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Abstract

Twitter, as a form of social media, is fast emerging in recent years. Users are
usingTwitter to report real-life events. This paper focuses on detectingthose events
by analyzing the text stream inTwitter. Althoughevent detectionhas long been a
research topic, the characteristics ofTwitter make it a non-trivial task. Tweets re-
porting such events are usually overwhelmed by high flood of meaningless “bab-
bles”. Moreover, event detection algorithm needs to be scalable given the sheer
amount of tweets. This paper attempts to tackle these challenges withEDCoW
(Event Detection withClusteringof Wavelet-based Signals).EDCoW builds
signals for individual words by applying wavelet analysis on the frequency-based
raw signals of the words. It then filters away the trivial words by looking at their
corresponding signal auto-correlations. The remaining words are then clustered to
form events with a modularity-based graph partitioning technique. Experimental
studies show promising result of EDCoW. We also present the design of a proof-
of-concept system, which was used to analyze netizens’ online discussion about
Singapore General Election 2011.

1 Introduction

Microblogging, as a form of social media, is fast emerging in recent years. One of
the most representative examples isTwitter, which allows users to publish shorttweets
(messages within a 140-character limit) about “what’s happening”. Real-life events are
reported inTwitter. For example, the Iranian election protests in 2009 were extensively
reported byTwitter users. Reporting those events could provide different perspectives
to news items than traditional media, and also valuable usersentiment about certain
companies/products.

This paper focuses on detecting those events to have a betterunderstanding of what
users are really discussing about inTwitter. Event detectionhas long been a research
topic [23]. The underlying assumption is that some related words would show an in-
crease in the usage when an event is happening. An event is therefore conventionally
represented by a number of keywords showingburst in appearance count [23, 11]. For
example, “iran” would be used more often when users are discussing about the Iranian

∗This report is an extension of a paper with the same title accepted by ICWSM ’11.
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election protests. This paper also adapts such representation of event. Nevertheless,
the characteristics ofTwitter pose new challenges:

• The contents inTwitter are dynamically changing and increasing. According to
http://tweespeed.com, there are more than 15,000 tweets per minute by average
published inTwitter. Existing algorithms typically detect events by clustering
together words with similar burst patterns. Furthermore, it is usually required to
pre-set the number of events that would be detected, which isdifficult to obtain in
Twitter due to its real-time nature. A more scalable approach for event detection
is therefore desired.

• Conventionally,event detectionis conducted on formal document collections,
e.g. academic papers [11] and news articles [6]. It is assumed that all the docu-
ments in the collections are somehow related to a number of undiscovered events.
However, this is not the case inTwitter, where tweets reporting big real-life
events are usually overwhelmed by high flood of trivial ones.According to a
study by Pear Analytics [16], about40% of all thetweetsare pointless “babbles”
like “have to get something from the minimart downstairs”. Suchtweetsare im-
portant to build a user’ssocial presence[10]. Nevertheless, they are insignificant
and should not require attention from the majority of the audience. It is therefore
naive to assume that any word intweetsshowing burst is related to certain big
event. A good example is the popular hashtag “#musicmonday”. It shows some
bursts every Monday since it is commonly used to suggest music on Mondays.
However, such bursts obviously do not correspond to an eventthat majority of
the users would pay attention to. Event detection inTwitter is expected to dif-
ferentiate the big events from the trivial ones, which existing algorithms largely
fail.

To tackle these challenges, this paper proposesEDCoW (Event Detection with
Clusteringof Wavelet-based Signals), which is briefly described as follows. EDCoW
builds signals for individual words which captures only thebursts in the words’ appear-
ance. The signals can be fast computed bywavelet analysisand requires less space for
storage. It then filters away the trivial words by looking at their corresponding signal
auto-correlations.EDCoW then measures thecross correlationbetween signals. Next,
it detects the events by clustering signals together bymodularity-based graph parti-
tioning, which can be solved with a scalable eigenvalue algorithm. To differentiate the
big events from trivial ones,EDCoW also quantifies the event’ssignificance, which
depends on two factors, namely the number of words and thecross correlationamong
the words relating to the event.

In the rest of this paper, we first present a brief survey of relate work in Section 2.
Next, we give a concise description of wavelet analysis, beforeEDCoW is illustrated
in detail in Section 4. Experimental studies are presented in Section 5 to show the
performance ofEDCoW. In Section 6, we present the design of a proof-of-concept
system, which was used to analyze netizens’ online discussion about Singapore General
Election 2011. Finally, we conclude with directions for future work in Section 7.
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2 Related Work

Existing event detection algorithms can be broadly classified into two categories:document-
pivotmethods andfeature-pivotmethods. The former detects events by clustering doc-
uments based on the semantics distance between documents [23], while the latter stud-
ies the distributions of words and discovers events by grouping words together [11].
EDCoW could be viewed as afeature-pivotmethod. We therefore focus on represen-
tativefeature-pivotmethods here.

In [11], Kleinberg proposes to detect events using an infinite-state automaton, in
which events are modeled as state transitions. Different from this work, Fung et al.
model individual word’s appearance as binomial distribution, and identify burst of each
word with a threshold-based heuristic [6] .

All these algorithms essentially detect events by analyzing word-specific signals in
the time domain. There are also attempts to analyze signals in the frequency domain.
[7] appliesDiscrete Fourier Transformation(DFT), which converts the signals from the
time domain into the frequency domain. A burst in the time domain corresponds to a
spike in the frequency domain. However, DFT cannot locate the time periods when the
bursts happen, which is important in event detection. [7] remedies this by estimating
such periods with the Gaussian Mixture model.

Compared with DFT,wavelet transformationhas more desirable features.Wavelet
refers to a quickly varnishing oscillating function [5, 9].Unlike the sine and cosine used
in the DFT, which are localized in frequency but extend infinitely in time, wavelets are
localized in both time and frequency domain. Therefore, wavelet transformation is able
to provide precise measurements about when and to what extent bursts take place in the
signal. This makes wavelet transformation a better choice for event detection, and is
applied in this paper to build signals for individual words.It has also been applied to
detect events from Flickr data in [4].

There is recently an emerging interest in harvesting collective intelligence from
social media likeTwitter. For example, [17] try to detect whether users discuss any
new event that have never appeared before inTwitter. However, it does not differentiate
whether the new event, if any, is trivial or not. In [19], the authors exploit tweets to
detect critical events like earthquake. They formulate event detection as a classification
problem. However, users are required to specify explicitlythe events to be detected.
And a new classifier needs to be trained to detect new event, which makes it difficult to
be extended.

3 Wavelet Analysis

Wavelet analysisis applied inEDCoW to build signal for individual words. This sec-
tion gives a brief introduction of related concepts.

3.1 Wavelet Transformation

The wavelet analysis provides precise measurements regarding when and how the fre-
quency of the signal changes over time [9]. The wavelet is a quickly vanishing oscillat-
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ing function. Unlike sine and cosine function of Fourier analysis, which are precisely
localized in frequency but extend infinitely in time, wavelets are relatively localized in
both time and frequency.

The core of wavelet analysis iswavelet transformation. Wavelet transformation
converts signal from the time domain to the time-scale domain (scale can be consid-
ered as the inverse of frequency). It decomposes a signal into a combination ofwavelet
coefficientsand a set of linearly independent basis functions. The set ofbasis func-
tions, termedwavelet family, are generated by scaling and translating a chosenmother
waveletψ(t). Scaling corresponds to stretching or shrinkingψ(t), while translation
moving it to different temporal position without changing its shape. In other words, a
wavelet familyψa,b(t) are defined as [5]:

ψa,b(t) = |a|−1/2ψ(
t− b

a
) (1)

wherea, b ∈ R, a 6= 0 are the scale and translation parameters respectively, andt is
the time.

Wavelet transformationis classified intocontinuous wavelet transformation(CWT)
anddiscrete wavelet transformation(DWT). Generally speaking, CWT provides a re-
dundant representation of the signal under analysis. It is also time consuming to com-
pute directly. In contrast, DWT provides a non-redundant, highly efficient wavelet
representation of the signal. For (1) a special selection ofthe mother wavelet function
ψ(t) and (2) a discrete set of parameters,aj = 2−j andbj,k = 2−jk, with j, k ∈ Z, the
wavelet family in DWT is defined asψj,k(t) = 2j/2ψ(2jt − k), which constitutes an
orthonormal basis ofL2(R). The advantage of orthonormal basis is that any arbitrary
function could be uniquely decomposed and the decomposition can be inverted.

DWT provides a non-redundant representation of the signalS and its values con-
stitute the coefficients in a wavelet series, i.e.< S,ψj,k >= Cj(k). Cj(k) denotes
thek-th coefficient in scalej. DWT produces only as many coefficients as there are
sample points within the signal under analysisS, without loss of information. These
wavelet coefficients provide full information in a simple way and a direct estimation of
local energies at the different scales.

Assume the signal is given by the sampled values, i.e.S = {s0(n)|n = 1, ...,M},
where the sampling rate ists andM is the total number of sample points in the sig-
nal. Suppose that the sampling rate ists = 1. If the decomposition is carried out
over all scales, i.e.NJ = log2(M), the signal can be reconstructed byS(t) =
NJ
∑

j=1

∑

k

Cj(k)ψj,k(t) =
NJ
∑

j=1

rj(t), where the wavelet coefficientsCj(k) can be inter-

preted as the local residual errors between successive signal approximations at scalesj
andj+1 respectively, andrj(t) is the detail signal at scalej, that contains information
of the signalS(t) corresponding with the frequencies2j−1ωs ≤ |ω| ≤ 2jωs.

3.2 Wavelet Energy, Entropy, andH-Measure

Since the wavelet family in DWT is an orthonormal basis forL2(R), the concept of
energy derived from Fourier theory can also be applied [1]. The wavelet energy of
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signalS at each scalej (j ≤ NJ ) can be computed as:

Ej =
∑

k

|Cj(k)|
2 (2)

The wavelet energy at scaleNJ + 1 can be derived as:

ENJ+1 =
∑

k

|ANJ
(k)|2 (3)

The total wavelet energy carried by signalS is subsequently computed as follows:

Etotal =

NJ+1
∑

j=1

Ej (4)

A normalizedρ-value measures therelative wavelet energy(RWE) at each individual
scalej:

ρj =
Ej

Etotal
(5)

NJ+1
∑

j=1

ρj = 1. The distribution{ρj}represents the signal’s wavelet energy distribution

across different scales [18].
Evaluating the Shannon Entropy [21] on distribution{ρj} leads to the measurement

of Shannon wavelet entropy(SWE) of signalS [18]:

SWE(S) = −
∑

j

ρj · log ρj (6)

SWE measures the signal energy distribution at different scales (i.e. frequency bands).
H-Measure of signalS is defined as:

H(S) = SWE(S)/SWEmax (7)

which is a normalized value ofSWE(S). SWEmax is obtained with a uniform distri-
bution of signal energy across different scales, e.g.{ρj} = { 1

NJ+1
, 1

NJ+1
, · · · 1

NJ+1
}.

4 EDCoW in Detail

This section detailsEDCoW’s three main components: (1) signal construction, (2)
cross correlationcomputation, and (3)modularity-based graph partitioning.

4.1 Construction of Signals with Wavelet Analysis

The signal for each individual word (unigram) is built in twostages. AssumingTc is
the current time. In the first stage, the signal for a wordw at Tc can be written as a
sequence:

Sw = [sw(1), sw(2), · · · , sw(Tc)] (8)
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sw(t) at each sample pointt is given by itsDF-IDF score, which is defined as:

sw(t) =
Nw(t)

N(t)
× log

∑Tc

i=1
N(i)

∑Tc

i=1
Nw(i)

(9)

The first component of the right hand side (RHS) of Eq. (9) isDF (document fre-
quency).Nw(t) is the number of tweets which contain wordw and appear after sample
point t − 1 but beforet, andN(t) is the number of all the tweets in the same period
of time. DF is the counterpart ofTF in TF-IDF (Term Frequency-Inverse Document
Frequency), which is commonly used to measure words’ importance in text retrieval
[20]. The difference is thatDF only counts the number of tweets containing wordw.
This is necessary in the context ofTwitter, since multiple appearances of the same word
are usually associated with the same event in one single short tweet. The second com-
ponent of RHS of Eq. (9) is equivalent toIDF. The difference is that, the collection
size is fixed for the conventionalIDF, whereas new tweets are generated very fast in
Twitter. Therefore, theIDF component in Eq. (9) makes it possible to accommodate
new words.sw(t) takes a high value if wordw is used more often than others from
t− 1 to t while it is rarely used beforeTc, and a low value otherwise.

In the second stage, the signal is built with the help of a sliding window, which
covers a number of 1st-stage sample points. Denote the size of the sliding window
as∆. Each 2nd-stage sample point captures how much the change insw(t) is in the
sliding window, if there is any.

In this stage, the signal for wordw at current timeT ′
c is again represented as a

sequence:
S′
w = [s′w(1), s

′
w(2), · · · , s

′
w(T

′
c)] (10)

Note thatt in the first stage andt′ in the second stage are not necessarily in the same
unit. For example, the interval between two consecutivet’s in the first stage could be
10 minutes, while that in the second stage could be one hour. In this case,∆ = 6.

To compute the value ofs′w(t
′) at each 2nd-stage sample point,EDCoW first moves

the sliding window to cover 1st-stage sample points fromsw((t′ − 2) ∗ ∆ + 1) to
sw((t

′ − 1) ∗∆). Denote the signal fragment in this window asDt′−1. EDCoW then
derives theH-measure of the signal inDt′−1. Denote it asHt′−1. Next, EDCoW
shifts the sliding window to cover 1st-stage sample points from sw((t

′ − 1) ∗∆+ 1)
to sw(t′ ∗∆). Denote the new fragment asDt′ . Then,EDCoW concatenates segment
Dt′−1 andDt′ sequentially to form a larger segmentDt∗ , whoseH-measure is also
obtained. Denoted it asHt∗ . Subsequently, the value ofs′w(t

′) is calculated as:

s′w(t
′) =

{

Ht∗−Ht′−1

Ht′−1

if (Ht∗ > Ht′−1);

0 otherwise
(11)

If there is no change insw(t) within Dt′ , there will be no significant difference between
s′w(t

′) ands′w(t
′ − 1). On the other hand, an increase/decrease in the usage of word

w would causesw(t) in Dt′ to appear in more/fewer scales. This is translated into
an increase/decrease of the wavelet entropy inDt∗ from that inDt′−1. And s′w(t

′)
encodes how much the change is.
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Figure 1: Two Stages of Signal Construction

Figure 1 illustrates the two stages of signal construction in EDCoW. Figure 2
gives an example of the signals constructed based on tweets published by a number
of Singapore-basedTwitter users on June 16, 2010. On that day, there was a heavy
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Figure 2: Example of Signals (2 stages)

downpour in Singapore, which caused flash flood in the premiumshopping belt Or-
chard road. At each sample point in Figure 2(a),Nw(t) is the number of the tweets
published in the past 10 minutes which contains the specific word, whileN(t) is the
number of all the tweets published in the same period of time.Figure 2(b) is generated
with ∆ = 6, i.e. one 2nd-stage sample point encodes the change of a word’s appear-
ance pattern in the past 60 minutes. Figure 2 shows that the bursts of the words are
more salient in the corresponding 2nd-stage signals.

By capturing the change of a word’s appearance pattern within a period of time in
one 2nd-stage sample point, it reduces the space required tostore the signal. In fact,
event detection needs only the information whether a word exhibits any burst within
certain period of time (i.e.∆ in the case ofEDCoW). As we can see in Figure 2,
1st-stage signal contains redundant information about thecomplete appearance history
of a specific word. Nevertheless, most existing algorithms store data equivalent to the
1st-stage signal.

After the signals are built, each word is then represented asits corresponding signal
in the next two components1.

1In the rest of this paper, “signal” and “word” are used interchangeably.
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4.2 Computation of Cross Correlation

EDCoW detects events by grouping a set of words with similar patterns of burst. To
achieve this, the similarities between words need to be computed first.

This component receives as input a segment of signals. Depending on the appli-
cation scenario, the length of segment varies. For example,it could be 24 hours, if a
summary of the events happened in one day is needed. It could also be as short as a
few minutes, if a timelier understanding of what is happening is required. Denote this
segment asSI , and individual signal in this segmentSI

i .
In signal processing,cross correlationis a common measure of similarity between

two signals [14]. Represent two signals as functions,f(t) andg(t), thecross correla-
tion between the two is defined as:

(f ⋆ g)(t) =
∑

f∗(τ)g(t+ τ) (12)

Here,f∗ denotes the complex conjugate off . Computation ofcross correlationbasi-
cally shifts one signal (i.e.g in Eq. (12)) and calculates the dot product between the
two signals. In other words, it measures the similarity between the two signals as a
function of a time-lag applied to one of them.

Cross correlationcould also be applied on a signal itself. In this case, it is termed
asauto correlation, which always shows a peak at a lag of zero, unless the signal is
trivial zero signal. Given this, theauto correlation(with zero time lag) could be used
to evaluate how trivial a word is. Denote signalSI

i ’s auto correlationasAI
i .

Cross correlationcomputation is a pair-wise operation. Given the large number of
words used inTwitter, it is expensive to measurecross correlationbetween all pairs of
signals. Nevertheless, a large number of signals are in facttrivial. Figure 3 illustrates
the distribution ofAI

i within SI
i of 24-hour worth of signal. The distribution is highly

skewed, i.e. the majority of the signals are trivial (withAI
i ≈ 0). Given this, we

discard the signals withAI
i < θ1. To setθ1, EDCoW first computes themedian

Figure 3: Skewed Distribution of Auto Correlation Values
absolute deviation(MAD) of all AI

i within SI
i :

MAD(SI) = median(|AI
i − median(AI

i )|) (13)

MAD is a statistically robust measure of the variability of a sample of data in the
presence of “outliers” [22]. In the case ofEDCoW, we are interested in those “outliers”
with outstandingly highAI

i though. Therefore, we filter away those signals withAI
i <
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θ1, andθ1 is set as follows:

θ1 = median(AI
i ) + γ ×MAD(SI) (14)

Empirically,γ is not less than10 due to the high skewness ofAI
i distribution.

Denote the number of the remaining signals asK. Cross correlationis then com-
puted in a pair-wise manner between all the remainingK signals. Currently, thecross
correlationbetween a pair of signals is calculated without applying time lag2. Denote
thecross correlationbetweenSI

i andSI
j asXij .

It is observed that the distribution ofXij exhibits a similar skewness as the one
shown in Figure 3. Given this, for each signalSI

i , EDCoW applies another threshold
θ2 onXij , which is defined as follows:

θ2 = medianSI

j
∈SI (Xij) + γ ×MADSI

j
∈SI (Xij) (15)

Here,γ is the same as the one in Eq. (14). We then setXij = 0 if Xij ≤ θ2.
The remaining non-zeroXij ’s are then arranged in a square matrix to form the

correlation matrixM. Since we are only interested in the similarity between pairs of
signals, the cells on the main diagonal ofM are set to be 0.M is highly sparse after
applying thresholdθ2. Figure 4 shows a portion of matrixM built from the data used
in Figure 2. It shows thecross correlationbetween the top 20 words with the highest
AI

i on that day.

Figure 4: Illustration of Correlation MatrixM. The lighter the color of the cell in the
matrix, the higher the similarity between the two signals is, and vice versa.

The main computation task in this component is the pair-wisecross correlation
computation, which apparently has a time complexity ofO(n2), wheren is the num-
ber of individual signals involved in the computation.n is generally very small after
filtering with θ1 (in Eq. (14)). For example, in the experimental studies, less than5%
of all the words remain after filtering withθ1. The quadratic complexity is therefore
still tractable.

4.3 Detection of Event by Modularity-based Graph Partitioning

Matrix M is a symmetric sparse matrix. From a graph theoretical pointof view, it
can be viewed as the adjacency matrix of a sparse undirected weighted graphG =

2As mentioned earlier, cross correlation measure the similarity between two signals as a time lag applied
to one of them. By varying the time lag, it is possible to studythe temporal relationship between two words,
e.g. a word appears earlier than another in an event. We plan such study in future work.
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(V,E,W ). Here, the vertex setV contains all theK signals after filtering withauto
correlation, while the edge setE = V × V . There is an edge between two verticesvi
andvj (vi, vj ∈ V ) if Xij > θ2, and the weightwij = Xij .

With such a graph theoretical interpretation ofM, event detection can then be for-
mulated as a graph partitioning problem, i.e. to cut the graph into subgraphs. Each
subgraph corresponds to an event, which contains a set of words with highcross cor-
relation. And thecross correlationbetween words in different subgraphs are expected
to be low.

Newman proposes a metric calledmodularityto measure the quality of such par-
titioning [12, 13]. Themodularityof a graph is defined as the sum of weights of all
the edges that fall within subgraphs (after partitioning) subtracted by the expected edge
weight sum if edges were placed at random. A positive modularity indicates possi-
ble presence of partitioning. We can define nodevi’s degreeasdi =

∑

j wji. The
sum of all the edge weights inG is defined asm =

∑

i di/2. Themodularityof the
partitioning is defined as:

Q =
1

2m

∑

ij

(wij −
di · dj
2m

)δci,cj (16)

whereci andcj are the index of the subgraph that nodevi andvj belong to respectively,
andδci,cj is the Kronecker delta.δci,cj = 1 if ci = cj , or δci,cj = 0 otherwise.

The goal here is to partitionG such thatQ is maximized. Newman has proposed a
very intuitive and efficient spectral graph theory-based approach to solve this optimiza-
tion problem [13]. It first constructs amodularity matrix(B) of the graphG, whose
elements are defined as:

Bij = wij −
di · dj
2m

(17)

Eigen-analysis is then conducted on the symmetric matrixB to find its largest eigen-
value and corresponding eigenvector (−→v ). Finally,G is split into two subgraphs based
on the signs of the elements in−→v . The spectral method is recursively applied to each
of the two pieces to further divide them into smaller subgraphs.

Note that, with the modularity-based graph partitioning,EDCoW does not require
extra parameter to pre-set the number of subgraphs (i.e. events) to be generated. It
stops automatically when no more subgraph can be constructed (i.e. Q < 0). This is
one of the advantagesEDCoW has over other algorithms.

The main computation task in this component is finding the largest eigenvalue (and
the corresponding eigenvector) of the sparse symmetric modularity matrixB. This can
be efficiently solved bypower iteration, which is able to scale up with the increase of
the number of words used in tweets [8].

4.4 Quantification of Event Significance

Note thatEDCoW requires each individual event to have at least two words, since the
smallest subgraph after graph partitioning contains two nodes. This is rationale, since
it is rare that a real-life big event would only be described by one word if there are so
many users discussing about it. Nevertheless, since each tweet is usually very short
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(less than 140 characters), it is not reasonable for an eventto be associated with too
many words either.

Given this,EDCoW defines a measurement to evaluate the events’significance.
Denote the subgraph (after partitioning) corresponding toan event asC = (V c, Ec,W c).
V c is the vertex set,Ec = V c × V c, W c contains the weights of the edges, which are
given by a portion ofcorrelation matrixM. The eventsignificanceis then defined as:

ǫ = (
∑

wc
ij)×

e1.5n

(2n)!
, n = |V c| (18)

Eq. (18) contains two parts. The first part sums up all thecross correlationvalues
between signals associated with an event. The second part discounts thesignificance
if the event is associated with too many words. The higherǫ is, the more significant
the event is. Finally,EDCoW filters events with exceptionally low value ofǫ (i.e.
ǫ≪ 0.1).

5 Empirical Evaluation

To validate the correctness ofEDCoW, we conduct an experimental study with a
dataset collected fromTwitter.

5.1 Dataset Used

The dataset used in the experiments is collected with the following procedure:

1. Obtain the top 1000 Singapore-based3 Twitter users with the most followers
from http://twitaholic.com/. Denote this set asU .

2. For each user inU , include her Singapore-based followers and friends within2
hops. Denote this aggregated set asU∗.

3. For each user inU∗, collect the tweets published in June 2010.

Twitter REST API4 is used to facilitate the data collection. There is a total of
19,256 unique users, i.e.|U∗| = 19, 256. The total number of tweets collected is
4,331,937. The tweets collected are tokenized into words. Stop-words are filtered.
We also filter (1) words with non-English characters, and (2)words with no more than
three characters. Stemming is also applied. There are 638,457 unique words in total
after filtering and stemming.

5.2 Experimental Settings

Before applyingEDCoW, we further clean up the dataset. First of all, rare words are
filtered, since they are less possible to be associated with an event. A threshold of

3A user is considered Singapore-based if she specifies “Singapore” as her location in the profile.
4Twitter API: http://dev.twitter.com/doc#rest-api.
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five appearances every day by average is applied5. We further filter words with certain
patterns being repeated more than two times, e.g. “booooo” (“o” being repeated 5
times) and “hahahaah” (“ha” being repeated 3 times). Such words are mainly used for
emotional expression, and not useful in defining events. There are 8,140 unique words
left.

To build signals for individual words, we set the interval between two consecutive
1st-stage sample points to be 10 minutes, and∆ = 6. By doing so, the final sig-
nals constructed capture the hourly change of individual words’ appearance patterns.
EDCoW is then applied to detect events on every day in June 2010.

5.3 Correctness ofEDCoW

In a typical information retrieval context,recall and precisionare two widely used
performance metrics. Given a collection of document,recall is defined as the fraction
of the relevant documents retrieved to the total number of relevant documents should
have been returned. In the case ofEDCoW, “relevant” means there is a real-life event
corresponding to the detected event. However, it is not feasible to enumerate all the
real-life events happened in June 2010 in the dataset. It is therefore difficult to measure
EDCoW’s recall. Given this, we concentrate onprecisionrather thanrecall, which
measures the portion of the “relevant” events detected byEDCoW to all the events
detected. Table 1 lists all the events (withǫ > 0.1) detected byEDCoW.

Since no ground truth is available about all the “relevant” events, we manually
check the events detected byEDCoW one by one. There is no event (withǫ > 0.1)
detected on June 1-3, 6, and 19-30. Out of the 21 events detected, we find three events
which do not correspond to any real-life event, i.e. Event 6,9, and 10 in Table 1.
There is one event which is a mixture of more than one real-life event, i.e. Event 7.
It is associated with two words, which correspond to two non-related real-life events.
Event 13 is detected to associate with two words “#svk” and “#svn”, which relate to
two teams in the World Cup 2010. There was no clear real-life event related to the two
teams on that day though. Therefore, theprecisionof EDCoW in this case is76.2%.

EDCoW has one tunable parameter, i.e.γ in Eq. (14) and (15). The result so far is
obtained withγ = 40. We also studyEDCoW’s performance with differentγ values,
i.e. γ = 10, 20, 30, 50.

A smaller value ofγ (i.e. γ < 40) fails to filter away signals with trivialauto
correlation, many of which are included in the graph partitioning to formthe events.
In this case, most of the events detected byEDCoW are associated with a large number
of words, and therefore smallǫ values. We also manually check the events detected by
EDCoW with differentγ values. None of the five events withǫ > 0.1 detected by
EDCoW with γ = 10 corresponds to any real-life event. Theprecisionin this case is
0. Forγ = 20, only one out of seven events is “relevant”, which corresponds to Event
3 in Table 1. This is translated to aprecisionof 14.3%. Forγ = 30, only two out of12
events are “relevant”, which correspond to Event 2 and 3 in Table 1. Theprecisionis
therefore16.7%.

5To be consistent with Eq. (9), here we count the word appearance by the number of tweets using the
word, even the word may appear in one single tweet more than once.
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Day Event
ǫ

value
Event Description

1-3 No event detected

4

1. democrat, naoto 0.417
Ruling Democratic Party of Japan elected Naoto Kan as
chief.

2. ss501, suju 0.414
Korean popular bands Super Junior’s and SS501’s perfor-
mance on mubank.

3. music, mubank 0.401
Related to Event 2, mubank is a popular KBS entertain-
ment show.

4. shindong,
youngsaeng

0.365
Related to Event 2, Shindong and Youngsaeng are mem-
ber of the two bands.

5. junior, eunhyuk 0.124 Related to Event 2, Eunhyuk is a member of super junior.
5 6. robben, break 0.404 No clear corresponding real-life even
6 No event detected

7
7. kobe, kristen 0.417

Two events: Kristen Stewart won some MTV awards, and
Kobe Bryant in a NBA match.

8. #iphone4, ios4,
iphone

0.416 iPhone 4 released during WWDC 2010

8
9. reformat, hamilton 0.391 No clear corresponding real-life event
10. avocado, com-
mence, ongoing

0.124 No clear corresponding real-life event

9 11. #failwhale, twitter 0.360
A number of users complained they could not use twitter
due to over-capacity.
A logo with whale is usually used to denote over-capacity.

10 12. vuvuzela, soccer 0.387 People started to talk about world cup.

11 13. #svk, #svn 0.418
#svk and #svn represent Team Slovakia and Slovenia in
World Cup 2010.

12 14. #kor, greec, #gre 0.102
A match between South Korea and Greece in World Cup
2010.

13 15. whale, twitter 0.417 Similar as Event 10.

14 16. lippi, italy 0.326
Italy football team coach Marcello Lippi made some com-
ments after a match in World Cup 2010.

15
17. drogba, ivory 0.417

Football player Drogba from Ivory Coast is given special
permission to play in World Cup 2010.

18. #prk, #bra, north 0.114
A match between North Korea and Brazil in World Cup
2010.

16 19. orchard, flood 0.357 Flood in Orchard Road.
17 20. greec, #gre, nigeria 0.122 A match between Greece and Nigeria in World Cup 2010.

18 21. #srb, podolski 0.403
A match between Germany and Serbia in World Cup
2010.
Podolski is a member of Team Germany in World Cup
2010.

19-30 No event detected

Table 1: All the Events Detected byEDCoW in June 2010
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A larger value ofγ filters more signals away. In this case, some of the “relevant”
events, if any, are already filtered before graph partitioning is applied to detect them.
We again manually check the events detected. Although more events (withǫ > 0.1) are
detected, only one new “relevant” event other than those listed in Table 1 is detected. It
is associated with two words “ghana” and “#gha”, and corresponds to a match between
team Ghana and Serbia on June 13, 2010. There are another eight “relevant” events
out of the total40 detected events, which correspond to Event 1, 2, 3, 5 (with different
words though), 7, 11, 13, and 20 in Table 1. Theprecisionis 22.5%.

Due to space constraint, the details of the events detected with different values ofγ
are omitted here. We only summarize theprecisionachieved with differentγ in Table
2. γ = 40 achieves the bestprecisionamong all the settings studied in the experimental
study.

γ value precisionof EDCoW
10 0
20 14.3%
30 16.7%
40 76.2%
50 22.5%

Table 2: Comparison of Correctness with Differentγ

5.4 Comparison with Other Methods

In the experimental study,EDCoW is applied to detect the events on a daily basis.
To some extent, this is equivalent to topic modeling, whose goal is to discover the
“topics” that occur in a collection of documents. Given this, we aggregate all the tweets
published within one day as one single document, and then apply topic modeling on
the collection of documents (i.e. all the 30 documents for June 2010). We apply Latent
Dirichlet Allocation (LDA), a widely used statistical topic modeling technique, on the
document collection. We then compare the result generated from LDA with that by
EDCoW.

In LDA, each document is a mixture of various topics, and the document-topic
distribution is assumed to have a Dirichlet prior (with hype-parameterα). Each topic
itself is a mixture of various words, and the topic-word distribution is again assumed
to have a Dirichlet prior (with hype-parameterβ) as well. LDA is conditioned on three
parameters, i.e. Dirichlet hyper-parametersα, β, and topic numberT 6. In this study,
they are set asT = 50, α = 50/T andβ = 0.1. Due to the space constraint, the
complete result of all the topics (each topic is representedas a list of top words) is
omitted here. Instead, the top-4 topics identified on June 16, 2010 are listed in Table 3.
The “probability” in this table is the probability that the corresponding topic appears in
a document (i.e. all the tweets published on one particular day).

As it can be seen from Table 3, one of the obvious drawbacks of applying LDA in
the context of event detection is that, the result generatedby LDA is more difficult to

6Due to space constraint, readers are referred to [2] for the details of LDA.
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Day Topic ID Probability Top Words

16

13 0.229 flood, orchard, rain, spain, road, weather, singapor, love,cold
48 0.095 time, don, feel, sleep, love, tomorrow, happi, home, hate
11 0.091 time, love, don, feel, wait, watch, singapor, hope, life
8 0.079 watch, world, cup, match, time, love, don, south, goal

Table 3: Topics Detected by LDA on June 16, 2010

interpret than the one listed in Table 1. Although “flood” and“orchard” are identified
as the top words for the most related topic on June 16, 2010, they are mixed with
other words as well. It is also not straightforward to see that Topic 8 may be related to
“world cup”. The other two top topics in Table 3 are even more difficult to interpret as
their top-words are all trivial words. Moreover, after setting the number of topics (i.e.
T ), it would always return a distribution overT topics for each document no matter
whether the document (i.e. tweets published within one particular day) has discussed
about any real-life event or not. Further processing is required to improve the results
generated by LDA in the context of event detection, e.g. applying threshold-based
heuristics to filter non-eventful topics and words. In contrast,EDCoW has the ability
to filter trivial words away before applying clustering technique to detect the events.
More importantly, it requires no parameter to specify the number of events. It can
automatically generate different number of events based onusers’ discussions in the
tweets.

6 Voters’ Voice: SeeingEDCoW in Real Action

Instead of only validatingEDCoW in experimental setting, we further prove its ap-
plicability in a more practical setting. We designed a proof-of-concept system, called
Voters’ Voice, which was used to detect the events in netizens’ discussionabout Singa-
pore General Election (SGE) 2011 on a daily basis. The detected events are basically
the topics that attracted the most significant discussion, which reflect the focal points
of discussion about SGE 2011. On top of event detection,Voters’ Voicealso provides
additional insights like netizens’ sentiments. Figure 5 gives an overview ofVoters’
Voice.

Data Feeder

Data Feeder

...

Hot Topics

Sentiment

Analytic EngineStorage Engine Visualization Engine End User

…
...

…
...

Figure 5: Overview ofVoters’ Voice
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6.1 Data Collection

In the experimental study, we detect events from thetweetsof general discussions. In
contrast, inVoters’ Voice, we are interested in a more focused discussion, i.e. SGE
2011. As mentioned earlier, users usually publishtweetsabout various topics. It is not
reasonable to assume that all the users would be interested in SGE-related topics. If
we apply the same strategy we used to collecttweetsin the experimental study, it could
be expected that the events detected would include many non-SGE-related ones. Given
this, we apply a different strategy in collecting the tweets:

1. We identify a set of key phrases that could potentially be used to discuss different
parties in SGE 2011, including political parties’ name, their candidates’ name,
and the constituencies they contest in.

2. We then monitor the Twitter public timeline with Twitter Streaming API7 for
tweets containing any of those key phrases.

3. For eachtweet containing any key phrase, we collect it if it is published by
Singapore-based users.

We started collectingtweetsfrom April 13, 2011 till May 13, 2011. There is a total
of 147, 129 tweetscollected. Figure 6 illustrates the volume change over time. It
is observed that the the volume change trend coincides with the major milestones in
SGE 2011. There is steep increase in the volume staring from April 27, which was
the nomination day. There is an even more steep increase fromMay 7, which was
the polling day; and it quickly dies off two days after the polling day. There is an
obvious drop in the volume on May 4, when Prime Minister went online to interact
with netizens on Facebook. Many users therefore switched their discussion venue from
Twitter to Facebook to participate in the online interaction with Prime Minister, which
caused the volume of tweets to drop8.
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Figure 6: Trend of Tweet Volume Change

7Twitter Streaming API: http://dev.twitter.com/pages/streamingapi
8At the same time, we do observe a steep increase in the volume of posts in Facebook on the same day,

which further supports this explanation.

16



6.2 Analytics and Visualization of Results

EDCoW is then applied to analyze what the focal points are in the party-specific dis-
cussions on a daily basis, i.e. what are the topics that attract the most significant discus-
sion (as measured by Eq. (18)) about different parties everyday. As mentioned earlier,
a topic is basically a group of non-trivial keywords showingsimilar usage patterns. To
make the detected topics easier to understand, we further extract entity based on the de-
tected event-related keywords with some intuitive heuristics. For example, for an event
which is represented by a group of keywords including “tin”,“pei”, and “ling”, we are
able to extract “tin pei ling” (Tin Pei Ling is a candidate in SGE 2011) as an entity.
Besides hot topic detection, we also apply sentiment analysis technology [3] to find
out what are netizens’ opinions (positive, neutral, or negative) regarding the detected
topics. We then further aggregate the sentiments on the detected topics to generate the
sentiments about different political parties on a daily basis.

The analytics results (including the detected hot topics and sentiments) are then
visualized and presented to end users. Figure 7 shows some screen captures of the
visualization.

(a) Daily Hot Topics about a Party

(b) Sentiment Trend of a Party

Figure 7:Voters’ Voice

In Figure 7(a), the top right panel lists the significant topics (events) detected by
EDCoW about a party on a particular day. Each vertical bar corresponds to one of such
topics, and the altitude of each bar represents each topic’ssignificance (as measured by

17



Eq. (18)). When any of the vertical bar is clicked (to select one topic), the bottom
right panel display the sentiment changes over time of all the words/phrases related
to the corresponding topic (recall that a topic is basicallya group of related words).
On the left panel, all the tweets related to the corresponding topic are listed, with its
sentiment polarity displayed in different colors (tweets with positive/negativesentiment
are highlighted in green/red respectively, andneutralsentiment is represented with no
color).

Figure 7(b) presents the trends of different parties’ sentiment over time. Users can
choose one party by clicking on one of the seven parties listed on the left panel. Subse-
quently, the selected party’s sentiment trend over time is displayed on the right panel.
For each selected party, there will be two lines: the one on the top shows the trend of
positive sentiment; while the one on the bottom shows that ofnegative sentiment. Each
point on the two lines displays the ratio of the tweets carrying positive/negative senti-
ment to the total number of tweets about the selected party onone day. Users are also
allowed to select more than one party on the left panel, so that their sentiment trends
could be compared in the right panel.

6.3 Results and Impact ofVoters’ Voice

Voters’ Voicehas been used to summarize netizens’ discussion to understand what the
focal points are about SGE 2011. Table 4 lists some of the detected events/topics near
the nomination day (Apr 27) and the polling day (May 7).

The events/topics detected are different from what are covered on the same days
in the traditional media, like news paper. It shows that event detection from Twitter-
like social media could be complementary to traditional media by providing different
perspective on the major events. The results generated byVoters’ Voicehave also been
cited in Singapore local newspaper to give readers a better understanding of social
media’s impact in SGE 2011 [15].

7 Conclusions and Future work

This paper focuses on detecting events by analyzing the contents published inTwit-
ter. This paper proposesEDCoW (EventDetection withClusteringof Wavelet-based
Signals). Experimental studies show thatEDCoW achieves a fairly good performance.
We’ve also designed a proof-of-concept system, calledVoters’ Voice, to seeEDCoW’s
usage in a real-life scenario, i.e. Singapore General Election 2011. The results gener-
ated have been cited by Singapore local news paper, which to some extent shows the
practical usage ofEDCoW. Nevertheless,EDCoW still has space for improvement.

First of all, currentlyEDCoW treats each word independently. Such treatment may
potentially group words associated with different real-life events together, as shown
by the experimental study results. We plan to extendEDCoW by incorporating more
factors, e.g. words need to be semantically close enough to be clustered to form an
event. Second, we plan to studyEDCoW’s performance with dataset of a larger scale.
We also plan to investigate the possibility of compiling a ground truth automatically
for the dataset, so that a more objective comparison with other algorithms could be
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Date Topic Description

Apr 27
Vivian Balakrishnan, elec-
tions

Netizens utter sentiments about Vivian Bal-
akrishnan’s (a candidate from People’s Action
Party, the ruling party) focusing on non bread-
and-butter issues during the campaign.

Apr 28
teck siong, disqualified,
deadline

Ng Teck Siong (an independent candidate) was
disqualified from contesting in Tanjong Pagar
constituency on the basis of him submitting his
nomination form late by 35 seconds.

May 7
parliament, tin pei ling,
sylvia lim, worried

While the polling results being counted, neti-
zens were actively discussing about the possi-
ble outcome. They seems to be interested in Tin
Peiling (a candidate from the ruling party) and
Sylvia Lim (a candidate from Worker’s Party,
an opposition party). Sylvia Lim appeared to be
more favorable than Tin Peiling (e.g. “I am so
worried that Sylvia Lim does not get into Parlia-
ment, but Tin Pei Ling does.”).

May 8
gracious, loser, lina chiam,
listen

Netizens show sympathy and appreciation to
Lina Chiam (a candidate from Singapore Peo-
ple’s Party, an opposition party) after the results
were announced officially (e.g. “What a gra-
cious loser, what a loss. SPP’s Lina Chiam over-
heard saying: ’Listen to Sitoh Yih Pin and be
a good resident.”. Sitoh Yih Pin is a candidate
from the ruling party who contested in the same
constituency).

Table 4: Examples of the Events Detected during SGE 2011

conducted. Third, currentlyEDCoW does not exploit the relationship among users. It
deserves a further study to see how the analysis of the relationship among users could
contribute to event detection. Last but not least, the current design ofEDCoW does not
apply time lag when computing thecross correlationbetween a pair of words. We plan
to introduce time lag and study the interaction between different words, e.g. whether
one word appears earlier than another in one event. This could potentially contribute
to study the temporal evolution of event.
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