
Real-time, Location-aware Collaborative Filtering
of Web Content

Thomas Sandholm and Hang Ung
HP Labs

Social Computing Group
thomas.e.sandholm,hang.ung@hp.com

ABSTRACT
In this paper we describe the collaborative filtering feature
of a location-aware, Web content recommendation service,
calledGloe. The main purpose of our collaborative filtering
solution is to increase the diversity of recommendations and
to thereby mitigate popularity bias. The key challenge is to
filter candidate suggestions in real-time, with minimal data
mining and model building overhead. There is an apparent
trade-off between building general purpose reusable mod-
els with contributions from a large user base on one hand
and efficient on-line evaluation and recommendation in real-
time on the other hand. Our solution is to apply item-based,
top-N collaborative filtering within a hierarchical folkson-
omy structure in a Geohash pre-partitioned geographic lo-
cale. We demonstrate that these recommendations can be,
on average, as fast to compute as aggregate rating-based rec-
ommendations, while offering a more diverse as well as per-
sonalized set of recommendations.

Author Keywords
Item-based Collaborative Filtering, Location-Based Service

ACM Classification Keywords
H.3.3 Information Storage and Retrieval: Information filter-
ing

INTRODUCTION
Recommender systems are becoming increasingly popular
to filter out relevant information in the era of social media
where content is co-created and shared at an accelerating
pace. Having rich filtering capabilities is particularly impor-
tant in the case of content for mobile devices with limited
screen real estate, bandwidth and input capabilities. A key
outstanding challenge of recommender systems is how to ef-
ficiently combine general and user-centric contextual infor-
mation to provide more targeted and personal recommenda-
tions. Mobile devices such as smartphones are well-suited
to carry and track such contextual information as they are

CaRR 2011, February 13, 2011, Stanford, CA, USA.
Copyright c© 2011 for the individual papers by the papers’ authors. Copy-
ing permitted only for private and academic purposes. This volume is pub-
lished and copyrighted by its editors.

rarely shared among users and they have advanced sensing
and communication capabilities.

A related challenge for mobile, social media recommenda-
tion services is to maintain diversity of top-N recommenda-
tions in order to avoidpopularity bias. N is typically smaller
on mobile devices exacerbating the issue. Popularity bias
refers to the effect when a small set of items has a tendency
to “get stuck” at the top of the recommendations due to in-
creased exposure. This effect is sometimes also referred to
aspreferential attachment or rich get richer. The result of
this effect is that users have no incentive to revisit the social
media site, because they mostly get recommendations that
they are already familiar with. To simplify our evaluation
later we assume here that a higher diversity of items recom-
mended across users is an indication of a lower popularity
bias.

In this paper we present a method to combine general lo-
cation context and user-centric context for makingreal-time
recommendations. Additionally, we propose techniques to
increase diversity and promote serendipitous discovery. Pro-
viding recommendations in real-time, referred to here as an
algorithm that does not require off-line model-building (cf.
lazy loading), helps with managing the huge amount of pos-
sible user-item-geography combinations.

All of the algorithms have been implemented and tested in
our live local Web content recommender system,Gloe1. Gloe
is a recommendation service targeted at mobile devices with
Web browsing capabilities. Web pages are recommended
based on your location as sensed by the device to avoid ex-
plicitly searching and then browsing through large amounts
of information to find relevant content, which may be counter
productive on small mobile devices.

The paper is organized as follows. First, we review Collab-
orative Filtering (CF) approaches relevant to our work, and
then we discuss related work on location-based content re-
trieval. We present our algorithm and our implementation of
this algorithm in the live Gloe system. Finally, we evaluate
the performance of our system and show that it is feasible
for real-time recommendations.

1http://hpgloe.com

1

COLLABORATIVE FILTERING
Collaborative filtering techniques have been very successful
in recommending items to users based on various similarity
metrics. Similarity could either be measured between users
or between items. Assuming an e-commerce scenario with
many users and relatively few items, the algorithms tend to
scale better if one focuses on item based similarities. How-
ever, in a social media system like YouTube, with a very
large number of items being continuously contributed by
users, item-based algorithms will also result in prohibitively
large user-item matrices. One solution is to parallelize the
computation, in particular the model building phase, in a
compute farm framework such as MapReduce. However,
the recommendations will still suffer from being potentially
stale and requiring a big investment in computational power.
Another typical issue of CF recommendations is that they
may lead to a popularity bias, and suffer from a lack of di-
versity. A direct consequence of this problem is that recom-
mendations tend to exhaust the number ofrecommendable
items, which in turn leads to a degradation of recommenda-
tion quality over time.

Because of the beneficial scalability features of item-based
CF, we decided to apply it to our problem. However, we
extend the approach to fit in situations with a large number
of user-contributed items. The main idea is to create ran-
domly sampled, small, ad-hoc item models of the top viewed
and rated items within a folksonomy-based tag scope. These
models are then directly applied to user-specific models for
one-shot recommendations aimed at providing both serendip-
ity and personalization.

Goet al. [4] have recently studied context-based recommen-
dations in terms of implicit signals such as favorite book-
marking. We use very similar item-based models but lever-
age implicit views as well as explicit ratings in our model,
and we apply the model in a geo-aware context.

Gantneret al. [3] have investigated context-based recom-
mendations in terms of episodic patterns. Their approach is
to use assemblies of overlapping weekly models to capture
daily and weekly patterns. From their evaluation it seems
that the most recent trend had a very big impact, which is the
general idea behind economic time-discount models based
on the theory of interest and time-value of money [5]. Given
that our rating model already uses a currency (see next sec-
tion), we can apply these interest-rate like methods directly
to normalize for elapsed time.

An important element of making the model computationally
feasible for on-line use is geographic pre-partitioning, dis-
cussed next.

LOCATION-BASED CONTENT RETRIEVAL
The recent boost in availability and use of GPS and 3G en-
abled smartphones has led to a surge in Location Based Ser-
vices (LBS), which are providing you with location relevant
information either in the form of location-scoped keyword
search or location-aware content feeds. There are two main
types of LBS, those that focus on automatically mining and

mapping existing content (e.g. [1]), and those that rely on
explicit user contributions, e.g. Yelp2 restaurant reviews,
or Foursquare3 venue check-ins. Many systems also pro-
vide some hybrid of these two models, e.g. Google local
search. Purely basing the mapping of content on text anal-
ysis, in general, saves users from entering the location in
keyword searches in traditional search engines. The fact that
many users today publish on-line content and have GPS en-
abled phones means that much more reliable and precise
location mappings can be obtained directly from users in
the form of tagged Flickr photos or annotated Wikipedia
pages. However, when aggregating end-user contributions
directly one has to pay extra attention to behavioral inter-
actions, such as incentives to avoid issues including free-
riding, spamming and mechanism gaming. To address these
behavioral issues we developed an economics and predic-
tion market inspired, location-aware recommender system
that we call Gloe [6], where users rate content by placing
bids, using a virtual currency. A full description of Gloe
is outside the scope of this paper. For a more detailed in-
formation we refer to [6] and the on-line documentation at
http://www.hpgloe.com. The most novel aspect of
the system is that it uses a budget-based model to encourage
truthful ratings.

Gloe allows retrieval of the most popular Web pages in a lo-
cation based on a hierarchical folksonomy tagging structure.
The result may be filtered on recommendations from a se-
lect set of friends, e.g. Facebook friends, to obtain a more
personalized view of what is popular. Gloe uses explicit,
real-time, aggregation-based metrics of popularity (highest
sum of bids on an item), which makes the evaluation very
fast. Another key design feature of Gloe is location parti-
tioning. All recommendations are partitioned according to
the Geohash4 algorithm, which converts a two-dimensional
geographic coordinate into a one dimensional string that is
alphabetically sortable by location vicinity. One issue with
this approach is that it is hard for users to discover long-
tail content not captured by the immediate social network.
This is in part an extension of the popularity bias issue. In,
Gloe, this problem is arguably mitigated by allowing, loca-
tion, friend as well as folksonomy tag filtering. However,
diversity and discovery of long tail content outside of your
circle of friends are still concerns.

To address these problem we implemented ad-hoc top-N item-
based collaborative filtering on a per-location, per tag-scope
basis including some controlled randomness to allow for more
long-tail content and diversity. Tag scope here refers to a
branch in the tree of user-contributed (folksonomy) tags. Tag
scopes are also calledchannels in the Gloe system.

The Web UI can be seen in Figure1. We describe the model
we implemented in some more detail next.

2http://yelp.com
3http://foursquare.com
4http://wikipedia.org/wiki/Geohash

2

http://www.hpgloe.com

Figure 1. View of the Web UI (partial). User enters address in(A),
sets the radius (B), and picks a channel/tag scope from a dynamic geo-
dependent list (C). There are 4 tabs, showing (from left to right): aggre-
gate ratings (D, “popular here”), item-based CF suggestions (selected
tab E,“suggestions for you”), a tag cloud and a list of top contributing
users in the considered area (“local experts”). Each recommendation
(F) is displayed with the current number of views and votes received, as
well as a vote button. Not shown here are: an interactive map with the
positions of the recommendations; lists of recently voted and viewed
items; and a list of users who contributed top-ranked content.

MODEL
We want to recommendN out ofm items (represented by a
URL pointing to Web content) ton users. The state of the
system from which to make a recommendation can be repre-
sented by then×m user-item matrixR, where the value of
Ri,j is the current value of the money spent by useri on item
j stemming from explicit ratings or views of Web content.
There is a value decay according to the theory of time-value
of money to account for item popularity and novelty decay
over time. This value decay takes the following form:

vt =
vt+T

(1 + r)T
(1)

wherevt is the value at timet, r is the decay rate per time
step, andT is the number of time steps from timet (e.g. the
time of producing a recommendation)into the past to the
time when the rating or view took place.

The top-N recommendationproblem is then defined as (adapted
from [2]): GivenR and a set of items,U that have been ei-
ther rated or viewed by the user, provide an ordered set of
itemsX , such that|X | ≤ N andX ∩ U = ∅.

What constitutes the top, i.e. how the items are ordered, de-
pends on the definition of a similarity metric between items.
The position of a candidate item in the list of recommen-
dations will then be determined by the aggregate similarity
between all items already rated or viewed by the user and the
candidate item. The complete process for constructing this

ordered list is discussed next.

TheR matrix is constructed in two steps.

Step 1: We obtain the topV items based on ratings and
views in a particular tag scopets and Geohash regionL,
whereV = S ∗ lf , S is our sample size andlf is a factor
> 1 to fine-tune how much long-tail content to retrieve.

Step 2: We draw a random sample ofS items fromV and
aggregate all user spendings on those items in the matrix
R.

We note that this technique will result in some loss of very
poorly rated items, which may contribute to determining which
items not to recommend to a user. However, we in general
want to recommend high quality items to users, so cutting
off low quality items in this step already ensures a certain
minimal level of quality in recommended items, as well as
reduces the computation time.

Next we compute them×m item model matrixM by pair-
wise similarity tests of all items inR across all users. As
similarity measure we adopt the frequent item adjusted con-
ditional probability-based measure in [2]:

sim(i, j) =

∑
∀q:Rq>0

Rq,j

Freq(i)× Freq(j)
(2)

where Freq(X) is the number of user valuations of itemX .
The main reason for adopting this measure is to avoid al-
ways recommending frequently occurring (rated or viewed)
items, which would impair our goal of achieving increased
diversity. See [2] for more details.

The modelM may be cached but note that it is specific to a
regionL and a tag scopets, so it has restricted applicability.
However, the idea is to compute this model in real-time, and
to promote diversity which caching would hamper. The only
way to achieve that is to capm, which is done by our two
step semi-random construction ofR.

Now to apply the modelM to a useru to yield a recom-
mendation we construct the vectorU where each element
represents the valuations by useru of all items in the ma-
trix M . The recommendation is then simply computed as
x = MU where we set all existing item valuations inU to 0
in the resulting vectorx. Furthermore, we only retrieve the
topN items inx as our final recommendation.

In the case of a user who has not valuated any items inM ,
i.e. a cold start user, we artificially set a low valuation on a
random item to force a non all-zero vectorx. Without this
modification users would not get any recommendations until
they started rating or viewing items.

The valuation of an item is a linear combination of the amount
of money spent on that item and the number of views of the
item. Both of these metrics may be discounted by the time
value of money constantr. We have

v = αq ∗ (1− α)c (3)

3

whereq represents ratings (in Gloe, money spent on an item),
andc aggregate views or clicks. Typically,0.5 < α < 1 to
bias the valuation towards the more explicit ratings.

The recommendation algorithm is summarized in Algorithm1.
Note that items to include in the model,R, andM may all be
cached between subsequent calls from different users within
the same Geohash area and tag scope (ts). We calculate sim-
ilarity for each item, but since we can control the sample
sizeS independently of the number of items and the number
of users, a sufficiently smallS < 100 leads to acceptable
real-time performance. Using larger geographic areas (L),
as well as more general tag scopes both serve to improve the
scalability and performance of the algorithm, as it improves
the likelihood of a cache hit. On the other hand if the areas
are too large or the tag scopes too wide, then the sample of
items may be too small to achieve the desired diversity, i.e.
to capture the long-tail items. The cache eviction and time-
out strategy also has to be chosen carefully to allow users
who frequently revisit an area to obtain new suggestions.

The functions BuildModel and ApplyModel are direct adap-
tations of the algorithms in [2] to calculate pairwise item
similarities and select the top N most similar items given a
set of items that the user has already seen or rated, respec-
tively.

The GetTopItems function, called to obtain items to include
in the model, is sketched in Algorithm2. It queries the
database of views and ratings and selects the items that match
the location and tag scope ordered by the time decaying lin-
ear combination of views and ratings defined in Equations1
and3.

Algorithm 1 GetRec(latitude,longitude,ts,N, user)
L← GeoHash(latitude,longitude)
items← GetTopItems(L,ts,S ∗ lf)
k ← min(S, ||items||)
items← RandomSample(items,k)
R← CreateItemUserMatrix(items)
M ← BuildModel(R,k)
U ← CreateUserItemVector(user, items)
x← ApplyModel(M ,U ,N)
return NonZero(x)

Algorithm 2 GetTopItems(L,ts,V)
items← ...
SELECT URL, ...
(α

∑
L.q + (1-α)

∑
L.c))/(1 + r)T asv

FROM DB.L
WHEREL.tag LIKE ’ts%’
GROUP BY URL
ORDER BYv LIMIT V

return items

EVALUATION
To evaluate our implementation, we studied all the geographic
areas identified by a 3-character Geohash (corresponding to
an approximate 100x100 mile geographic area) with at least

Table 1. Model parameters used in experiment
Parameter value Description
N 5 number of items to recommend
ts root tag scope (full tree)
S 50 number of items in CF model
lf 5 factor of additional items sampled
α 0.5 no bias towards clicks or ratings
r 0.01 1% daily time decay of ratings

two user-contributed ratings or clicks in Gloe. This amounted
to 365 locations (4k users, 17k ratings + clicks). For each
location we took the average latitude, and average longitude
for all recommendations as the epicenter for our search. We
then picked the top-5 contributors in terms of ratings and
clicks in each location. For each of these users we then
constructed two recommendation lists, one based on a ra-
dius search 30 miles from the search epicenter picking the
top-N recommended items (the standard query in our current
mobile clients), and the other based on our top-N item and
location-based collaborative filtering algorithm described in
the previous section. N was set to 5 here. All model param-
eters chosen are summarized in Table1.

The main goal of the experiment is to see if our CF algorithm
can reduce popularity bias compared to the aggregate rat-
ing based algorithm, with minimal negative affect on perfor-
mance and popularity. Therefore we measure the response
time to compute and retrieve the recommendations, the di-
versity among the items in the recommendations, and the
popularity of items in the recommendations. We also ran the
CF algorithm with and without cached models. All metrics
were computed across all users for each location.

The response time is computed on the server side so it does
not include any network overhead, but it does include calls
to the SQL database. Diversity is calculated using average
pairwise Levenshtein edit distance among attributes of items
in the recommendations. The attributes included were, loca-
tion (Geohash strings), tags, titles, and URLs. To normalize
the diversity metric to be in the interval[0, 1] we calculate:

div(s, t) =
lev(s, t)− |l(s)− l(t)|

max(l(s), l(t))− |l(s)− l(t)|
(4)

wherelev(x, y) is the Levenshtein edit distance between strings
x andy, andl(x) is the number of characters in stringx. Fi-
nally the popularity is computed as the number of clicks on
items in the recommended list of items.

We performed a Welch two-sample t-test to determine whether
the metrics changed significantly between the pure rank ver-
sus CF cases. On a 5% significance level we cannot reject
the hypothesis that the mean response time and popularity
metrics are the same for the (non-caching) CF case as for
the rating case. However, in terms of diversity we see a sig-
nificant difference, with ap-value less than10−15. In gen-
eral, with (non-caching) CF, the average response time de-
creased slightly, from.75 to .66 (mainly thanks to the Geo-
hash search being faster than the radius search), and the av-
erage popularity increased slightly, from12 to 14 clicks. On

4

the other hand the diversity increased significantly from.36
to .48. This behavior can be seen visually by studying the
separation of the empirical cumulative distribution function
(CDF) curves of the three metrics in Figure2, which also in-
cludes the values when caching models. The way to read the
graphs is to look at the y-axis values of the curves to obtain
the likelihood of the metric being less than the corresponding
value on the x-axis across all the sampled locations. Hence,
for the response time metrics the curves should be as high
as possible and for the diversity and popularity metrics the
curves should be as low as possible. To make the differences
clearer the mean values for each metric are also marked and
shown in the graphs. The conclusions that can be drawn
from these graphs are the same as for the statistical tests; the
CF algorithm performs slightly better, and has significantly
higher diversity, whereas the aggregate popularity is largely
unchanged compared to the simple rating based ranking.

0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response Time CDF

Response Time (s)

P
(X

<
x)

0.75
0.66

0.12

Ranked by Ratings
Item−based CF
Cached CF

0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Diversity CDF

Normalized Levenshtein Diversity

P
(X

<
x)

0.36 0.480.47

Ranked by Ratings
Item−based CF
Cached CF

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Popularity CDF

Number of Clicks

P
(X

<
x)

12

14
14

Ranked by Ratings
Item−based CF
Cached CF

Figure 2. Response time, Diversity and Popularity CDFs. Forresponse
time a higher curve is better and for the other two metrics a lower
curve is better. All values are across all users within the same location.
A point in the graph corresponds to a sampled location.

CONCLUSIONS
We have shown in some preliminary experiments that location-
aware collaborative filtering is a promising technique for im-
proving diversity in search results to address the problem of
popularity bias without compromising performance or pop-
ularity significantly.

We note that the fact that the aggregate popularity did not
change much when applying our CF algorithm is not a sign
that the popularity bias, or as we define it lack of diversity,
did not change, but rather a desirable feature we achieved by
sampling from a larger pool of popular items.

Surprisingly, our experimental diversity results were notvery
sensitive to changes in thelf parameter, controlling the fac-
tor of additional items to sample from, or ther parameter,
representing time decay. We, however, attribute this to the
fact that the amount of usage is not high enough in the live
system across all sampled locations, as opposed to some in-
trinsic feature in our algorithm.

Future work includes more explicit use of geography in the
CF model, making trade-offs between novelty and popular-
ity and optimizing click-through rates using economic mod-
els of attention. As we get more usage of these new features
we can also analyze them more directly in the live system
using techniques such as A/B testing.

REFERENCES
1. E. Amitay, N. Har’El, R. Sivan, and A. Soffer.

Web-a-where: geotagging web content. InSIGIR’04,
pages 273–280, Sheffield, United Kingdom, 2004. ACM.

2. M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms.ACM Trans. Inf. Syst.,
22(1):143–177, 2004.

3. Z. Gantner, S. Rendle, and L. Schmidt-Thieme.
Factorization models for context-/time-aware movie
recommendations. InCAMRa ’10: Proceedings of the
Workshop on Context-Aware Movie Recommendation,
pages 14–19, New York, NY, USA, 2010. ACM.

4. G. Go, J. Yang, H. Park, and S. Han. Using online media
sharing behavior as implicit feedback for collaborative
filtering. Social Computing / IEEE International
Conference on Privacy, Security, Risk and Trust,
0:439–445, 2010.

5. D. G. Luenberger.Investment Science. Oxford
University Press, 1998.

6. T. Sandholm, H. Ung, C. Aperjis, and B. A. Huberman.
Global budgets for local recommendations. InRecSys
’10, pages 13–20, New York, NY, USA, 2010. ACM.

5

	Introduction
	Collaborative Filtering
	Location-Based Content Retrieval
	Model
	Evaluation
	Conclusions
	REFERENCES

