediar{A7)|) (13)

MAD is a statistically robust measure of the variability of a paof data in the
presence of “outliers” [22]. In the case BDCoW, we are interested in those “outliers”
with outstandingly highiZ though. Therefore, we filter away those signals with <



61, andd, is set as follows:
6, = mediaf A7) + v x MAD(S?) (14)

Empirically,~ is not less than0 due to the high skewness df distribution.

Denote the number of the remaining signalsasCross correlatioris then com-
puted in a pair-wise manner between all the remairingignals. Currently, theross
correlationbetween a pair of signals is calculated without applyingtlatf. Denote
thecross correlatiorbetweenS} andST asX;;.

It is observed that the distribution df;; exhibits a similar skewness as the one
shown in Figure 3. Given this, for each sigrifl, EDCoW applies another threshold
62 on X;;, which is defined as follows:

02 = medianzc sz (Xij) +v X MADgz gz (Xij) (15)

Here,y is the same as the one in Eq. (14). We then$gt= 0 if X;; < 0.

The remaining non-zer&;;'s are then arranged in a square matrix to form the
correlation matrix M. Since we are only interested in the similarity betweenspair
signals, the cells on the main diagonalof are set to be OM is highly sparse after
applying threshold,. Figure 4 shows a portion of matri% built from the data used
in Figure 2. It shows theross correlatiorbetween the top 20 words with the highest
A7 on that day.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 4: lllustration of Correlation Matrid1. The lighter the color of the cell in the
matrix, the higher the similarity between the two signalsiwd vice versa.

The main computation task in this component is the pair-wisss correlation
computation, which apparently has a time complexityxgf.?), wheren is the num-
ber of individual signals involved in the computation.is generally very small after
filtering with 6, (in Eq. (14)). For example, in the experimental studiess than5%
of all the words remain after filtering with,. The quadratic complexity is therefore
still tractable.

4.3 Detection of Event by Modularity-based Graph Partitioning

Matrix M is a symmetric sparse matrix. From a graph theoretical pufiview, it
can be viewed as the adjacency matrix of a sparse undireateghted graptg =

2As mentioned earlier, cross correlation measure the sityilaetween two signals as a time lag applied
to one of them. By varying the time lag, it is possible to sttiily temporal relationship between two words,
e.g. a word appears earlier than another in an event. We ptdmssudy in future work.



(V, E,W). Here, the vertex sét contains all theC signals after filtering witrauto
correlation, while the edge set = V' x V. There is an edge between two verticgs
andvj (Ui, v € V) if Xij > 0s, and the WE|gh’tUw = XZJ

With such a graph theoretical interpretation/ef, event detection can then be for-
mulated as a graph partitioning problem, i.e. to cut the lgiafo subgraphs. Each
subgraph corresponds to an event, which contains a set ofswdth highcross cor-
relation. And thecross correlatiorbetween words in different subgraphs are expected
to be low.

Newman proposes a metric calletbdularityto measure the quality of such par-
titioning [12, 13]. Themodularityof a graph is defined as the sum of weights of all
the edges that fall within subgraphs (after partitioning)tsacted by the expected edge
weight sum if edges were placed at random. A positive modylardicates possi-
ble presence of partitioning. We can define negs degreeasd; = Zj wj;. The
sum of all the edge weights i is defined asn = ), d;/2. Themodularityof the
partitioning is defined as:

1 d; - d;

Q= om izj(ww om )60¢70j (16)
wherec; andc; are the index of the subgraph that negeandv; belong to respectively,
andd., ., is the Kronecker deltai., ., = 1if ¢; = ¢;, oré., ., = 0 otherwise.

The goal here is to partitiofi such that) is maximized. Newman has proposed a
very intuitive and efficient spectral graph theory-basegurapch to solve this optimiza-
tion problem [13]. It first constructs modularity matrix(B) of the graphg, whose
elements are defined as:

d; - d;
2m

Bij = Wij — (17)
Eigen-analysis is then conducted on the symmetric mdirie find its largest eigen-
value and corresponding eigenvectﬁ)( Finally, G is split into two subgraphs based
on the signs of the elements ™. The spectral method is recursively applied to each
of the two pieces to further divide them into smaller subfsap

Note that, with the modularity-based graph partitioniB@CoW does not require
extra parameter to pre-set the number of subgraphs (i.eitgu® be generated. It
stops automatically when no more subgraph can be condlr(icée @ < 0). This is
one of the advantagesDCoW has over other algorithms.

The main computation task in this component is finding thgdat eigenvalue (and
the corresponding eigenvector) of the sparse symmetrictadty matrix B. This can
be efficiently solved byower iteration which is able to scale up with the increase of
the number of words used in tweets [8].

4.4 Quantification of Event Significance

Note thatEDCoW requires each individual event to have at least two wordsgsihe

smallest subgraph after graph partitioning contains twaeso This is rationale, since
it is rare that a real-life big event would only be describgdbe word if there are so
many users discussing about it. Nevertheless, since eadt tavusually very short

10



(less than 140 characters), it is not reasonable for an ¢évdrg associated with too
many words either.

Given this, EDCoW defines a measurement to evaluate the evesiggificance
Denote the subgraph (after partitioning) correspondiragteventa€’ = (V¢, £, W¢).
V¢is the vertex setk = V¢ x V¢, W€ contains the weights of the edges, which are
given by a portion otorrelation matrixM. The evensignificances then defined as:

. 61.571 .
EZ(Zwij)XM7n:|V | (18)
Eq. (18) contains two parts. The first part sums up alldfwess correlationvalues
between signals associated with an event. The second gadutits thesignificance
if the event is associated with too many words. The highier the more significant
the event is. FinallyEDCoW filters events with exceptionally low value ef(i.e.
€ < 0.1).

5 Empirical Evaluation

To validate the correctness &DCoW, we conduct an experimental study with a
dataset collected frorwitter.

5.1 Dataset Used

The dataset used in the experiments is collected with theWolg procedure:

1. Obtain the top 1000 Singapore-base@witter users with the most followers
from http://twitaholic.com/Denote this set as.

2. For each user itv, include her Singapore-based followers and friends wighin
hops. Denote this aggregated set/ds

3. For each user itv*, collect the tweets published in June 2010.

Twitter REST APf is used to facilitate the data collection. There is a total of
19,256 unique users, i.dU*| = 19,256. The total number of tweets collected is
4,331,937. The tweets collected are tokenized into wordsp-&ords are filtered.
We also filter (1) words with non-English characters, andi@)ds with no more than
three characters. Stemming is also applied. There are 38dique words in total
after filtering and stemming.

5.2 Experimental Settings

Before applyingeDCoW, we further clean up the dataset. First of all, rare words are
filtered, since they are less possible to be associated wittvant. A threshold of

3A user is considered Singapore-based if she specifies “Simgaas her location in the profile.
4Twitter API: http://dev.twitter.com/doc#rest-api.

11



five appearances every day by average is appl\& further filter words with certain

patterns being repeated more than two times, e.g. “bood@d™being repeated 5

times) and “hahahaah” (“ha” being repeated 3 times). Sualsvare mainly used for
emotional expression, and not useful in defining eventsréfaee 8,140 unique words
left.

To build signals for individual words, we set the intervatbeen two consecutive
1st-stage sample points to be 10 minutes, ané= 6. By doing so, the final sig-
nals constructed capture the hourly change of individuabia’oappearance patterns.
EDCoW: s then applied to detect events on every day in June 2010.

5.3 Correctness ofEDCoW

In a typical information retrieval contextecall and precisionare two widely used
performance metrics. Given a collection of documesttall is defined as the fraction
of the relevant documents retrieved to the total number lef/amt documents should
have been returned. In the caseEdCoW, “relevant” means there is a real-life event
corresponding to the detected event. However, it is notlfesato enumerate all the
real-life events happened in June 2010 in the dataset.Herstore difficult to measure
EDCoWs recall. Given this, we concentrate @recisionrather tharrecall, which
measures the portion of the “relevant” events detectedBZ oW to all the events
detected. Table 1 lists all the events (with- 0.1) detected byeEDCoW.

Since no ground truth is available about all the “relevarvrgs, we manually
check the events detected BfpCoW one by one. There is no event (with> 0.1)
detected on June 1-3, 6, and 19-30. Out of the 21 events ddteet find three events
which do not correspond to any real-life event, i.e. Even®6and 10 in Table 1.
There is one event which is a mixture of more than one realdifent, i.e. Event 7.
It is associated with two words, which correspond to two nelated real-life events.
Event 13 is detected to associate with two words “#svk” argl/f#, which relate to
two teams in the World Cup 2010. There was no clear realiémerelated to the two
teams on that day though. Therefore, inecisionof EDCoWin this case i§6.2%.

EDCoWhas one tunable parameter, hein Eq. (14) and (15). The result so far is
obtained withy = 40. We also studyeDCoWs performance with differeny values,
i.e.v = 10, 20, 30, 50.

A smaller value ofy (i.e. v < 40) fails to filter away signals with triviahuto
correlation, many of which are included in the graph partitioning to fdime events.
In this case, most of the events detecteddyCoW are associated with a large number
of words, and therefore smallvalues. We also manually check the events detected by
EDCoW with different~ values. None of the five events with> 0.1 detected by
EDCoWwith v = 10 corresponds to any real-life event. Theecisionin this case is
0. For~ = 20, only one out of seven events is “relevant”, which corresjsaio Event
3in Table 1. This is translated tgpaecisionof 14.3%. For~ = 30, only two out of12
events are “relevant”, which correspond to Event 2 and 3 l€Ta. Theprecisionis
thereforel 6.7%.

5To be consistent with Eq. (9), here we count the word appearag the number of tweets using the
word, even the word may appear in one single tweet more thes. on
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Day

Event

Event Description

value
1-3 No event detected
1. democrat, naoto 0.417 clj::l;rf'\g Democratic Party of Japan elected Naoto Kan as
4 2. ss501, suju 0414 Korean popular bands Super Junior's and SS501’s perfor-
mance on mubank.
3. music, mubank 0.401 Related to Event 2, mubank is a popular KBS entertain-
ment show.
4. shindong, Related to Event 2, Shindong and Youngsaeng are mem-
0.365
youngsaeng ber of the two bands.
5. junior, eunhyuk 0.124| Related to Event 2, Eunhyuk is a member of super junjor.
5 6. robben, break 0.404| No clear corresponding real-life even
6 No event detected
. Two events: Kristen Stewart won some MTV awards, dnd
7 7. kobe, kristen 0.417 Kobe Bryant in a NBA match.
%hone#'phone“’ 1054} 4. 416| iPhone 4 released during WWDC 2010
8 9. reformat, hamilton | 0.391| No clear corresponding real-life event
10. avocgdo, com 0.124| No clear corresponding real-life event
mence, ongoing
A number of users complained they could not use twifter
9 11. #failwhale, twitter | 0.360| due to over-capacity.
A logo with whale is usually used to denote over-capacity.
10 12. vuvuzela, soccer 0.387| People started to talk about world cup.
#svk and #svn represent Team Slovakia and Slovenip in
11 13. #svk, #svn 0.418 World Cup 2010.
12 14. #kor, greec, #gre | 0.102 ?ngtch between South Korea and Greece in World Gup
13 15. whale, twitter 0.417| Similar as Event 10.
L Italy football team coach Marcello Lippi made some com-
14 16. lippi, italy 0.326 ments after a match in World Cup 2010.
. Football player Drogba from Ivory Coast is given specijal
15 17. drogba, ivory 0.417 permission to play in World Cup 2010.
18. #iprk, #bra, north 0114 ?orlngtch between North Korea and Brazil in World Cup
16 19. orchard, flood 0.357| Flood in Orchard Road.
17 20. greec, #gre, nigeria 0.122| A match between Greece and Nigeria in World Cup 20{L0.
A match between Germany and Serbia in World Cup
18 21. #srb, podolski 0.403| 2010.
Podolski is a member of Team Germany in World Cup
2010.
19-30 No event detected

Table 1: All the Events Detected B§DCoW in June 2010
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A larger value ofy filters more signals away. In this case, some of the “relévant
events, if any, are already filtered before graph partitigns applied to detect them.
We again manually check the events detected. Although mverg®(withe > 0.1) are
detected, only one new “relevant” event other than thosedim Table 1 is detected. It
is associated with two words “ghana” and “#gha”, and comesis to a match between
team Ghana and Serbia on June 13, 2010. There are anothefrelghant” events
out of the total0 detected events, which correspond to Event 1, 2, 3, 5 (witardnt
words though), 7, 11, 13, and 20 in Table 1. Tnecisionis 22.5%.

Due to space constraint, the details of the events detedthdlifferent values ofy
are omitted here. We only summarize girecisionachieved with differenty in Table
2.~ = 40 achieves the begtrecisionamong all the settings studied in the experimental
study.

~ value | precisionof EDCoW
10 0
20 14.3%
30 16.7%
40 76.2%
50 22.5%

Table 2: Comparison of Correctness with Different

5.4 Comparison with Other Methods

In the experimental studyzDCoW is applied to detect the events on a daily basis.
To some extent, this is equivalent to topic modeling, whosel ¢s to discover the
“topics” that occur in a collection of documents. Given fhve aggregate all the tweets
published within one day as one single document, and thely éggic modeling on
the collection of documents (i.e. all the 30 documents foeJ2010). We apply Latent
Dirichlet Allocation (LDA), a widely used statistical tapmodeling technique, on the
document collection. We then compare the result generabed EDA with that by
EDCoW.

In LDA, each document is a mixture of various topics, and theusnent-topic
distribution is assumed to have a Dirichlet prior (with hyggrametery). Each topic
itself is a mixture of various words, and the topic-word digition is again assumed
to have a Dirichlet prior (with hype-paramefgras well. LDA is conditioned on three
parameters, i.e. Dirichlet hyper-parameierss, and topic numbef®. In this study,
they are set a¥ = 50, « = 50/7 and3 = 0.1. Due to the space constraint, the
complete result of all the topics (each topic is represeated list of top words) is
omitted here. Instead, the top-4 topics identified on Jun@Q80 are listed in Table 3.
The “probability” in this table is the probability that theresponding topic appears in
a document (i.e. all the tweets published on one particudgy.d

As it can be seen from Table 3, one of the obvious drawbackppf/ang LDA in
the context of event detection is that, the result genetayddDA is more difficult to

6Due to space constraint, readers are referred to [2] for kel of LDA.
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Day | Topic ID | Probability Top Words
13 0.229 flood, orchard, rain, spain, road, weather, singapor, lovig],
16 48 0.095 time, don, feel, sleep, love, tomorrow, happi, home, hate
11 0.091 time, love, don, feel, wait, watch, singapor, hope, life
8 0.079 watch, world, cup, match, time, love, don, south, goal

Table 3: Topics Detected by LDA on June 16, 2010

interpret than the one listed in Table 1. Although “flood” dodchard” are identified
as the top words for the most related topic on June 16, 20%Y, dhe mixed with
other words as well. It is also not straightforward to seé Tlapic 8 may be related to
“world cup”. The other two top topics in Table 3 are even mafgadilt to interpret as
their top-words are all trivial words. Moreover, after ggjtthe number of topics (i.e.
T), it would always return a distribution ovét topics for each document no matter
whether the document (i.e. tweets published within oneiqadatr day) has discussed
about any real-life event or not. Further processing is ireguo improve the results
generated by LDA in the context of event detection, e.g. ypglthreshold-based
heuristics to filter non-eventful topics and words. In castrfEDCoW has the ability
to filter trivial words away before applying clustering tedfue to detect the events.
More importantly, it requires no parameter to specify thenbar of events. It can
automatically generate different number of events basedsens’ discussions in the
tweets.

6 Voters’ Woice: SeeingEDCoW in Real Action

Instead of only validatindEDCoW in experimental setting, we further prove its ap-
plicability in a more practical setting. We designed a probtoncept system, called
Voters’ Voice which was used to detect the events in netizens’ discusdiont Singa-
pore General Election (SGE) 2011 on a daily basis. The dedemtents are basically
the topics that attracted the most significant discussidmctwreflect the focal points
of discussion about SGE 2011. On top of event detectibters’ Voicealso provides
additional insights like netizens’ sentiments. Figure ®egian overview oloters’
Voice.

Data Feeder Hot Topics

* . —— e SfUdes & U/
Sentiment $ opi ‘ ih $ Lk"-’ &
: : J
e
Data Feeder
Storage Engine Analytic Engine Visualization Engine End User

Figure 5: Overview oloters’ Voice
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6.1 Data Collection

In the experimental study, we detect events fromttireetsof general discussions. In
contrast, inVoters’ Voice we are interested in a more focused discussion, i.e. SGE
2011. As mentioned earlier, users usually pubtisbetsabout various topics. It is not
reasonable to assume that all the users would be interest®G-related topics. If
we apply the same strategy we used to colteetetsn the experimental study, it could

be expected that the events detected would include mang@&i+elated ones. Given
this, we apply a different strategy in collecting the tweets

1. We identify a set of key phrases that could potentially$exito discuss different
parties in SGE 2011, including political parties’ nameitlvandidates’ name,
and the constituencies they contest in.

2. We then monitor the Twitter public timeline with Twittetr8aming API for
tweets containing any of those key phrases.

3. For eachtweetcontaining any key phrase, we collect it if it is published by
Singapore-based users.

We started collectingweetsfrom April 13, 2011 till May 13, 2011. There is a total
of 147,129 tweetscollected. Figure 6 illustrates the volume change over tirfte
is observed that the the volume change trend coincides héthrtajor milestones in
SGE 2011. There is steep increase in the volume staring frprii 27, which was
the nomination day. There is an even more steep increaseNtayn7, which was
the polling day; and it quickly dies off two days after the lpa day. There is an
obvious drop in the volume on May 4, when Prime Minister wemlfree to interact
with netizens on Facebook. Many users therefore switcheddiscussion venue from
Twitter to Facebook to participate in the online interaeticith Prime Minister, which
caused the volume of tweets to dfop

Number of tweets
w B & 8
T 9 v 9
8 8 8 8

0

I I T S B S S O BRSO SN
PSS SN S S ISR IR NP A
A A o R RS

$ & & &
AN AN I A
TR T Y

Date

Figure 6: Trend of Tweet Volume Change

"Twitter Streaming API: http://dev.twitter.com/pagesgsiming api
8At the same time, we do observe a steep increase in the volfipwsts in Facebook on the same day,
which further supports this explanation.
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6.2 Analytics and Visualization of Results

EDCoW s then applied to analyze what the focal points are in théypapecific dis-
cussions on a daily basis, i.e. what are the topics thathttra most significant discus-
sion (as measured by Eq. (18)) about different parties elegryAs mentioned earlier,
a topic is basically a group of non-trivial keywords showsigpilar usage patterns. To
make the detected topics easier to understand, we furthracegntity based on the de-
tected event-related keywords with some intuitive heigsst-or example, for an event
which is represented by a group of keywords including “tiipgi”, and “ling”, we are
able to extract “tin pei ling” (Tin Pei Ling is a candidate iiGE§ 2011) as an entity.
Besides hot topic detection, we also apply sentiment aisalgshnology [3] to find
out what are netizens’ opinions (positive, neutral, or tiggaregarding the detected
topics. We then further aggregate the sentiments on thetddtéopics to generate the
sentiments about different political parties on a dailyi®as

The analytics results (including the detected hot topiat sentiments) are then
visualized and presented to end users. Figure 7 shows saeenscaptures of the
visualization.

Hot Topics #1

(b) Sentiment Trend of a Party

Figure 7:\oters’ Voice

In Figure 7(a), the top right panel lists the significant tzpfevents) detected by
EDCoWabout a party on a particular day. Each vertical bar cornedpto one of such
topics, and the altitude of each bar represents each t@ggrifficance (as measured by
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Eq. (18)). When any of the vertical bar is clicked (to selewat ¢opic), the bottom
right panel display the sentiment changes over time of allvtlords/phrases related
to the corresponding topic (recall that a topic is basicallgroup of related words).
On the left panel, all the tweets related to the correspanttipic are listed, with its
sentiment polarity displayed in different colors (tweetdwpositivénegativesentiment
are highlighted in green/red respectively, amaitralsentiment is represented with no
color).

Figure 7(b) presents the trends of different parties’ seatit over time. Users can
choose one party by clicking on one of the seven partiegllistethe left panel. Subse-
quently, the selected party’s sentiment trend over timesglayed on the right panel.
For each selected party, there will be two lines: the one ertdp shows the trend of
positive sentiment; while the one on the bottom shows thatghtive sentiment. Each
point on the two lines displays the ratio of the tweets cagypositive/negative senti-
ment to the total number of tweets about the selected pargnerday. Users are also
allowed to select more than one party on the left panel, sotlieér sentiment trends
could be compared in the right panel.

6.3 Results and Impact ofVoters’ Voice

Voters’ Woicehas been used to summarize netizens’ discussion to undessteat the
focal points are about SGE 2011. Table 4 lists some of theettgte@vents/topics near
the nomination day (Apr 27) and the polling day (May 7).

The events/topics detected are different from what areregven the same days
in the traditional media, like news paper. It shows that édeection from Twitter-
like social media could be complementary to traditional rmdxy providing different
perspective on the major events. The results generatddieys’ Voicehave also been
cited in Singapore local newspaper to give readers a betigerstanding of social
media’s impact in SGE 2011 [15].

7 Conclusions and Future work

This paper focuses on detecting events by analyzing theentspublished irTwit-
ter. This paper proposesDCoW (EventDetection withClusteringof Wavelet-based
Signals). Experimental studies show tkECoW achieves a fairly good performance.
We've also designed a proof-of-concept system, caltetérs’ Voice to seeEDCoW's
usage in a real-life scenario, i.e. Singapore General iBle@011. The results gener-
ated have been cited by Singapore local news paper, whiabne gxtent shows the
practical usage dEDCoW. NeverthelessEDCoW still has space for improvement.
First of all, currentlyEDCoWtreats each word independently. Such treatment may
potentially group words associated with different refd-kvents together, as shown
by the experimental study results. We plan to extEfitCoW by incorporating more
factors, e.g. words need to be semantically close enougk tustered to form an
event. Second, we plan to stufpCoWs performance with dataset of a larger scale.
We also plan to investigate the possibility of compiling awgnd truth automatically
for the dataset, so that a more objective comparison witkeraglgorithms could be
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Date

Topic

Description

Apr 27

Vivian Balakrishnan, elec
tions

Netizens utter sentiments about Vivian Bal-
akrishnan’s (a candidate from People’s Action

Party, the ruling party) focusing on non bre
and-butter issues during the campaign.

Apr 28

teck siong,
deadline

disqualified

Ng Teck Siong (an independent candidate)
disqualified from contesting in Tanjong Pa
constituency on the basis of him submitting
nomination form late by 35 seconds.

May 7

parliament, tin pei
sylvia lim, worried

ling,

While the polling results being counted, n
zens were actively discussing about the p

ad-

was
gar
his

eti-
DSSI-

ble outcome. They seems to be interested in Tin

Peiling (a candidate from the ruling party)
Sylvia Lim (a candidate from Worker's Pa
an opposition party). Sylvia Lim appeared tq
more favorable than Tin Peiling (e.g. “l am
worried that Sylvia Lim does not get into Par
ment, but Tin Pei Ling does.”).

and
ty,
be
SO
ia-

May 8

gracious, loser, lina chiam
listen

Netizens show sympathy and appreciatio
Lina Chiam (a candidate from Singapore H
ple’s Party, an opposition party) after the reg
were announced officially (e.g. “What a ¢
cious loser, what a loss. SPP’s Lina Chiam a
heard saying: ’Listen to Sitoh Yih Pin and
a good resident.”. Sitoh Yih Pin is a candig
from the ruling party who contested in the sg

h to
)eo_
ults
ra-

ver-
be

ate
ame

constituency).

Table 4: Examples of the Events Detected during SGE 2011

conducted. Third, currentlEDCoW does not exploit the relationship among users. It
deserves a further study to see how the analysis of theare$dtip among users could
contribute to event detection. Last but not least, the ciidesign oEDCoW does not
apply time lag when computing theeoss correlatiorbetween a pair of words. We plan
to introduce time lag and study the interaction betweeredsffit words, e.g. whether
one word appears earlier than another in one event. Thislgmientially contribute

to study the temporal evolution of event.
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